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Abstract: Solid-state drives (SSDs) are widely adopted in mobile devices, desktop PCs, and data
centers since they offer higher throughput, lower latency, and lower power consumption to mod-
ern computing systems and applications compared with hard disk drives (HDDs). However, the
performance of the SSDs can be degraded depending on the I/O access pattern due to the unique
characteristics of SSDs. For example, random I/O operation degrades the SSD performance since it
reduces the spatial locality and induces garbage collection (GC) overhead. In this paper, we present
an address reshaping scheme in a virtual file system (VFS) called sVFS for improving performance
and easy deployment. To do this, it first sequentializes a random access pattern in the VFS layer
which is an abstract layer on top of a more concrete file system. Thus, our scheme is independent
and easily deployed on any concrete file systems, block layer configuration (e.g., RAID), and devices.
Second, we adopt a mapping table for managing sequentialized addresses, which guarantees correct
read operations. Third, we support transaction processing for updating the mapping table to avoid
sacrificing the consistency. We implement our scheme at the VFS layer in Linux kernel 5.15.34. The
evaluation results show that our scheme improve the random write throughput by up to 27%, 36%,
34%, and 2.35× using the microbenchmark and 25%, 22%, 20%, and 3.51× using the macrobenchmark
compared with the existing scheme in the case of EXT4, F2FS, XFS, and BTRFS, respectively.

Keywords: operating system; file system; virtual file system; solid-state drive

1. Introduction

In modern computing, the need for faster computation resources such as CPU, main
memory, and storage devices increases. The rise of deep learning and big data applications,
characterized by massive data generation and processing [1,2], especially underscores the
critical need for improved I/O performance. To improve I/O performance, solid-state
drives (SSDs) are widely utilized for data storage in various systems such as mobile devices,
desktop PCs, and data centers [3–5] due to high throughput, low latency, and low power
consumption compared with hard disk drives (HDD).

Despite the advantages of SSDs, their performance can highly depend on the I/O
access pattern from applications [6,7]. For instance, the sequential write requests have a
high possibility of storing pages that have a similar lifetime in the same block in SSDs so
that the pages are invalidated at a similar time [8]. This reduces the overhead of copying
valid pages to free blocks and hence write amplification and GC overhead. In contrast, the
spatial locality is low in the case of random write; thus, it introduces higher GC overhead
and increases write amplification compared to sequential write [6,9].

We perform a preliminary experiment to show the performance degradation of the
random write on various file systems. We use a Samsung 860 pro 256GB SSD, which has
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530 MB/s of maximum sequential write throughput and up to 43,000 KIOPS of random
write performance [10]. We evaluate the performance of sequential and random write on
the EXT4, BTRFS, F2FS, and XFS file systems. Figure 1 shows the results of the experiment.
The throughput of random write is about 25%, 28%, and 27% lower than sequential write
on EXT4, F2FS, and XFS, respectively. Even worse on BTRFS, the throughput of random
write is 3.6× slower than sequential write. This slowdown results from the fact that the
I/O access pattern induces the write amplification and GC overhead, and, finally, it affects
the performance of SSDs.
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Figure 1. Performance of sequential and random write on SSD.

In previous studies, proposed schemes on various layers handle the performance issue
by a random I/O access pattern. SHRD [11] transforms random write requests to sequential
write requests in the block device to reduce the performance degradation of SSDs by the
random access pattern. F2FS [7] is a flash-friendly file system that writes data sequentially
in a log-structured manner. Our work is in line with these previous studies [7,11] in terms
of sequentializing write requests to improve the SSD performance. In contrast, we focus
on sequentializing the write requests at a virtual file system (VFS) layer. Because VFS
is a common interface on top of various file systems, our scheme can improve the I/O
performance with any type of file system, block layer configurations, and devices.

In this paper, we propose a sequentialized VFS, called sVFS, which transforms ran-
dom access patterns into sequential access patterns to reduce write amplification and GC
overhead. We design a sequentialization scheme on top of VFS and sequentialize write
requests at the file level since the layer is an abstract layer on top of the file systems and
all I/O operations in the existing software stack pass through the VFS layer. Hence, sVFS
is independent and easily deployed on any file systems, block layer configurations (e.g.,
RAID), and devices.

To sequentialize the access pattern, after the VFS layer receives a write request for
a file, sVFS transforms the logical address on the request to the last position of the corre-
sponding file. For read consistency, sVFS stores the mapping information of the original
and transformed logical address in a per-file managed mapping table. Then, when reading
a file, sVFS searches the mapping entry of the original and transformed logical address
from the mapping table and re-allocates the original logical address to the read request.
To maintain consistency, we also support transaction processing to update the mapping
table. sVFS improves the random write performance by up to 3.51× while maintaining
sequential write performance without sacrificing consistency.

The contributions of our scheme are as follows:

• We investigate the VFS layer to enable sequentialization to improve the
SSD performance.
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• We design and implement a scheme that sequentializes write requests called sVFS.
• We show that sVFS can improve the random write performance up to 3.51× compared

with existing VFSs.

In the rest of the paper, we first introduce the background and motivation of our
study in Section 2. Related works are described in Section 3. Then, we explain our
sequentialization scheme on VFS to convert random write to sequential write and a detailed
implementation in Section 4. After we present the evaluation results of our scheme to
verify its validity in Section 5, we discuss the results in Section 6 and conclude this paper in
Section 7.

2. Background and Motivation
2.1. Characteristics of SSDs

SSDs have different internal structures and characteristics from conventional HDDs.
We focus on two main differences in this paper: out-of-place update and garbage collection.
Out-of-place update: Due to the way data are stored in flash media, SSDs read or write
data in a flash page unit and erase data in a flash block unit. Since the size of flash blocks
(e.g., a few MB) is typically larger than that of flash pages (e.g., tens of KB), to modify data
in a flash page, SSDs erase the entire block where the page is located before writing data.
However, because the erase operation is costly, erasing a flash block every time a flash page
is modified can introduce significant overhead. Thus, SSDs do not overwrite flash pages
directly to update data in specific physical locations.

Instead, SSDs write the data to pages in different physical locations to update them
(i.e., out-of-place update). Since data modification in SSDs changes the physical location
of data with the same LBA from the upper layer in the storage stack, the flash translation
layer (FTL) is introduced to map LBA to the physical location of the data. FTL translates
logical block addresses from hosts to physical pages or block addresses in SSDs.
Garbage collection: SSD internally performs garbage collection (GC) to reclaim free space,
due to the difference in the units of write and erase operations. After flash pages in a
block are updated or invalidated, some pages in a block can remain valid since the pages
have a different lifetime from the invalidated pages. For GC, SSD migrates the valid pages
in a victim block and erases the victim block to reclaim the space occupied by invalid
pages. Since the number of valid pages in a block directly affects the GC overhead, storing
pages with a similar lifespan can reduce write amplification from flash page migration and
GC overhead.

2.2. I/O Access Pattern on SSDs

The I/O access pattern can significantly impact the performance of SSDs [6–8]. Small
random writes, especially, can reduce the overall throughput and aggravate latency com-
pared to sequential writes [12,13]. Previous studies have reported that the random write
access pattern with a small request size can degrade the performance of SSDs since it can
harm write amplification from GC [6] and underutilize the parallelism of SSDs [14].

Various sequentialization schemes have been adopted for the diverse storage stack
layers to overcome the performance gap between random and sequential write. For
example, Rocksdb [15] and LevelDB [16] adopted random write sequentialization to the
application layer. SFS [6] and F2FS [7] sequentialized random write in the file system layer.
SHRD [11] modified the block device driver and device to sequentialize random write.
However, they still have a problem that is dependent on the application [15,16] and file
systems [6,7], or lacks user information [11].

2.3. Virtual File System

The virtual file system (VFS) layer abstracts various file systems and provides the
same interface to the user. The VFS layer operates the file I/O requests from the user
level. Applications and libraries at the user level first open files with flags to indicate
various options for file operations. Then, they issue system calls with the parameters
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including the file descriptor, data buffer, count, and file offset to read or write. In the VFS
layer, the I/O requests are processed through the page cache. Under certain conditions
(e.g., when requested pages to be read do not exist in the page cache or the dirty page
threshold is exceeded), the I/O requests are sent to an underlying file system. In a file
system, the I/O requests are transferred with LBA and forwarded to lower layers. The
requests pass through lower layers such as the block layer and device drivers, eventually
reaching the SSDs.

Existing sequentialization in the application level, file system layer, block layer, device
driver, and device can affect only the specific range where the schemes are targeted. Mean-
while, since the VFS layer provides a common and general interface in a storage system, the
effect of sequentialization in the VFS layer can be widely applied to the storage system in a
more non-specific manner. Furthermore, since the VFS layer is the closest layer to the user
in the kernel storage stack, sufficient user information can be provided and exploited for
optimization. As described in Section 6, we plan to design and evaluate the optimization
exploring hints from the user.

3. Related Works
3.1. SSD Optimization

There are several approaches to optimize SSDs considering the unique characteristics
of SSDs. One approach is to exploit the internal parallelism of SSDs [17–19]. Works
using this approach analyze the parallelism level of SSDs and/or optimize the existing
software stack to process multiple I/O requests efficiently using SSDs. Ref. [17] analyzed
the performance of online transaction processing systems using scientific data depending
on the parallelism level of SSDs. Ref. [18] proposed a write request rescheduling scheme
and [19] modified the block scheduler to utilize the internal parallelism of SSDs.

Another approach is to reduce GC overhead [20–22]. Since GC reads victim blocks and
copies valid pages in the blocks in SSDs, it interferes with the user write requests from the
host machine. Therefore, reducing GC overhead is one way to improve the performance of
SSDs. SWAN [20] presented a spatial separation approach to alleviating the performance
interference caused by GC. This partitions the storage devices into the front-end devices
dedicated to serving write requests and the back-end devices where GC is performed.
Ref. [21] reduced request tail latency using reinforcement learning to exploit the idle time
of SSDs. Ref. [22] proposed a data hotness prediction scheme to reduce the WAF and tail
latency of write requests in SSDs. Our work is in line with these works [17–22] in terms
of optimizing the target performance considering or utilizing the characteristics of SSDs
or reducing GC overheads. In contrast, our work focuses on transforming the I/O access
pattern using the common interface and virtual file system.

3.2. Write Sequentialization

There are studies of sequentializing access I/O patterns under various layers. LSM-
tree [23] is a data structure to store data using append operations. It buffers data in memory
and flushes the buffered data in the storage device. Data in the storage device are sorted
and compacted for read performance and space utilization. RocksDB [15] and LevelDB [16]
are key-value stores using the LSM-tree and adopt write sequentialization in the application
layer. LFS [24] is a file system which stores data in a log-structured manner. It collects file
system changes in memory in logs and writes the logs to the storage device sequentially.
F2FS [7] is an LFS-based file system which also sequentializes random access to sequential
access. It is designed to utilize SSDs considering its unique characteristics. SHRD [11]
also adopts random write sequentialization on the block device driver layer. It remaps
the address of write requests from a file system to reduce GC overhead and increase
spatial locality.

These works are in line with our work in terms of transforming the random access
pattern to a sequential access pattern to improve the write performance of SSDs. In
contrast, our work focuses on the virtual file system by transforming file positions for more
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independence. Thus, it can be applied to the system regardless of any file systems, block
layer configurations, device drivers, and devices.

4. Design and Implementation
4.1. System Overview

In this paper, we propose sVFS which enables VFS to sequentialize write requests
to improve the performance of SSDs. To do this, sVFS transforms the file position of
incoming write requests to a per-file managed file position which continuously increases
until cleaning and we refer to it as the next file position (NFP). Since sVFS maintains the
file position in a per-file manner, multiple threads can write their own files independently
with their own reshaped file positions.

Figure 2 shows the architecture overview of sVFS. As shown in the figure, sVFS
obtains and increases the next file position (NFP) of a file to sequentialize an incoming
write request of the file ( 1⃝– 2⃝). The next file position is the last written position of the file
by the previous write request and it increases by the byte size to write. sVFS sequentializes
the write request by transforming the original file position of the write request into the
value of NFP ( 3⃝). After sequentialization, the mapping information of the original and
sequentialized position is stored in the file position mapping table (FP mapping table)
( 4⃝). The table is needed to find the file position where the data is located when reading
a file. Then, sVFS requests the sequentialized write request to the file system layer ( 5⃝).
As a result, the sequentialized file positions allow the file system to generate logical block
address (LBA) sequentially.

SSD

Application

Next File Position
(NFP)

VFS layer

File system layer

FP Mapping Table
Orig Seq

Per-file data structure

Sequentialize
file position

3

Insert
mapping entry
4

Search FP
mapping table
2

Request
sequentialized I/O
5

Read (Orig.pos)
 Optain and

increase NFP
2Write (Orig.pos)

Write (Seq.pos) Read (Seq.pos)

Incoming
File I/O request
1

Sequentialize
file position

3

Request
sequentialized I/O

Incoming
file I/O request
1

4

Figure 2. Architecture overview of the proposed scheme (sVFS). (FP: file position, Orig.: original
position, Seq.: sequentialized position.)

For read requests, sVFS needs to transform the file position of requests since sVFS
has already modified the positions that users request. To do this, sVFS searches the
sequentialized position in the FP mapping table using the original position of the request
as a key (❶–❷). Then, it modifies the file position of the request into the sequentialized file
position (❸) and issues the read request to the underlying file system (❹).

4.2. I/O Operations
4.2.1. Write Operation

When a write request is issued, sVFS atomically obtains and increments the next file
position (NFP) of the corresponding file. sVFS transforms the file position of the write
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request to the NFP value. Since the NFP value continuously increases until the cleaning
operation is performed, write requests to a file can be sequentialized at the VFS level. If the
original file position of the request is already contained in the file position mapping table,
the existing mapping is updated. Otherwise, the mapping of the original file position and
sequentialized position is inserted into the file position mapping table. The transformed
write request is issued to the lower layer in the kernel storage stack such as the file system
layer. As well as overwrite or append, sVFS can support a write on a non-existing area
of a file (e.g., sparse file), since the write procedure of sVFS transforms an arbitrary file
position from an I/O request to a sequentialized position using NFP. Accordingly, in the
file position mapping table (FP mapping table), sVFS only stores and manages the mapping
table entries for issued write requests. As a result, even if spare file I/Os with arbitrary
position are requested, sVFS inserts the entries only for the actual issued requests in the
mapping table sequentially and keeps the mapping table as compact as possible.

Figure 3 shows an example of file position sequentialization of sVFS in the write
operation. As shown in the figure, there are three write operations to a file randomly and
the states of the next file position and mapping table from time T1 to T4. At time T1, before
write requests are issued, an initial value of the next file position is 0. At time T2, the first
write request is issued with a file position (12 K). First, sVFS obtains the current value of the
next file position of the file and increases it by the size of the request (4KB) for the next write
request. In this case, the next file position increases from 0 to 4 K ( 1⃝). sVFS transforms the
request using the next file position as a sequentialized position ( 2⃝). Then, the mapping
information between the original position (12 K) and the sequentialized position (0) is
inserted into the mapping table ( 3⃝). This allows sVFS to find the sequentialized position
where the data is stored during read operations. Finally, sVFS issues sequentialized write
requests to a file system layer ( 4⃝). At times T3 and T4, write requests are sequentialized in
the same manner as the previous one. For example, at time T3, a write request on 100K file
position is transformed to 4 K position, and the mapping information (<100 K, 4 K>) is
inserted into the mapping table. Similarly, at time T4, the write request on 0 file position is
transformed to 8 K position, and the mapping information (<0, 8 K>) is inserted into the
mapping table.

Op : Write
Pos : 12K

Optain and increase
next position 

Transfrom request

T1 T2 T3 T4

File system layer
 Issue request

FP Mapping Table
Orig Seq

NFP : 0

Timeline

1

2

4

Op : Write
Pos : 0K

FP Mapping Table
Orig Seq
12K 0

NFP : 4K
FP Mapping Table

Orig Seq
12K 0

100K 4K

NFP : 8K
FP Mapping Table

Orig Seq
0 8K

12K 0
100K 4K

NFP : 12K

Insert
mapping
3

Op : Write
Pos : 4K

Op : Write
Pos : 100K

Op : Write
Pos : 8K

Op : Write
Pos : 0K

Figure 3. An example of file position sequentialization of sVFS in write operations. When an entry
of the original and sequentialized position is inserted in the mapping table, the entries are sorted
by the original position. (NFP: next file position, FP: file position, Orig.: original position, Seq.:
sequentialized position.)
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4.2.2. Read Operation

Since the file positions are sequentialized when write operations occur, it is necessary to
support correct read operations by finding the sequentialized file position. To do this, sVFS
converts the original position of the read request to the sequentialized position using the
FP mapping table. As we described, sVFS inserts an entry of original and sequentialized
file positions to the mapping table whenever new write and overwrite operations are
performed. Therefore, it allows searching the entry of the mapping table using the original
position as a key. After finding the sequentialized position, sVFS starts the read operation
by calling a specific file system with the sequentialized position.

Figure 4 shows read operations in sVFS. As shown in the figure, three requests are
issued from time T1 to T4. Before read requests are issued, as shown at time T1, sVFS
maintains the next file position and mapping table including original and sequentialized
file positions. At time T2, a read request on 12 K position in the file is issued. sVFS uses
the requested position as a key and searches the corresponding entry ( 1⃝). In this case,
sVFS finds the mapping of <12 K, 0> in the table ( 2⃝). After obtaining the sequentialized
position (0), sVFS issues a read request using the position to file system layer ( 3⃝). At
times T3 and T4, read requests are processed in the same manner as the previous one. For
example, at time T3, sVFS finds <100 K, 4 K> entry from the mapping table and issues
a read request on the 4 K file position. Then, at time T4, sVFS finds <0, 8 K> entry and
issues a read request on the 8 K file position. As a result, we support read consistency via
the mapping table and its operations even if we transform the file positions sequentially.

In the scenario where a read request corresponds to multiple entries in the FP mapping
table, sVFS splits the request into multiple sub-requests. For each sub-request, sVFS
performs the read operation in the same manner as in a normal scenario. Then, sVFS
merges the responses of the sub-requests into one and forwards it to the user.

FP Mapping Table
Orig Seq

0 8K
12K 0
100K 4K

NFP : 12K
FP Mapping Table

Orig Seq
0 8K

12K 0
100K 4K

NFP : 12K

Op : Read
Pos : 12K

Search Seq.
position 

Transform request

T1 T2 T3 T4

File system layer
 Issue request

Timeline

1

2

Op : Read
Pos : 0K

FP Mapping Table
Orig Seq

0 8K
12K 0

100K 4K

NFP : 12K

Op : Read
Pos : 4K

Op : Read
Pos : 100K

Op : Read
Pos : 8K

Op : Read
Pos : 0K

3

FP Mapping Table
Orig Seq

0 8K
12K 0

100K 4K

NFP : 12K

Figure 4. An example of file position sequentialization of sVFS in read operations. (NFP: next file
position, FP: file position, Orig.: original position, Seq.: sequentialized position.)

4.2.3. Transaction Processing

As we described, in sVFS, the file positions requested by users and the transformed
file positions are different due to their file position sequentialization. Thus, sVFS maintains
a mapping table for retrieving actual file positions for supporting correct read operations.
However, in the case of a crash or a system shutdown, after reboot, sVFS cannot find
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the mapping information since it is stored in the main memory. Thus, sVFS supports the
transaction processing of the file position mapping table to guarantee its crash consistency.

For transaction processing, we use a write-ahead logging (WAL) scheme to persist
the file position mapping in the storage device. For example, sVFS sequentializes the
position of a write request and sends the write request with the modified position to the file
system. After the request is processed, sVFS begins a transaction with a beginning mark
and writes the mapping table in a transaction log file. Then, sVFS commits the transaction
by writing a commit mark in the transaction log file. A built-in cache in an SSD can impact
the crash consistency of sVFS since the data in the cache can be lost after a system crash. To
guarantee crash consistency whether SSD includes the built-in cache or not, sVFS utilizes
the flush command and a force unit access (FUA) flag. Specifically, after writing a log
file during transaction processing, sVFS issues a flush command to retain the log file (i.e.,
updates of the mapping table) in the flash media of the SSD. Then, it writes the transaction
commit block with the FUA flag to bypass the built-in cache and directly retains the block
in the flash media. After the transaction is successfully committed, sVFS can start a new
transaction for the next I/O requests.

To recover the file position mapping table from a crash or a system shutdown, sVFS
uses the transaction log file. sVFS reads the log file first and reorganizes the file position
mapping table for each file in memory. In this process, sVFS ignores all the transaction logs
that do not have the commit mark. sVFS inserts file position mapping of only successfully
committed transactions into the file position mapping table. With the transaction and
recovery processing, sVFS ensures the consistency of the file position mapping table.

4.2.4. Cleaning

sVFS continuously writes upcoming data sequentially (i.e., out of place) using the
next file position even if the overwrite operations are performed. In this process, sVFS
generates invalid data that are not used but occupy the space of the storage device. Thus,
sVFS performs cleaning operations to remove the invalid data and reclaim free space in a
block-aligned manner when there is insufficient free space for write operations. In detail,
sVFS triggers the cleaning operation when the free space becomes less than 0.2% of total
SSD space based on the garbage collection threshold of the representative LFS (i.e., F2FS).
sVFS checks the position of invalid data in a file to perform a cleaning operation. sVFS
maintains a bitmap that indicates the validity of data in each file position for a file to reduce
the search overhead of invalid pages. After identifying the position of invalid data, sVFS
moves valid data to the position. It finds target valid data to move from tail to head of the
file and finds the target position which has invalid data from head to tail. Once the valid
data is moved to the target position, sVFS updates the mapping information of the data in
the file position mapping table. This process is repeated until every position of invalid data
is filled with valid data. Then, sVFS reduces the next file position of the file and the size of
the file by a trim command.

Figure 5 shows an example of the cleaning operation of sVFS. As shown in the figure,
there are five data blocks of 4 KB size in a file. For cleaning operations, sVFS checks the
validity of data using a validity bitmap and finds out the location of invalid data. In this
case, there are two invalid data blocks in the 4 K and 8 K positions. First, sVFS moves the
valid data block in the 16 K position, which is the last valid data block in the file, to the
4 K position, which is the position of the first invalid data block. After sVFS successfully
moves the valid data block, it then updates the mapping of <4 K, 16 K> to <4 K, 4 K>
in the file position mapping table to reflect the data movement. The validity bitmap is
also updated (i.e., marking the 4 K position as valid and the 16 K position as invalid).
Second, sVFS moves the valid data block in the 12 K position to the 8 K position, updates
the corresponding entry of the mapping table, and updates the bitmap. When all of the
data movement is finished, sVFS completes the cleaning operation with trimming. For
example, sVFS trims the invalid data block after the last valid data block (i.e., trimming the
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data in 12 K and 16 K positions) so that it can reduce the size of the file to 12 KB. Thus, this
process reclaims the invalid data to make a free space for the upcoming write operations.

Pos: 0
Data : a

Pos: 4K
Data : b

Pos: 12K
Data : d

Pos: 8K
Data : c

Pos: 16K
Data : e

Start
Cleaning

Valid data Invalid data Moved data

Validity Bitmap
valid invalid invalid valid valid

On-disk

Free area

Pos: 0
Data : a

Pos: 4K
Data : e

Pos: 12K
Data : d

Pos: 8K
Data : d

Pos: 16K
Data : e

On-disk

Pos: 0
Data : a

Pos: 4K
Data : e

Pos: 8K
Data : d

On-disk

Validity Bitmap
valid valid valid invalid invalid

Validity Bitmap
valid valid valid invalid invalid

FP Mapping Table
Orig Seq

0 0
4K 16K
8K 12K

FP Mapping Table
Orig Seq

0 0
4K 16K
8K 12K

FP Mapping Table
Orig Seq

0 0
4K 4K
8K 8K

End
Cleaning

Figure 5. An example of the cleaning operation of sVFS. (FP: file position, Orig.: original position,
Seq.: sequentialized position.)

4.3. Implementation

To minimize lock contention overhead, which is introduced by sharing the next file
position of a file across multiple I/O threads, we implement sVFS using an atomic value
and atomic operations (i.e., __sync_fetch_and_add()).

For the file position mapping table, we used red–black tree (RB tree) [25] which is a
widely used data structure due to its fast insert and search. This is because it can perform
insert and search operations fast, which has O(log N) time complexity, and also guarantees
the same time complexity in the worst case. An entry of the mapping table is 8 B, which
consists of an original file position (4 B) and a sequentialized file position (4 B). Since the
mapping table is updated whenever write requests are issued, the overhead to update the
mapping table can be 8 B per write request.

To validate our implementation, we check whether data are written in the intended
file positions (i.e., sequentialized file position) and sVFS can read proper data. To do this,
we insert test code in our implementation and dump file data and the mapping table.
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5. Evaluation
5.1. Evaluation Setup

For the evaluation of sVFS, we use a system with an Intel Xeon 2-way E5-4650v3 CPU,
which has 24 physical cores and 48 threads, 8 GB main memory, and a Samsung 860 Pro
SSD 256 GB for the storage device. In terms of software, we implement our scheme (sVFS)
on a Linux kernel v5.15.34 on Ubuntu 20.04.4 LTS. We compare the performance of the
existing virtual file system on the EXT4, BTRFS, F2FS, and XFS file systems with that of
sVFS on those file systems. We use FIO [26] as a microbenchmark and Flexible Filesystem
Benchmark (FFSB) [27] as a macrobenchmark.

5.2. Microbenchmark

We use the FIO benchmark to measure how much sVFS can improve the perfor-
mance of the existing software stack. We evaluate the random write/read and sequential
write/read performance of the proposed scheme and existing software stack with the EXT4,
BTRFS, F2FS, and XFS file systems with 48 threads. Each thread performs buffered writes
or reads on a 1GB file with a 4 KB I/O request size.

5.2.1. Write Operation

Figure 6 shows the random write throughput of the existing VFS and sVFS on the ex-
isting file systems. As shown in the figure, sVFS achieves a greater improvement compared
with the virtual file system. Except for BTRFS, sVFS improves the random write through-
put by about 28%, 36%, and 34% on EXT4, F2FS, and XFS, respectively. This performance
improvement in the random write workload results from the changes in the access pattern
of I/O requests in the underlying layers. sVFS has a larger performance impact (3.35×) on
the BTRFS than other file systems. Due to the huge performance gap between sequential
and random write operations on BTRFS as can be seen in Figure 1, the effect of address
sequentialization is magnified on BTRFS.
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Figure 6. Random write throughput of existing VFS and sVFS with file systems in FIO benchmark.

We note that sVFS can improve the overall performance even if the underlying file sys-
tem are copy-on-write (e.g., BTRFS) and log-structured (e.g., F2FS) file systems. Specifically,
in F2FS, a mapping between a file position of a data block and its logical block address
is maintained in a node block (4 KB) which can address up to 4 MB of a file. The file
position numbers correspond sequentially to the entry numbers. For example, when data
at a file position (10) is updated, the corresponding 10th mapping entry in the node block
is updated. Thus, if an application writes 4 MB of a file with sequential file positions, F2FS
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can store the mappings using a node block (4 KB). On the other hand, if an application
writes 4 MB of a file with random file positions, in the worst case, F2FS may need up to
1000 node blocks to store the mappings since a node block may point out only a data block.
As a result, by sequentializing file positions, sVFS can minimize the number of node blocks
to be written to SSD, thereby improving the random write performance of F2FS.

In terms of latency, sVFS shows better performance than the existing scheme. Table 1
shows the average latency of random write on the existing VFS and sVFS with file systems
using the FIO benchmark. The latency of random write with sVFS takes 2%, 7%, and
8% less time than the existing VFS on EXT4, F2FS, and XFS, respectively. Similar to the
throughput, the latency improvement is noticeable on BTRFS, where the latency decreased
by 71%. As a result, sVFS achieves the goal of optimizing write performance on SSDs in
terms of latency as well as throughput.

Table 1. Average random write latency of existing VFS and sVFS with file systems in FIO benchmark.

EXT4 BTRFS F2FS XFS

Existing VFS 807 us 2954 us 632 us 419 us

sVFS 613 us 807 us 589 us 385 us

While sVFS optimizes random write performance, it can induce an additional overhead
in the sequential write operation. For example, there can be overheads of sequentializing
file position and managing the position using the mapping table. Figure 7a shows the
performance and the overhead in the sequential write operation. As shown in the figure,
throughput degradation of sVFS in the sequential write is about 2% on EXT4, F2FS, and
XFS, and under 1% on BTRFS. However, this result demonstrates that sVFS shows a little
overhead on the performance.
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(c) Random read
Figure 7. Sequential write, sequential read, and random read throughput of existing VFS and sVFS
with file systems in FIO benchmark.

5.2.2. Read Operation

As we described, we show that sVFS improves the random write performance while
showing a little degradation in the sequential write performance. As well as sequential
write, sVFS introduces an additional overhead in the read operation. For example, sVFS
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searches the file position mapping table to find the positions of users. Thus, we perform
sequential and random read operations using the FIO benchmark to evaluate how much
sVFS degrades the read performance.

Figure 7b,c show the throughput in the case of sequential and random read operations,
respectively. As shown in the figure, the read performance of sVFS is almost the same or
decreases slightly by up to 2% and 4% compared with the existing VFS in sequential and
random reads, respectively. As a result, the overhead of managing the file position in the
mapping table can be acceptable when read operations are performed.

5.3. Macrobenchmark

We perform the macrobenchmark to evaluate the performance of sVFS for more
realistic I/O operations. To do this, we use the flexible file system benchmark [27] (FFSB)
which simulates file operations including create, overwrite, append, read, and mixed I/O
in file systems. We run two types of workloads for the macrobenchmark: write-intensive
and mixed workloads. The write-intensive workload consists of random overwrite and
append operations with a 1:1 ratio. The mixed workload consists of random overwrites
and sequential reads with a 1:1 ratio. For FFSB configuration, we use a 4 KB block size,
48 I/O threads, and 64 files of 1 GB.

Figure 8a shows the performance of the existing VFS and sVFS on the write-intensive
workload. sVFS improves the file system performance by up to 88%, 76%, 91%, and 2.1×
in the case of EXT4, F2FS, XFS, and BTRFS, respectively, compared with the existing VFS.
This result shows that sVFS can improve the performance of SSDs even in massive write
workloads (including append and overwrite operations) for all the evaluated file systems.
In our scheme, for the append operation, sVFS inserts the file position mapping information
into the mapping table. Also, for overwrite operations, sVFS needs to search and modify
the old mapping entry in the mapping table. Thus, even though there are management
operations for the mapping table, the results demonstrate that sVFS improves the write
performance without noticeable latency.
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(b) Mixed workload
Figure 8. Throughput of existing VFS and sVFS with file systems in FFSB.

We run a mixed workload in FFSB to evaluate the performance impact of sVFS when
file read and write operations are executed simultaneously. Figure 8b shows the perfor-
mance of the existing VFS and sVFS in the case of the mixed workload. As shown in the
figure, sVFS improves the performance by up to 25%, 22%, 20%, and 3.51× compared with
the existing VFS on EXT4, F2FS, XFS, and BTRFS, respectively. The performance gain of
sVFS is mainly from the performance increase of write operations while maintaining the
similar performance of read operations. This result indicates that sVFS can successfully
improve the I/O performance while a huge number of file read and write operations are
executed simultaneously.

6. Discussion

Skewed write: sVFS sequentializes the random write pattern to a sequential write pat-
tern by transforming the file position in write requests. While this approach can benefit
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workloads with randomly distributed data access, sVFS can have the disadvantage of
unnecessary disk write in a workload with a skewed data access pattern. Specifically,
multiple write requests with skewed access patterns can be merged and flushed to the
storage devices, since the requests have equal file positions and are managed by equal
page cache entry. However, sVFS allocates a new file position for each write request and
stores the data in different page cache entries, even if the requests have equal file positions
originally. Thus, sVFS can perform an additional disk flush and introduce overhead from
the flush.

The overhead can be mitigated by removing invalid page cache entries. In detail,
when an update request is issued, sVFS can compare the original file position of the request
with the original file positions of other dirty page cache entries. If there is a page cache
entry which has the same original file position, sVFS can remove the page cache entry since
it is invalidated by the request. This can make sVFS avoid flushing unnecessary data. We
plan to address this part in future work.
Increase of random read: sVFS may increase the number of random accesses, particularly
in scenarios involving sequential reads after random writes. If the sequential and random
read performances of the SSD are not significantly different, the increased random reads do
not impact the performance, as shown in Figure 8b. However, on low-end SSDs with little
internal cache, where there can be a difference between the sequential and random read
performance, the sequentialization of sVFS may reduce the read performance.

We plan to address and reduce the impact on read performance for low-end SSDs in
future work. For example, to mitigate the performance overhead from increased random
access, sVFS can exploit a hint from users. Since the increase in random access mainly
occurs in specific I/O patterns, particularly in scenarios involving sequential reads after
random writes, users can notify sVFS that a file will be accessed in a specific pattern. Then,
sVFS can selectively transform the write access patterns of a file to mitigate the overhead of
random access patterns.
Cleaning optimization: sVFS aims to improve the random write performance by se-
quentializing write patterns in clean-state scenarios instead of improving the GC proce-
dure. There are existing techniques to reduce the cleaning overhead such as data separa-
tion [7,20,22] and copy offloading [28–30], and we can adopt these techniques to optimize
the cleaning operation.

For instance, sVFS can mark an actively updated file as hot. Since data in a hot file
are likely invalidated, delaying cleaning the hot file can decrease the overhead of moving
data in cleaning operations. Thus, sVFS can prioritize cleaning cold files and delay hot
files to mitigate the cleaning overhead. Meanwhile, as an SSD supporting copy command
arises [28,31], sVFS can utilize the command to offload the cleaning operation. sVFS can
request copy commands to the SSD to offload data movement during cleaning operations.
This can reduce CPU and memory usage, and save SSD interface bandwidth. We plan to
implement and evaluate these techniques in sVFS to reduce the cleaning overhead in future
work. Furthermore, we also plan to address write amplification and disk wear which can
be caused by the cleaning operations of sVFS.

7. Conclusions

Depending on the I/O access pattern, the performance of SSDs can be degraded.
To be specific, a random write pattern can reduce the spatial locality, thus introducing a
higher GC overhead and increasing the write amplification compared with a sequential
write pattern. In this paper, we proposed sVFS which is a file position sequentialization
scheme in the virtual file system. It transforms random access patterns into sequential
write patterns so that it increases the spatial locality and reduces the GC overhead. We
design and implement sVFS on the kernel VFS layer without depending on the types of file
systems, block layer configurations, device drivers, and devices. The experiment results
show that the proposed scheme improves the random write performance up to 2.35× in the
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microbenchmark and 3.51× in the macrobenchmark, while maintaining almost the same
performance of sequential write and read operations.
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