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Abstract

Cervical cancer, which is mainly caused by oncogenic human papillomavirus subtypes,

remains a significant global health challenge. Recent studies have indicated a connection

between cervical cancer and the uterine microbiome, underscoring its importance. This

study explored the potential of liquid-based cytology (LBC) samples, which are typically

used for cytological analysis, in investigating the cervical microbiome. Thirty women partici-

pated in the study and provided clinical information. Three samples were obtained from

each participant: one for clinical purposes using LBC, another for microbiome sampling

using LBC, and a third using the SWAB Microbiome kit. The LBC and traditional swab

(SWAB) samples were subjected to high-throughput 16S rRNA gene sequencing for micro-

biome analysis. The results revealed a consistent dominance of key taxa, particularly Lacto-

bacillus spp. The analysis of differential abundance highlighted variations in microbial

abundance among individuals, which were more prominent than those resulting from the

sampling methods. Functional analysis identified arachidonic acid and alpha-linolenic acid

metabolism, along with a cautionary note regarding the low mean proportion values. The

network analysis revealed positive correlations between indicators of structure among the

networks, highlighting the robustness of microbiome similarities despite the diversity of sam-

pling methods. Supervised machine learning has revealed challenges in distinguishing LBC

and SWAB samples based on their microbiome features. Weighted co-expression network

analysis revealed that the correlation between microbial clusters and the sampling method

with clinical data was not significant. This study emphasizes the similarity in microbial com-

munities observed using the LBC and SWAB methods, highlighting the potential of using

dual diagnostic approaches. Additionally, the use of residual LBC samples in large-scale

microbiological studies can provide comprehensive insights into cervical health and

disease.
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Introduction

Cervical cancer remains a significant global health challenge despite advances in its prevention

and early detection through screening programs that target pre-invasive lesions, known as cer-

vical intraepithelial neoplasia (CIN) [1]. The main cause of both CIN and cervical cancer is

persistent infection with oncogenic subtypes of the human papillomavirus (HPV) [2, 3].

Although HPV infections are highly prevalent, with a lifetime risk exceeding 80%, the progres-

sion to CIN and cervical cancer is a protracted process, often taking several years to decades

[4].

Recent studies have revealed the potential interplay between the cervical microbiome and

disease development in HPV-positive women, revealing greater bacterial diversity than their

HPV-negative counterparts [5, 6]. Cervical microbiota has been identified as a crucial factor

influencing the progression of cervical CIN and is implicated in the persistence of high-risk

and low-risk HPV [7]. This indicates a complex relationship in which the cervical microbiome

influences the interaction between HPV infection and the development of cervical pathology

[8]. Certain bacterial taxa, such as Fusobacteria and Sneathia, are strongly associated with

HPV infection [9]. They also facilitate or modify viral entry, replication, or immune evasion.

Conversely, vaginal flora, dominated by Lactobacillus spp, has been identified as a protective

factor against various pathogens, including HPV [10]. Furthermore, changes in the composi-

tion of the cervical microbiome have been observed during HPV infection, indicating a inter-

action between the viral infection and the microbial community that affects disease

progression [10]. This interplay can impact the development of the disease, potentially altering

the shift from initial infection to pre-invasive lesions, and ultimately leading to cervical cancer

[11].

Despite these findings, the potential use of the cervical microbiome for cervical cancer

screening and diagnosis remains an area of active investigation [12]. Liquid-based cytology

(LBC) is a method of collecting and preserving cervical cells in an alcohol-based fixative [13].

LBC offers distinct advantages over conventional methods, such as the Pap smear, providing

improved sample preservation and ease of examination. Despite these advantages, the poten-

tial use of LBC samples for cervicovaginal microbiome studies remains largely unexplored

[14]. Using high-throughput sequencing of 16S rRNA gene amplicon sequences, studies have

provided valuable insights into the relationship between cervicovaginal microbiota and HPV

infection, as well as HPV-related diseases [15]. This technology is a powerful tool for charac-

terizing microbial communities and provides insight into their role in cervical health and dis-

ease progression. The integration of 16S rRNA sequencing into the analysis of LBC samples

has the potential to enhance microbiome characteristics in cervical cancer [16].

Although conventional microbiome studies often rely on swabs or self-collected vaginal dis-

charge samples, few studies have focused on the utility of LBC samples [17]. This study aimed

to explore the potential of LBC samples as a resource for microbiome analysis. In addition, we

suggest a potential resource for assessing the feasibility of utilizing LBC samples for cervical

microbiome surveys, with the ultimate objective of improving the ability to diagnose multiple

conditions related to cervical cancer.

Materials and methods

Participants, clinical data, and sample collection

The study population was selected from women aged 19 and above who visited the Obstetrics

and Gynecology department at Seoul National University Bundang Hospital and were going

to receive medically indicated Pap smear within one year of Institutional Review Board (IRB)
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approval (B-2011-651-301) (from January 18, 2021, to February 2, 2021) and performed in

accordance with the principles of the Declaration of Helsinki. The study’s ethical consider-

ations were emphasized through additional explanation sessions before obtaining participant

signatures, aiming to minimize any potential for coercion or undue influence. A total of 30

participants were recruited and ensure a voluntary and informed participation process, eligible

individuals were provided with a detailed explanation of the study’s objectives, methods,

potential benefits, and risks by the responsible investigator and written informed consent was

obtained from all participants. Sample collection involved the use of BD Surepath collection

kits (Becton, Dickinson and Company, 1 Becton Drive, Franklin Lakes, NJ 07417–1880) for

both medically indicated and research-specific liquid-based cervical cytology. Sterile speculum

examination without lubricant a swab was first taken from the ectocervix using a T-SWAB

TRANSPORTTM containing liquid Amies with a rayon tip (Noble Bio, Hwaseong, Korea). A

total of three samples were collected from one participant, including two LBC-based samples

for medical diagnostic and research purposes and one sample collected using a rayon tip. Clin-

ical information, including age, height, body weight, menopausal status, medication history,

vaginal douching practices, sexual intercourse, and Pap smear results was systematically

recorded for each participant.

Microbial DNA extraction, library construction, sequencing, and pre-

processing

Bacterial genomic DNA extraction was performed using Mag-Bind1 Universal Pathogen Kit

(Omega Bio-t, Norcross, Georgia). Each liquid sample was cell-downed, the pellet was resus-

pended in 1X PBS and then mixed with 275 μL of SLX-Mlus Buffer, followed by bead beating

in a mixermill MM400 (Retsch, Pennsylvania, USA) with further isolating, cleaning, and elut-

ing procedures followed the manufacturer’s protocols. Sequencing libraries were prepared

according to the Illumina 16S Metagenomic Sequencing Library protocols (Illumina, San

Diego, CA, USA) to amplify the V3 and V4 regions. The input genomic DNA (gDNA; mini-

mum 20 ng) was polymerase chain reaction (PCR)-amplified with2× KAPA HiFi HotStart

ReadyMix (Roche, Basel, Switzerland) and DNA were generated by PCR under conditions of 3

min at 95˚C, followed by 25 cycles at 95˚C for 30 s, annealing at 55˚C for 30 s, extension at

72˚C for 30 s and a final extension at 72˚C for 5 min. The universal primer pair with Illumina

adapter overhang sequences used for the first set of amplification was as follows: V3-F:

50-TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCCTACGGGNGGCWGCAG-30; V4-R:

50-GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGGACTACHVGGGTATCTAATCC-30. The

first PCR product was purified using HiAccuBead (AccuGene, Incheon, Korea). Following

purification, 2 μl of the first PCR product was PCR-amplified for final library construction

using the IDT indexing primer (Integrated DNA technologies). The cycle conditions for the

second PCR were the same as those for the first PCR condition except for 10 cycles. The PCR

products were purified using HiAccuBead (AccuGene, Incheon, Korea). The final purified

product was quantified by Qubit 4.0 (ThermoFisher Scientific, Waltham, MA USA) with 1×
dsDNA HS assay solution (ThermoFisher Scientific, Waltham, MA USA). Paired-end (2 × 250

bp) sequencing was performed by HEM Pharma lnc. using the MiSeq platform (Illumina, San

Diego, CA, USA).

Low-quality reads of the original data were filtered using Cutadapt (version 1.9.1) [18], and

the data from each sample were separated by barcodes. The barcode and primer sequences

were then cut off to obtain raw reads, which were further aligned with the Gold database (ver-

sion 1) using the UCHIME algorithm to remove chimeric sequences and obtain clean reads

[19].
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Representative operational taxonomic units (OTUs) (high frequency) were screened and

annotated according to the SILVA (Latin Silva, Forest, http://www.arb-silva.de) small subunit

rRNA database. Subsequently, MUSCLE software (version 3.8.31) [20] was used to perform

multiple sequence alignments of the OTUs to determine their phylogenetic relationships.

OTU abundances were normalized using standard sequence numbers corresponding to the

sample with the least number of sequences, based on which diversity analysis was performed.

Within-sample alpha diversity was calculated according to the genus profile to determine

microbial communities.

Characterization of LBC and traditional swab samples (SWAB)

microbiome

Alpha diversity analysis, richness (observed amplicon sequence variants), and Shannon diver-

sity indices [21] were estimated using Quantitative Insights into Microbial Ecology (QIIME2)

core-metrics-phylogenetic and alpha-group-significance scripts [22]. Beta diversity was esti-

mated by calculating unweighted and weighted UniFrac distances and then visualized using

principal coordinate analysis (PCoA) and non-metric multidimensional scaling. Linear dis-

criminant analysis coupled with effect size was performed to identify the bacterial taxa that

were differentially represented at different taxonomic levels [23]. Categorization of the ampli-

con sequence variants was performed based on a 97% similarity threshold using the SILVA

(version 132) reference database, resulting in the formation of OTUs. Representative

sequences were assigned to OTUs using a naïve Bayes classifier (SILVA, v132) trained specifi-

cally for the 16S rRNA V3–V4 hypervariable region. The classification was performed using

the q2-feature-classifier plugin.

This analysis was performed using QIIME2 software with core-metrics-phylogenetic and

Microbiota Process [24]. The overall microbial composition was determined at the genus level.

Following the conversion of all taxonomic count data to relative abundance, a colored bar plot

was generated to display all abundant taxonomic groups at the genus level for each individual.

The four samples with the highest overall sequence quality were selected for further investiga-

tion, as determined using a ranking system based on quality scores. Subsequently, the Statisti-

cal Analysis of Metagenomic Profiles (STAMP) program was used to analyze the microbial

correlation between LBC and SWAB samples [25]. Pearson’s correlation coefficients were cal-

culated to evaluate the associations among microbial taxa, and statistical significance was

determined by incorporating multiple testing correction methods. The resulting correlation

analyses were visualized using STAMP graphical capabilities, aiding in interpreting the

strength and direction of associations between microbiomes in LBC and SWAB samples.

Comparative functional analysis of microbiome

To address the challenges associated with zero issues in microbiome analysis, we implemented

a robust methodology that considers recent advancements and best practices. Given the limita-

tions of the pseudo-counts, particularly their deviation from the negative binomial distribution

assumption of DESeq2, alternative strategies were explored. A recent update in DESeq2 intro-

duced novel estimators within the estimateSizeFactors function, facilitating accurate size factor

determination even when samples contain zeros for all genes. Additionally, we opted to use

alternative size-factor estimators rather than transformed counts in the DESeq2 analysis. To

further enhance the reliability of our analysis, we applied a filtering step to exclude features

with more than 90% zero occurrences across all samples, mitigating the impact of sparse fea-

tures on DESeq2 modeling. To visualize the identified biomarkers, we used the R package

ComplexHeatmap, an advanced tool built on a pheatmap. Although these alternative packages
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adhere to the same heatmap theory, we specifically utilized ComplexHeatmap::pheatmap for

its inheritance of most settings from pheatmap, ensuring code transparency and ease of inter-

pretation. Based on the predictive functional analysis results using PICRUSt2, differentially

abundant pathways were identified using Welch’s t-test with STAMP software. This approach

allowed for a rigorous examination of microbial functional profiles, considering the potential

heterogeneity in variance between groups. Pathways with P values below the predefined signif-

icance threshold of 0.05 were selected as differentially represented. STAMP facilitated the com-

parison of the mean proportions of functional abundances between the two study groups,

using a t-test for robust statistical assessment. The resulting differentially abundant pathways

were further visualized using informative plots, providing insights into the predicted microbial

functional variations across the experimental conditions.

Construction of microbial networks

Microbial association network analysis was conducted using the SParse InversE Covariance

Estimation for Ecological Association Inference (SPIEC-EASI), a robust method widely

employed in microbiota investigations. Two distinct sets of association network analyses were

performed to comprehensively explore the microbial interactions. Microbiota data across

methods within an individual were aggregated to assess overall microbial associations within

individuals. Before the analysis, the abundance data underwent centered-log ratio transforma-

tion, and OTUs with fewer than 50 and 10 reads were excluded from the first and second anal-

yses, respectively. The Stability Approach to Regularization Selection method, suitable for

high-dimensional data, was employed to infer the network structure. Utilizing the node-based

neighborhood selection procedure, with a minimum lambda ratio of 0.01 and 50 reiterations,

the Stability Approach to Regularization Selection facilitated the robust determination of the

network architecture. The resulting networks were visualized using Cytoscape (version 3.4.0).

General network structural attributes such as degree distribution and natural connectivity

were determined for each network. Natural connectivity, a proxy for network stability, was

assessed based on the removal of decreasing node betweenness centrality or decreasing node

degree. Additionally, a subgraph correlation distance approach was applied to a set of net-

works to compare the roles of individuals in shaping the association network structure. This

involved breaking down each network into subgraphs, generating a graphlet correlation

matrix, and visualizing the relationships through multidimensional scaling plots constructed

using R. The proximity of the networks in the plot space indicates similarity in the network

structure.

Supervised multivariate analysis via machine learning approach

Supervised multivariate analysis was conducted using the multivariate approach of sparse Par-

tial Least Squares Discriminant Analysis (sPLS-DA), an extension of the PLS algorithm. The

sPLS-DA model was further adapted for microbiome data using either CSS-normalized or TSS

+CLR data within the mixMC framework. PLS-Discriminant Analysis is a multivariate regres-

sion model that optimizes the covariance between linear combinations of OTU counts and the

outcome, represented by a dummy matrix indicating the body site of each sample. The sparse

version, sPLS-DA, incorporates lasso penalizations for feature selection and applies compo-

nent-wise to highlight the discriminative features in the model. Parameter optimization and

performance evaluation were conducted through a 10-fold cross-validation repeated 100

times, enabling the determination of the optimal number of features and components for the

sPLS-DA model. The final sPLS-DA model was executed on the entire dataset to obtain a

definitive list of discriminative OTUs for each component. Graphical and numerical outputs
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were generated to characterize the selected OTUs, including bar plots illustrating the contribu-

tion of each feature in the multivariate model and circular representations of taxonomic trees

using GraPhlAn. The contribution plots displayed bacterial taxonomy at the family level, with

bar lengths indicating feature importance and colors corresponding to the contributing body

sites. Additional outputs included sample representation, displaying individual projections

onto the sPLS-DA components, a list of selected OTU features, cross-validation error rates,

and the number of features contributing to the methods for each component. The multilevel

sPLS-DA framework was implemented using the mixOmics R package, incorporating multi-

level decomposition for enhanced microbiome data analysis.

Weighted Co-Expression Network Analysis (WGCNA) of phenotype-

microbiome interactions

Phenotype-microbiome interactions were investigated through WGCNS using the WGCNA R

package. The analytical workflow comprised several sequential steps to uncover the intricate

relationships between phenotypic traits and microbial genera. A correlation matrix was con-

structed by computing Pearson’s correlation coefficients for all pairs of phenotype-genera

interactions. Subsequently, an adjacency matrix was generated based on the formula amn = |

cmn|β, where amn represents the adjacency between phenotype/genus m and phenotype/genus

n, cmn denotes the Pearson’s correlation coefficient, and β is a soft-power threshold determined

to achieve a standard scale-free topology network. The adjacency matrix was further trans-

formed into a topological overlap matrix that captured the similarity in terms of the common-

ality of the connected nodes. The tree-cutting algorithm was then applied to hierarchically

cluster the topological overlap matrix into modules, representing clusters of highly intercon-

nected phenotypic traits and microbial genera. The parameters for the algorithm were set to

minModuleSize = 5 for both the phenotype/genus dendrograms, ensuring a minimum module

size and minimum height = 0.25 to cut the tree, facilitating the merger of similar modules.

This meticulous approach aimed to reveal cohesive and functionally relevant associations

between phenotypic traits and microbial genera, thereby providing insights into the complex

interplay within the phenotype-microbiome landscape.

Results

Alpha & beta diversity analysis

The mean Shannon value, which measures species richness and evenness, was 3.72 in the LBC

group and 3.18 in the SWAB group. Statistical analysis using the t-test revealed a significant differ-

ence between the two groups (p = 0.032). The mean Simpson diversity index of the LBC group

was 0.974, whereas that of the SWAB group was slightly lower (0.9426). The t-test yielded a p-

value of 0.097 (Fig 1A). Beta diversity analysis was conducted using the Bray-Curtis method to

compare the microbial composition between samples. The PCoA analysis showed that the first

principal component accounted for 27.74% of the variability, and the second principal component

accounted for 15.58%. The results did not indicate a statistically significant difference in the over-

all cluster structure between the two sampling methods (p = 0.99, PERMANOVA) (Fig 1B).

Taxonomic classifications and correlation analysis

Taxonomic classification at the genus level was conducted on the microbiome data derived

from cervical LBC and SWAB samples (Fig 2A). In the order of abundance, the bacteria identi-

fied were Lactobacillus, Gardnerella, Bifidobacterium, Prevotella, and Streptococcus spp. Of the

25 samples, a correlation coefficient exceeding 0.9 was observed, indicating a consistent
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microbial signature across both sampling techniques (S1 Fig). Furthermore, four individuals

with the highest sequencing quality was conducted, focusing on the correlation analysis of the

top 10 microorganisms based on abundance (Fig 2B). The correlation coefficients for Viome8,

Viome26, Viome6, and Viome25 were 0.999, 1.000, 0.999, and 0.998, respectively. Lactobacil-

lus was identified as the most abundant genus among the top 20 microorganisms in Viome8

and included the highest-quality 16S rRNA sequence (S2 Fig). This genus accounted for more

than 95% of the total abundance.

Hierarchical clustering and functional enrichment analysis of differential

abundance microbiome

The differential abundance analysis revealed 20 bacteria with significant differences at the genus

level across the sampled cervical microbiomes. Hierarchical clustering at the phylum level was

subsequently conducted, and the annotation process identified 17 of the 20 selected microorgan-

isms (Fig 3A). Hierarchical clustering was performed on 60 samples of microorganisms showing

significance at the genus level. Functional enrichment analysis revealed that the two Kyoto Ency-

clopedia of Genes and Genomes (KEGG) pathways exhibited statistical significance regarding

microbial communities, with a p-value threshold of< 0.05, as determined using a t-test (Fig 3B).

Functional analysis revealed arachidonic acid and alpha-linolenic acid metabolism, with both

functional analyses showing significance levels of 0.033. In addition, the mean proportion values

were high in LBC, with values of 0.1 and 0.07, and the difference in mean proportions showed

that arachidonic acid metabolism was 0.051 and alpha-linolenic acid metabolism was 0.033.

Comparison of network of LBC and SWAB samples

Co-occurrence patterns based on the cervical microbiome were analyzed using SPIEC-EASI

(Fig 4A and 4B). The network structure showed only a positive correlation between the

Fig 1. Diversity analysis of LBC and SWAB microbial composition. (a) Alpha diversity indexes (Shannon and Simpson) of the microbiota in

the LBC and SWAB groups. (b) Bray-Curtis distance methods of bacterial 16S rRNA genes. Clustering indicated microbiota composition in

LBC and SWAB.

https://doi.org/10.1371/journal.pone.0308985.g001
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bacterial taxon communities, consistent with the co-occurrence principle inherent in the SPIE-

C-EASI algorithm.

To further analyze the structural aspects of the microbial network, several key network

parameters were calculated. The total number of network nodes differed between the LBC and

SWAB methods, with 158 and 155 nodes, respectively. The network density, which represents

the ratio of the realized to the possible number of edges, was computed as 0.03 for SWAB and

0.023 for LBC. Additionally, the network heterogeneity, which indicates the tendency of a net-

work to contain hub nodes, was 0.516 and 0.462 for SWAB and LBC, respectively. Finally, the

average number of neighbors, which indicates the average number of edges per node, was

2.236 for SWAB and 2.452 for LBC.

Sparse partial least squares discriminant analysis

Using supervised machine learning methods, the explanatory powers of the first and second

variables were found to be 7% and 10%, respectively, when analyzed through maximum dis-

tance methods (Fig 5A). A distinct boundary was observed, separating the two methods (LBC

and SWAB), with 35 samples represented at this border. Upon further analysis by selecting fea-

tures that differed between the two methods, an initial error rate of 36% was recorded. As the

main components were progressively added, there was a notable increase in the error rate,

with the numbers escalating to 39%, 43%, and subsequently 47% (Fig 5B).

Fig 2. Taxonomic classifications and correlation analysis of LBC and SWAB microbiomes. (a) Relative abundance of LBC and SWAB microbiomes at the

genus level. (b) Using a 2-group comparison of the correlation between compositions at the genus level.

https://doi.org/10.1371/journal.pone.0308985.g002
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WGCNA based on clinical data

WGCNA identified six modules based on abundance data, establishing interactions with six

clinical data and sampling methods (Fig 6). The MEturquoise group showed a correlation of

−0.41 and a significance of 0.001, indicating a significant difference depending on the method.

There was a correlation of 0.33 and significance of 0.009 between age and the MEbrown group

and a correlation of 0.28 and significance of 0.03 between age and the MEyellow group. How-

ever, the relationship between the six modules and other clinical information was not signifi-

cant, using 0.05 as the standard for significance.

Discussion

Our study used a comprehensive methodology that integrated diversity metrics, taxonomic

classification, network analysis, and machine learning. This approach allowed us to gain a

Fig 3. Differential abundance and functional enrichment analysis of LBC and SWAB microbiomes. (a) Hierarchical clustering was performed on 60

samples of microorganisms with significance at the genus and phylum levels. (b) Extended bar plot in STAMP, illustrating the abundance of biological

function via the KEGG pathway.

https://doi.org/10.1371/journal.pone.0308985.g003
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multifaceted understanding of the cervical microbiome based on the sampling methods. Inte-

grating LBC with cervical microbiome testing is a significant challenge in gynecological diag-

nostics [14].

The Shannon index measures the richness and evenness of species in a community, whereas

Simpson index measures only species dominance. Shannon index, which is a measure of

Fig 4. Characterization of microbiome co-occurrence network according to sampling methods. (a,b) Co-occurrence network of LBC and SWAB

microbiome in order from the right. Each node represents a microbiome, and the edges of positively correlated nodes are connected. All nodes are labeled

using the genus level taxonomic classification.

https://doi.org/10.1371/journal.pone.0308985.g004

Fig 5. Sparse Partial Least Squares Discriminant Analysis (sPLS-DA) profiles for LBC and SWAB microbiomes. (a) sPLS-DA distances of bacterial

16S rRNA genes. Clustering indicated differences in microbiota composition between LBC and SWAB (b) Tuning keepX for the sPLS-DA performed

on the microbiome data. Each colored line represents the balanced error rate (y-axis) per component across all tested keepX values (x-axis) with the

standard deviation based on the repeated cross-validation folds.

https://doi.org/10.1371/journal.pone.0308985.g005
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species richness and evenness, was higher in the LBC group (mean = 3.72) than in the SWAB

group (mean = 3.18). This difference was statistically significant (p = 0.032), suggesting that

the LBC group harbored a more diverse microbial community. The higher Shannon index in

the LBC group suggests greater diversity, possibly influenced by a broader range of microbial

species and a more even distribution than the SWAB group [26]. However, the lack of signifi-

cant differences in the Simpson index indicates that, despite variations in overall diversity, the

dominance or abundance of specific taxa may not differ substantially between the two sam-

pling methods [27]. This could imply that while the LBC group may harbor a more diverse set

of microbes, the core composition and dominance of certain species remain relatively consis-

tent between the LBC and SWAB samples. Conversely, beta diversity evaluates the differences

in diversity between two or more samples or treatment groups, emphasizing the dissimilarity

in the overall microbial composition. We conducted beta diversity analysis using the Bray-

Curtis method and PCoA to compare the microbial communities between the LBC and SWAB

groups. The non-significant result (p = 0.99, as determined using PERMANOVA) in beta

Fig 6. WGCNA analysis of LBC and SWAB microbiomes at the genus level. Relevance of module eigen microbiome with

clinical traits. The number in each cell was the correlation coefficient between each module and clinical traits, and the number

below was the corresponding p-value. The depth of color indicated the value of the correlation; red represented the positive

correlation, and blue represented the negative correlation.

https://doi.org/10.1371/journal.pone.0308985.g006
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diversity suggests that the differences observed in the alpha diversity metrics between LBC and

SWAB showed a statistically non-significant impact on the overall composition or structure of

the cervical microbial community [28].

The taxonomic classification of the microbiome data obtained from cervical LBC and swab

SWAB samples revealed a consistent microbial signature across both sampling techniques. In

the order of abundance, the bacteria identified were Lactobacillus, Gardnerella, Bifidobacter-
ium, Prevotella, and Streptococcus spp. The presence of Lactobacillus spp. in the cervix is con-

sistent with a previous study on the vaginal microbiota, as it is the most common and

beneficial microorganism found in the healthy human vagina [29]. The presence of Gardner-
ella, Bifidobacterium, Prevotella, and Streptococcus spp. in the cervix may indicate a condition

known as bacterial vaginosis [30]. This condition is characterized by a reduction or sharp

decline in the total number of Lactobacillus spp. and a corresponding significant increase in

the concentration of anaerobic microbes. Bacterial vaginosis is a common disorder of the vagi-

nal microbiota in women of reproductive age. It is associated with negative gynecological and

obstetric consequences, including sexually transmitted infections, pelvic inflammatory dis-

eases, and preterm birth [31]. Therefore, these bacteria serve as a promising marker for assess-

ing the precision and reliability of microbial community characterization in the cervical

environment. In this study, a strong correlation coefficient (> 0.9 was observed for 25 samples,

indicating a consistently stable microbial signature across both the LBC and SWAB sampling

techniques. The high correlation indicates a strong agreement in the microbial composition

detected using the two sampling methods. A comprehensive analysis was conducted on the

four individuals with the highest sequencing quality, focusing on a correlation analysis of the

top 10 microorganisms in terms of abundance. The high correlation coefficients observed for

these individuals further reinforced the consistency of the microbial signature across different

sampling methods.

Hierarchical clustering based on these microorganisms revealed a pattern in which the sim-

ilarity between samples from the same individual was more pronounced than the differences

arising from diverse sampling methods. This indicates a distinct microbial pattern unique to

each individual. Further analysis confirmed that the 20 microorganisms, whose abundances

varied depending on the sampling method, did not represent the overall population but existed

only in one sample. In other words, the differences in the observed abundance based on this

method were not statistically significant when considering a broader microbial community.

Functional enrichment analysis revealed two significant KEGG pathways within the cervical

microbiome: arachidonic acid and alpha-linolenic acid metabolism. Although statistically sig-

nificant, the small mean proportion values associated with these pathways urge caution when

attributing functional distinctions exclusively to the sampling methods.

Co-occurrence pattern analysis within the cervical microbiome revealed a network struc-

ture characterized by a positive correlation among bacterial taxa. Statistical analysis reveal

non-significant results regarding the characteristics of the network structure, such as the aver-

age number of connected edges per node, number of nodes, network density, and heterogene-

ity. These findings suggest a consistency in the structural characteristics of the microbial

networks generated by LBC and SWAB [32]. Taxonomic classification and subsequent cluster

analysis of the cervical microbiome samples identified the top five microorganisms within the

network. Lactobacilli, one of the most abundant bacteria, consistently exhibited clustering

characteristics across both sampling methods, displaying distinct abundance patterns com-

pared with other microorganisms. The consistent clustering characteristics of Lactobacilli

across different sampling methods suggest that this genus may play a crucial role in shaping

the cervical microbial community, regardless of the sampling method. This consistency is

especially important because Lactobacilli are crucial for vaginal health, playing a key role in
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maintaining acidic pH levels and preventing the proliferation of pathogenic microorganisms

[33]. The consistent clustering characteristics of Lactobacilli across different sampling tech-

niques indicate the robustness of their prevalence, reinforcing their importance as key indica-

tors of cervical health [34]. The consistency in the network structures further supports the

concept that the fundamental microbial community remains preserved regardless of the spe-

cific sampling method.

This study applied supervised machine learning methods to assign labels to distinct groups

based on the sampling method, thereby enabling the examination of the explanatory power of

the selected variables [35]. The explanatory powers of the first and second variables, as deter-

mined through the maximum distance method, were 7% and 10%, respectively. Identifying a

clear boundary separating the two methods with 35 samples positioned at this interface sug-

gests that samples near the border exhibit characteristics that make assigning one sampling

method unequivocally over the other challenging. The increase in error rates as more main

components were included during feature selection and classification offers valuable insights

into the complexities of distinguishing between LBC and SWAB. The initial error rate of 36%

indicates that, initially, the selected features derived from differences between the two sam-

pling methods resulted in misclassifications in a significant portion of the dataset. As the anal-

ysis progressed, the subsequent error rates of 39%, 43%, and finally 47% indicated that the

selected features may not reliably distinguish between sampling methods, even when derived

from differences between the two methods.

The WGCNA conducted on the cervical microbiome data revealed correlations between

microbial clusters and clinical parameters. Identifying six distinct modules based on microbial

abundance provides a comprehensive understanding of the complex relationships within the

cervical microbiome. The MEturquoise group showed a significant correlation of −0.41 with

the difference in the sampling methods. However, this group did not show significant correla-

tions with other clinical data. This suggests that the sampling method influenced the formation

of the MEturquoise microbial community but had a low correlation with the clinical data used

for diagnosis. Moreover, the absence of significant correlations between the remaining five dif-

ferences in the methods suggests that the microbial populations are not influenced by the sam-

pling methods. A positive correlation of 0.33 was observed between age and the MEbrown

group, as well as a correlation of 0.28 between age and the MEyellow group. Although age can

affect the cervical microbiome, the absence of significant correlations with other clinical data

emphasizes the necessity for more focused research to unravel the complex influences on

microbial shift within the cervix [36].

In summary, our comprehensive approach, which combines diversity metrics, taxonomic

classification, network analysis, and machine learning, provides a multifaceted understanding

of the cervical microbiome. Integrating LBC with cervical microbiome testing is a significant

challenge in gynecological diagnostics. This dual diagnostic approach enables the examination

of cellular abnormalities and allows for comprehensive profiling of the cervical microbiome,

which is increasingly recognized for its role in cervical health and disease. Using residual LBC

as a biospecimen source provides an opportunity to conduct large-scale microbiome studies.

The availability of these samples from millions of patients worldwide represents a valuable

resource for identifying microbial biomarkers of gynecological diseases, including cervical

cancer. The potential to utilize these easily accessible samples could revolutionize the regular

screening of women for gynecological cancers. Furthermore, the ability to conduct simulta-

neous cytology and microbiome testing could provide a more comprehensive understanding

of cervical health. This could reveal correlations between cellular abnormalities and specific

changes in the microbiome, providing new insights into the pathogenesis of cervical diseases.
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This discovery can potentially facilitate the development of novel diagnostic and therapeutic

strategies, such as microbiome-based biomarkers or probiotic treatments for cervical health.

Supporting information

S1 Table. The result of filtered features.

(XLSX)

S1 Fig. Diversity analysis of LBC and SWAB microbial composition. Bray-Curtis distances

methods of bacterial 16S rRNA genes. Correlation between microorganisms according to the

same intra-individual sampling method was 0.9 or higher and was marked as having become a

cluster (blue), and conversely, if the correlation was less than 0.9, it was marked as not being a

cluster (orange).

(TIF)

S2 Fig. Correlation between sample methods of Viome8 microbiome composition at the

genus level. (a) Using a 2-group comparison, the correlation between compositions at the spe-

cies level was found to be 0.999. (b) The 16 identified features were selected, and their signifi-

cance for presence or absence was examined. (c) Lactobacillus was the most dominant in both

sampling methods.

(TIF)
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