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Abstract: Robots are increasingly employed in diverse services, from room cleaning to coffee prepa-
ration, necessitating an accurate understanding of user preferences. Traditional preference-based
learning allows robots to learn these preferences through iterative queries about desired behaviors.
However, these methods typically assume static human preferences. In this paper, we challenge
this static assumption by considering the dynamic nature of human preferences and introduce the
discounted preference bandit method to manage these changes. This algorithm adapts to evolv-
ing human preferences and supports seamless human–robot interaction through effective query
selection. Our approach outperforms existing methods in time-varying scenarios across three key
performance metrics.

Keywords: time-varying preference learning; robot personalization; contextual bandit

1. Introduction

Recent advancements in machine learning have facilitated the interaction between
robots and humans, enabling robots to offer adept services in diverse applications, such as
autonomous driving systems [1] and collaborative assembly in smart factories [2]. Given
these developments, it is crucial that robotic systems dynamically adapt to the preferences
of users involved in these interactions. Recent approaches in robotics have employed
preference-based learning (PBL) to learn user preference [3–9]. In PBL, human preferences
are modeled as a reward function, learned by presenting users with diverse robot behaviors
and having them select preferred ones. The robot’s behavior can be tailored to align with
the user’s preference by maximizing the learned reward model.

While most existing methods [3–9] have successfully captured user preferences in
an online manner, a clear limitation arises from the presumption of a stationary reward
function to model user preference. Notably, user preference might evolve while interacting
with robotic systems [10,11]. Hence, robots must adeptly adjust to evolving preferences to
maintain appropriate behavior. For instance, initial encounters with service robots may
prompt users to favor cautious behavior due to unfamiliarity, but as users grow accustomed
to the robot’s presence, preferences often shift towards more task-specific behaviors, as
depicted in Figure 1. Beyond this scenario, user preferences can evolve due to diverse
factors, encompassing trends, emotions, and age. To address these dynamic preferences,
we present a method capable of adapting to evolving user inclinations.

The challenge of adapting to dynamic user preferences can be addressed by using a
non-stationary bandit framework [12]. The bandit framework [13] is extensively utilized
to optimize decision-making processes under uncertain and unknown rewards, where an
agent selects from a set of options, each providing stochastic rewards. The primary goal of
this framework is to maximize the cumulative reward over time, thereby finding an optimal
option even without the explicit knowledge of the rewards. This framework strategically
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balances the selection of high-potential queries against those already known to align with
user preferences, enabling efficient and adaptive query selection to acquire time-varying
reward functions.

Figure 1. An illustration of evolving human preferences in a service robot scenario. Initially, unfamil-
iar users may prefer a safer path (ξB). Over time, as familiarity grows, preferences shift towards a
faster path (ξA) for clearing objects.

In this paper, we propose a novel preference-based learning method, called discounted
preference bandits (DPBs), to address time-varying preferences. First, our algorithm
is inherently adaptive to time-varying environments by updating parameters based on
penalized likelihood. Second, we theoretically demonstrate a no-regret convergence for
the proposed method. In the simulation, the proposed method outperforms existing
methods [3,5–7] in terms of cosine similarity, simple regret, and cumulative regret in
time-varying scenarios. Finally, simulation and real-world user studies confirm that the
proposed method successfully adapts to time-varying scenarios, especially with respect to
robot behavior adaptation and environmental changes.

2. Related Work
2.1. Active Preference-Based Learning

Preference-based learning facilitates learning reward functions by asking queries as a
form of comparison. Active learning techniques [4–6] have been studied concurrently to ad-
dress data inefficiency problems. However, prior studies on preference-based learning [3–9]
have always considered static reward functions. Attempts have been made to address
non-stationary preferences [11], but a limitation remains in the form of multiple differ-
ent reward functions defined and the time-varying property represented as a transition
among the reward functions. Therefore, in this paper, we mainly consider a time-varying
reward function.

2.2. Bandits for Preference-Based Learning

Our research concentrates on developing algorithms for service robots in passive
scenarios, adapting to individuals’ changing preferences while providing services. Prior
bandit studies [14–16] for time-varying preference focus on collaborative tasks where
humans are actively engaged in tasks, especially in scenarios where human preference
changes based on task understanding and robot dynamics. Hence, we contemplate a
framework that learns solely from preference labels provided by humans, rather than
relying on data where people explicitly indicate preferred actions [14] or reveal sequences
of their behaviors [15]. We consider the contextual bandit framework studied to address
drifting environments with time-varying parameters [17,18]. Particularly, in [18], the
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estimator is studied based on the time-varying generalized linear model by using a discount
factor γ to penalize old actions and rewards. We extend these ideas [17,18] to preference-
based learning by applying them to the time-varying logistic bandit. While our convergence
analysis techniques are similar to [17,18], we introduce a different design matrix and query
selection rules.

2.3. Batch Selection

Extended query generation times can impair the reward learning process during
human–robot interactions. Batch query selections have been developed alongside active
learning methods to expedite query generation times. In [5], diversifying batch samples
has been investigated, while a subsequent study in [7] used determinantal point processes
(DPPs) to enhance both the quality and diversity of the queries. Inspired by [5,7,19], we
address computational delays by selecting top-k queries at each iteration.

3. Problem Statement
3.1. Preliminaries

We consider the robot in a fully observable dynamical system. Let s ∈ S denote the
continuous state of the dynamical system and a ∈ A denote the robot’s action, where S and
A are state and action space, respectively. Then, we define a trajectory ξ = ((sh, ah))

H
h=0 ∈ Ξ

as a finite sequence of pairs of continuous state and action where H is the time horizon
of the trajectory and Ξ is the set of all feasible trajectories. We assume that the user’s
preference can be represented as a reward function r : Ξ→ R. Similar to prior works [4,6],
a reward function is modeled as a linear function with respect to the feature vector over the
trajectory, which can be written as

r(ξ; θ) := θ ·Φ(ξ) = θ ·
H

∑
h=0

ϕ(sh, ah), (1)

where ϕ is a feature map from S × A to Rd, Φ(ξ) := ∑H
h=0 ϕ(sh, ah), d is a dimension of

features, and θ is the parameter that encodes a user’s preference.

3.2. Problem Formulation

In general, preference-based learning (PBL) assumes that there exists an optimal
parameter θ∗ that best represents the user preference. Unlike the general assumption, since
our goal is to model a time-varying preference, we assume that the optimal parameter θ∗t
can be changed through time t and the deviation of parameter change is not arbitrary but
bounded. The more formal definition of time-varying property is explained in Section 5.
Our goal is to learn the time-varying parameter θ∗t using preference feedback collected by
pairwise comparisons in an online manner.

We consider a general PBL protocol: For each iteration, the robot demonstrates a
query consisting of two trajectories, ξ A

t and ξB
t , and the user provides binary feedback

Rt ∈ {0, 1}. Rt = 1 indicates that the user prefers ξ A
t over ξB

t ; otherwise, Rt = 0 is given.
From the assumption on user preference and reward model, the preference of ξA

t over
ξB

t is equivalent to rt(ξA
t ) > rt(ξB

t ). While the inequality between rt(ξA
t ) and rt(ξB

t ) is
deterministic given a reward function, the user response can be noisy and uncertain [4,5].
Hence, the user’s noisy response is usually modeled as a probabilistic distribution [19].

P
(

Rt | ξA
t , ξB

t ; θ∗t

)
=

e(Rtr(ξ A
t ,θ∗t )+(1−Rt)r(ξB

t ,θ∗t ))

er(ξA
t ,θ∗t ) + er(ξB

t ,θ∗t )
, (2)

4. Methods

We present a novel discounted preference bandit (DPB) to estimate the time-varying
preference with the minimum number of queries. First, we newly define a context vector as
the difference of feature vectors between two trajectories, i.e., X := Φ(ξA)−Φ(ξB), which
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represents the information of comparison. Let X be a set of possible context vectors that
are converted from all trajectory pairs. Then, the query selection problem is converted to
choosing a proper query vector in X . Furthermore, based on X, the probabilistic model
in (2) can be converted into the following logistic distribution,

P
(

Rt | ξA
t , ξB

t ; θ∗t

)
= eRtX⊺

t θ∗t
/(

1 + eX⊺
t θ∗t

)
, (3)

where Xt indicates a context vector of (ξ A
t , ξB

t ) that are compared at round t. By introducing
a context vector Xt, PBL can be reduced to the online learning problem. Algorithm 1
demonstrates the online learning process of DPB to acquire time-varying reward functions.
In each round t, DPB selects a batch of queries as outlined in line 4. The human then
observes these queries and provides preference labels for each query as described in line 5.
Finally, the parameter is updated with the collected preference data as shown in line 6.

Algorithm 1 Discounted Preference Bandits (DPBs)

Require: cµ, δ, λ, γ, d, T, D, S, b,X
Ensure: θ̂T

1: t← 0, N(γ)← ln(1/(1− γ))/(1− γ), and V0 ← λId
2: while t < T do
3: Set αt in Theorem 1
4: Select top-b queries {Xt+i}b−1

i=0 ∈ X from (4)
5: Demonstrate {Xt+i}b−1

i=0 and collect {Rt+i}b−1
i=0

6: Estimate θ̂t by solving (5) and t← t + b
7: end while

4.1. Absolute Upper Confidence Bound

Suppose that the parameter θ̂t is estimated, which will be explained later. At round t,
DPB chooses an action based on the following action selection rule

Xt := arg max
X∈X

|X⊺θ̂t−1|+ αt−1∥X∥V−1
t−1

, (4)

where Vt−1 := ∑t−1
s=1 γt−1−sXsX⊺

s + λId, Xs is a past query vector from s = 1 to t− 1, λ is a
regularization coefficient, Id is an identity matrix, and αt is a scale parameter that controls
the importance between the first and second term.

The first term indicates the absolute difference of the estimated rewards between two
trajectories. Since we construct a context vector from two trajectories, X and−X contain the
same information, i.e., X = Φ(ξA)−Φ(ξB) and −X = Φ(ξB)−Φ(ξA). Hence, computing
the reward via the absolute value ensures the equivalence between selecting X and −X.
Based on this trick, the query selection method (4) employs the upper confidence bound
(UCB) [20]. The second term in (4) represents the confidence bound that magnifies the
amount of the uncertainty of the first term |X⊺θ̂t−1|. Particularly, Vt, called a design matrix,
embodies the empirical covariance of X, and the parameter γ of Vt is a discount factor
in (0, 1] which penalizes an effect of past data. Intuitively, as t grows, additional query
vectors are added into Vt, thereby augmenting the minimum eigenvalue of Vt and, thus,
diminishing the term αt∥X∥V−1

t−1
. Consequently, the confidence bound eventually decreases.

Our proposed query selection method simultaneously considers two key factors by
leveraging UCB. The first factor evaluates how much the chosen query contributes to
learning the relevant parameters. The second factor considers how much the user will like
the query when presented as a demonstration. While conventional approaches focus on
the first factor [4–7], the proposed approach incorporates the second factor by applying the
UCB method. The consideration of the quality of queries experienced by the user [5] is vital
because it may help build user familiarity and trust with the robot. If users consistently
encounter undesirable queries, it might lead to mistrust in the robot’s behavior. Therefore,
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our approach carefully balances these factors, adjusting the trade-off between two factors
via αt, which will be further examined in Section 5.

While the query selection rule selects a single query, choosing a batch of queries is
more efficient in practice. In PBL, extended durations for query generation and parameter
updates can challenge users, particularly those who are less patient. Thus, we adopt a
simple batched version by selecting the top b queries based on the UCB score (4), where b
is the number of queries in a single batch. To approximate the solution for (4), we prepare
a finite set of trajectory pairs by randomly generating and selecting two trajectories. The
feature vectors derived from this set are used to compute (4) and to select the top-b queries
among the finite set.

4.2. Discounted Parameter Estimation

After selecting a query and receiving its label, the parameter of the user preference
is estimated considering changes over time. Let m(x) denote m(x) := ln(1 + exp(x)).
Suppose t data points are given, i.e., (X1, R1), · · · , (Xt, Rt). We can estimate θ∗t by using
the discounted maximum log-likelihood scheme [12] as follows,

θ̂t = arg min
∥θ∥2≤S

t

∑
s=1

γt−s[m
(
X⊺

s θ
)
− RsX⊺

s θ
]
+

λ

2
∥θ∥2

2, (5)

where γ is a discount factor in (0, 1). This discounted negative log-likelihood (5) intuitively
shows that the parameter θ̂t is about to be learned as the most recent optimal parameter θ∗t that
changes over time. Note that the minimizer of (5) satisfies ∑t

s=1 γt−s[µ(X⊺
s θ
)
Xs − XsRs

]
+

λθ = 0, which makes the gradient of (5) be equal to zero.

5. Theoretical Analysis
In this section, we analyze the cumulative regret of the proposed method. The cumu-

lative regret is defined as

RT :=
T

∑
t=1

µ(|(X∗t )
⊺θ∗t |)− µ(|X⊺

t θ∗t |), (6)

where µ(x) is a logistic function, i.e., µ(x) := (1 + e−x)−1, X∗t := arg maxX∈X µ(|X⊺θ∗t |),
and T is the number of iterations. X∗t indicates the optimal query that contains the optimal
trajectory such that maxξ Φ(ξ)⊺θ∗t . The cumulative regret is widely employed in bandit
settings as a measure to assess the efficiency of exploration methods [13]. Then, we prove
that our method has the sub-linear regret under the mild assumption on θ∗t . In other
words, our theoretical results tell us that the proposed method efficiently adapts to the
time-varying parameters. First, we introduce the assumptions.

Assumption 1. For ∀t, ∀X ∈ X , and ∀θ∗t , there exist D and S such that ∥X∥2 ≤ D holds and
∥θ∗t ∥2 ≤ S holds.

Assumption 2. Let BT be the number of changing points. Assume that θ∗t is changed up to BT
times during T rounds.

Initially, we make Assumption 1 that both feature vectors and the parameters are
bounded. Assumption 2 tells us that the user parameter is changed discretely BT times.
Note that BT = T indicates the most volatile user, and BT = 0 indicates a stationary user.
Furthermore, we define the lower bound of the derivative of the logistic function.

Definition 1. For the logistic function µ, there exists a positive constant cµ such that cµ :=
inf∥θ∥2≤S,∥x∥2≤D µ̇(x⊺θ) > 0. Note that cµ always exists for bounded θ and x.

Now, the set of time indices used for analysis is defined.
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Definition 2. For fixed γ, let us define N(γ) := ⌈ln(1/(1− γ))/(1− γ)⌉ and define an index
set as T (γ) := {t ∈ N|t ≤ T and θ∗s = θ∗t holds for ∀s ∈ (t− N(γ), t]}.

For t in T (γ), we can find the interval [t− N(γ), t] where θ∗s does not change. In other
words, θ∗s is fixed for N(γ) rounds. Then, we prove that the proposed method can adapt θ∗s
in at least N(γ) rounds and, hence, the proposed method is no regret. Now, we first derive
the confidence bound of the estimated parameter θ̂t as follows.

Theorem 1. Suppose that Assumptions 1–2 hold. Consider the gap between θ̂t and θ∗t . For all
t ∈ T (γ), the following inequality holds with probability at least 1− δ,∣∣X⊺(θ̂t − θ∗t )

∣∣ ≤ ∥θ̂t − θ∗t ∥Vt∥X∥V−1
t
≤ αt∥X∥V−1

t
(7)

where αt := 1
cµ

√
2 ln

(
1
δ

)
+ d ln

(
1 + D2(1−γt)

dλ(1−γ)

)
+
√

λS
cµ

+ SD2γN(γ)

cµ

√
λ(1−γ)

.

αt is used to compute the confidence bound of the estimated parameter. By using
Theorem 1, we can derive the regret bound of the proposed DPB. The detailed proofs of
Theorem 1 can be found in Appendix A.

Theorem 2. Suppose that Assumptions 1–2 hold; then, for fixed δ ∈ (0, 1), with probability at
least 1− δ, the regret of DPB is bounded as follows: RT ≤ Õ(BTd1/2T1/2).

If Õ(BTd1/2T1/2) is sub-linear with respect to T, then, the proposed DPB is called no-
regret. However, the sub-linearity of DPB depends on BT . In particular, if BT = O(T1/2−ϵ)
holds for ϵ > 0, then, the DPB finally converges to the time-varying user preferences. This
result shows some theoretical limitations of the proposed method since it cannot overcome
the time-varying tendency of θ∗t if BT grows faster than

√
T. This regret bound is the first

result in preference-based learning for time-varying settings.

6. Experimental Settings

Simulation Setup. We validate our work in three simulation environments: Driver [1],
Tosser [21], and Avoiding. The Driver environment aims to drive while aware of the other
vehicle and the Tosser environment learns to put the ball in a certain basket with diverse
trajectories. The features utilized are identical to [5], distance to the closest lane, speed,
heading angle, and distance to the other vehicles for Driver and maximum horizontal
range, maximum altitude, the sum of angular displacements at each timestep, and final
distance to the closest basket for Tosser. We newly created an Avoiding environment where
the robot moves the object over the laptop to place the final target pose, similarly to [22].
Four-dimensional hand-coded features: The height of the end-effector from the table, the
distance between the end-effector and the laptop, the moving distance, and the distance
between the end-effector and the user, are utilized in Avoiding. Optimal parameters were
randomly generated for each seed.

Dataset. To discretize a trajectory space, a query set X is predefined in Driver and
Tosser by sampling K trajectories with uniformly random controls. In Avoiding, RRT* is used
to create trajectories after randomly sampling the passing midpoint through the fixed start
and target point. We set K to 20,000 for Driver and Tosser, and to 5000 for Avoiding.

Evaluation Metrics. In our experiments, we use the following three suitable metrics:
the cosine similarity mCS, the simple regret mSR, and the cumulative regret mCR. First,
cosine similarity mCS = (θ̂t)⊺θ∗t /∥θ̂t∥2∥θ∗t ∥2 is measured as the alignment metric leveraged
in most existing research [4–6]. Simple regret is defined as mSR = Φ(ξ∗t )

⊺θ∗t −Φ(ξ̂∗t )
⊺θ∗t ,

where ξ̂∗t is an optimal trajectory of learned parameter, i.e., ξ̂∗t := arg maxξ∈Ξ Φ(ξ)⊺θ̂t. The
quality of the optimized trajectory can be measured by the simple regret, with smaller values
indicating better performance. Cumulative regret mCR, defined in Section 5, illustrates how
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much reward will be lost by exploration. Minimizing cumulative regret is often the object
of the bandit framework.

Baselines. We compare the performance of DPB with other methods using different
criteria for query selection, such as batch active learning [5,7], information gain [6], and
maximum regret [3]. All these baseline algorithms were adapted into batch selection
versions to select the top-b queries to ensure fair comparisons.

• Greedy: This method selects top-b queries based on conditional entropy in a greedy
way [5].

• Medoid: This method first selects top-B queries based on conditional entropy where
B > b. B samples are clustered into b subsets via k-medoids [23] and selects b
representative queries from the subsets.

• DPP: This method naturally considers diversity and informativeness simultaneously
by using k-DPP [24].

• Information: A query is selected with the highest information gain for easy labeling by
the user [6].

• Max Regret: A query is selected with the highest regret over the solution space. Note
that regret in [3] uses the same terminology but does not adhere to the conventional
notion of regret like (6).

• Random: We select uniformly random b queries.

7. Simulation Results

We validated the superiority of DPB in three different preference changing scenarios:
smooth preference changes in Section 7.1, abrupt preference changes in Section 7.2, and
static preferences in Section 7.3. The experiments in this section were conducted using
synthetic data, and the results from real-world scenarios involving users and physical
robots will be presented in Section 8.

7.1. Performance on Smooth Preference Changes

To simulate smooth preference changes, we randomly select two parameters, θ∗1 , θ∗2 ,
within a proper range and linearly interpolate them by dividing the interval into 10 points.
θ∗t is changed every 30 rounds, making a total of nine changes. After reaching θ∗2 , 120 addi-
tional rounds are executed; hence, 390 rounds are conducted in total.

Each row in Figure 2 shows the performances of each algorithm in Driver, Tosser,
and Avoiding, respectively. For Figure 2c, DPB clearly outperforms the baselines on mCR
since other baselines cannot consider mCR. Lower values of mCR indicate that the proposed
query selection rule effectively balances the trade-off between the user’s preference for
the presented trajectories and their associated uncertainties, as discussed in Section 4.1.
This balance enables the generation of high-quality queries, which are well suited for
eliciting meaningful user feedback in real-world scenarios with smooth preference changes.
Regarding mCS in Figure 2a, it can be observed that DPB adapts to smooth parameter
changes faster than other algorithms in terms of parameter estimation. We presume that
the superior performance of DPB is derived from the effect of discounts on the past data.
Finally, the DPB algorithm also outperforms with respect to mSR as demonstrated in
Figure 2b. Thus, in scenarios characterized by smoothly varying preferences, the DPB
method demonstrates the capability to generate well-suited queries, facilitating superior
estimation of reward parameters and optimal trajectories compared to baseline approaches.

Interestingly, baseline algorithms adopt poorly in Avoiding. We believe that this
effect is correlated with the abruptness at which the parameters are changed. As the
optimal parameters are linearly interpolated, the deviation ∥∆θ∗t ∥2 is consistent with
every parameter changes. The average deviation ∥∆θ∗t ∥2 over the seeds is computed as
0.087, 0.094, and 0.184 for Driver, Tosser, and Avoiding, respectively. For Avoiding, the
optimal parameter changes comparatively drastically, resulting in a bad performance for
the baseline algorithms. Furthermore, the limited adaptability in time-varying scenarios for
the maximum regret algorithm might stem from its query selection rule over the solution
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space. This algorithm tends to converge towards local optima due to its greedy selection
that restricts the trajectories to be compared, wherein it selects two trajectories exhibiting
the highest estimated regret based on parameter obtained from Markov chain Monte Carlo.
However, the results of all simulations support that DPB adapts to the smooth preference
changes faster than baselines.

(a) Cosine similarity (b) Simple regret (c) Cumulative regret

Figure 2. Each row describes the results of Driver, Tosser, and Avoiding, respectively. Columns show
(a) mCS , (b) mSR, and (c) mCR (mean ± 0.5 std over 10 runs), while preference changes are linearly
interpolated. Nine gray dashed vertical lines denote the changing points of θ∗t . The legend of (c) is
shared with (a,b).

7.2. Performance on Abrupt Preference Changes

To analyze scenarios involving more realistic changes in human preferences, which
are not likely to be smooth, simulations are designed to accommodate abrupt changes in
preference. For abrupt preference changes, we conducted experiments in Driver involving
two significant alterations at 100 and 200 rounds, resulting in ∥∆θ∗1∥2 and ∥∆θ∗2∥2 values
of 1.267 and 1.775, respectively. Figure 3c similarly demonstrates that DPB achieves sub-
linear convergence in cumulative regret. While other algorithms do not adapt well to
sudden changes in preference, Figure 3a,b show that DPB adapts to abrupt changes in
preference. A comparative analysis of the results presented in Figures 2 and 3 reveals that
the DPB method consistently outperforms baseline approaches, particularly in scenarios
involving abrupt and realistic changes in human preferences. These findings underscore
the effectiveness of DPB in addressing dynamic preference scenarios.
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(a) Cosine similarity (b) Simple regret (c) Cumulative regret

Figure 3. Each subfigure denotes (a) mCS , (b) mSR, and (c) mCR for Driver (mean ± 0.5 std over
10 runs) with abrupt preference changes. Two gray dashed vertical lines denote the changing points
of θ∗t . The legend of (c) is shared with (a,b).

In the case of the max regret algorithm, metrics such as mCS and mCR struggle to adapt
to changing parameters. They exhibit consistent behavior even when user preferences shift.
This issue strongly aligns with the findings from the Avoiding task illustrated in Figure 2.
We attribute this limitation to the inherent characteristics of the max regret algorithm,
which has difficulty adjusting to abrupt changes in preferences and tends to converge to
local optima.

7.3. Sanity Check on Static Preferences

To ensure the performance of baseline algorithms, Figure 4 presents the results of
Avoiding in conventional static human preference scenarios; i.e., parameter θ∗1 does not
change over time. We opted for the Avoiding environment due to its relatively inferior
performance compared to the environments discussed in Sections 7.1 and 7.2. The optimal
parameter θ∗1 is identical to the simulation experiments in Section 7.1. In Figure 4a,b, we
can observe that DPB converges faster than other baselines except for the information gain
method that shows a similar convergence speed. The results indicate that DPB demon-
strates strong performance even in scenarios involving conventional static preferences.
The algorithm effectively estimates preference parameters while identifying optimal tra-
jectories that align with user preferences. Its adaptability to both time-varying and static
preferences highlights the practical capability of DPB to accurately estimate preference
parameters and generate user-preferred trajectories, reinforcing its applicability in diverse
real-world scenarios. Moreover, Figure 4c also supports that DPB guarantees to minimize
the cumulative regret. The generated queries also demonstrate superior quality in scenarios
with static preferences. It is noteworthy that the maximum regret algorithm in Figure 4
shows reasonable performance in a static setting unlike in the time-varying setting shown
in Figures 2 and 3.

(a) Cosine similarity (b) Simple regret (c) Cumulative regret

Figure 4. Each subfigure denotes (a) mCS , (b) mSR, and (c) mCR for Avoiding (mean ± 0.5 std over
10 runs) while preferences do not change over time. The legend of (c) is shared with (a,b).
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8. User Studies
8.1. Real-World User Study

We extended our validation beyond simulations by conducting experiments using
the Doosan A0912 manipulator [25] with real users. The experiments focused on eval-
uating the practical applicability of our DPB algorithm in addressing time-varying user
preferences driven by environmental changes. By leveraging real-world setups, the study
ensures that DPB can effectively adapt to dynamic preferences while maintaining consis-
tent performance. The results demonstrate the practical effectiveness of DPB in real-world
applications, showcasing its capacity to provide personalized and context-aware robotic
behavior. Our user study was conducted with the following details.

8.1.1. Objective

The primary objective of the user study was to evaluate the effectiveness of the
DPB algorithm in addressing time-varying user preferences influenced by environmental
changes. By focusing on preference adaptation in dynamically shifting environments,
the study sought to demonstrate the algorithm’s capability to enhance the flexibility and
usability of collaborative robotic systems in practical settings.

8.1.2. User Study Setup

We conducted the real-world Avoiding experiment. The total number of iterations and
batches for each algorithm was eight and two, respectively. To prevent bias, the queries
generated at each batch step were shuffled randomly before displaying the robot’s behavior.
Additionally, we introduced a fragile object, such as a wine glass, halfway through the
experiment to prompt changes in user preferences in response to environmental variations.
We believe that changing surrounding environments can induce changes in user preferences
over time.

8.1.3. Doosan A0912 Specifications

The Doosan A0912 robotic manipulator is a lightweight (9 kg), 6-DOF (degrees of
freedom) collaborative robot, designed for precise tasks with a repeatability of ±0.03 mm
(Doosan Robotics, Plano, TX, USA). With a working radius of 1200 mm, it is suitable for
applications requiring extended reach and dexterity. The 6-DOF configuration allows it to
perform complex movements, making it ideal for tasks such as assembly, inspection, and
material handling in constrained spaces. Its compact design and high precision enhance its
usability in various industrial applications.

8.1.4. Subjects

We recruited nine participants. The participants were aged between their 20s and 30s,
comprising nine males. Four participants had prior experience interacting with robots,
while the remaining participants had no experience with physical robots.

8.1.5. Independent Variables

We conducted a comparative analysis of the DPB algorithm and the Greedy algo-
rithm [5], which serves as the best-performing baseline in our simulation experiments.
This comparison was aimed at evaluating the effectiveness of DPB in addressing both
static and time-varying user preferences. By benchmarking DPB against a well-established
algorithm known for its strong performance, we sought to demonstrate the advantages of
our method in achieving user-aligned optimal trajectories. The results of this comparison
offer valuable insights into the robustness and adaptability of DPB in scenarios where
conventional algorithms may encounter challenges.
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8.1.6. Hypotheses

We set up the following two hypotheses to verify the DPB algorithm. (H1) DPB adapts
faster in time-varying parameters than the Greedy method. (H2) Participants find DPB queries to be
easier to answer than the Greedy method. Note that our method is not directly designed for H2.
However, it can be hypothesized that our batch selection rule has potentially synthesized
easy questions for the user to respond to, since our algorithm finally tries to maximize
|X⊺

t θ̂|, which leads to choosing two trajectories with a significant difference between their
expected rewards. In PBL, since producing easy questions is very important [6], we would
like to test not only H1 but also H2.

8.1.7. Dependent Measures

To evaluate the user study, we designed the following two questions, Q1 and Q2,
using 7-point Likert scale responses from participants. (Q1) "The robot behavior matched how I
wanted the task to be done." (7—Strongly agree; 1—Strongly disagree), and (Q2) "It was easy to
choose a preferred trajectory in the comparison query." (7—Strongly agree; 1—Strongly disagree).
Q1 was designed to evaluate how closely the algorithm estimates a user preference-aligned
trajectory. For Q2, if the user gave a high score in the answer to Q2 and the user’s preferred
option among the comparison query was clearly set, the user did not hesitate to select a
preferred trajectory. Therefore, the high score of Q2 is the basis for supporting H2, meaning
that the comparison query is easy to answer. Additionally, we added (Q3) Is there any change
in your optimal trajectory while interacting with the robot? (7—Strongly agree; 1—Strongly
disagree) to demonstrate whether the placement of the wine glass induced preference
changes. In other words, if the moment we added the wine glass to the environment and
the moment the Q3 response value increases matched, it means that we were able to change
the user’s preference as we intended. The participants were asked Q1 after watching the
optimal trajectory determined by the learned parameters after all queries. Additionally,
they were asked Q2 after responding to each query and Q3 after responding to the batch
size query.

8.1.8. Time-Varying Scenario with Environmental Changes

Figure 5 shows the results of the real-world user study with time-varying preferences
regarding environmental changes. The Q1 result in Figure 5b demonstrates that DPB
better captures the user’s recent preferences than the greedy algorithm. We also verified
the significance of the experiment through a two-sample t-test (p < 0.05), supporting
H1. The Q2 ratings in Figure 5b indicate that users find DPB easier to respond to queries
than the baseline algorithm (p < 0.05), supporting H2. Finally, Figure 5c shows that
environmental changes, such as the placement of wine glasses, create time-varying user
preferences. Consequently, from Figure 5b,c, DPB effectively adapts to time-varying pref-
erences and outperforms other existing methods [5,7]. Moreover, to further validate our
findings, we performed a Bonferroni correction on the results of Q1 and Q2. The adjusted
p-values, which remained statistically significant with p < 0.05, further corroborate the
effectiveness and robustness of the results, providing additional confidence in the validity
of our approach.

8.2. Simulation User Study

We also conducted a simulation user study to validate the adaptability of DPB in
time-varying scenarios, especially regarding robot behavior adaptation over repeated inter-
actions. We believe that human preferences may evolve to repeated interactions with robot
behaviors over time. The simulation user study proceeded with two major modifications
from the real-world user study. First, algorithms were deployed in Tosser with 10 partic-
ipants. Furthermore, 30 iterations with five batches for each algorithm were executed to
induce participants’ robot behavior adaptation over repeated interactions. Response times
were measured at every iteration without the participants’ awareness. Anticipating that
participants would gradually adapt to the robot’s behavior, we hypothesized that their
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decision-making process to give feedback accelerates and thereby response times would
exhibit a decrease.

(a) Real-world user study environment (b) User rating of Q1, Q2 (c) User rating of Q3

Figure 5. Real-world user studies comparing DPB with BA (batch active preference-based learning)
greedy [5] in a changing environment scenario. Results of Q1 (p < 0.05), Q2 (p < 0.05), and Q3 from
user studies are shown (mean ± std over 9 participants). The dashed vertical line in (c) means the
timing of adding the wine glass to the desk.

Time-Varying Scenario with Robot Behavior Adaptation over Repeated Interactions

Figure 6 demonstrates the result of the simulation user study in the time-varying
scenario with robot behavior adaptation over repeated interactions. Figure 6a illustrates the
outcomes of Q1 and Q2, indicating that DPB exhibits better performance over the greedy
algorithm in adapting to time-varying scenarios involving robot behavior adaptation
(p < 0.001) and in the ability to generate easy queries to respond (p < 0.001), supporting
H1 and H2. Moreover, Figure 6c shows that response time decreases as the iteration
proceeds, implying that participants tend to adapt to robot behaviors. The simulation user
study results validate the practical adaptability of DPB in time-varying scenarios with
robot behavior adaptation over repeated interactions. Additionally, we also conducted a
Bonferroni correction in simulation user study to the results of Q1 and Q2. The adjusted
p-values, which remained highly significant at (p < 0.001), indicate strong support for the
effectiveness of the proposed approach.

(a) User rating of Q1, Q2 (b) User rating of Q3 (c) Response time

Figure 6. Simulation user studies comparing DPB with BA (batch active preference-based learning)
greedy [5] to test the time-varying scenario with robot behavior adaptation over repeated interactions.
Results of Q1 (p < 0.001), Q2 (p < 0.001), Q3, and Response time from user studies are shown
(mean ± std over 10 participants).

9. Conclusions

Our proposed algorithm introduces a novel approach to address time-varying pref-
erences using discounted likelihood. Then, our theoretical analysis establishes that DPB
demonstrates sub-linear cumulative regret under preference changes occurring less than
O(T1/2) times. Experimental outcomes highlight the adaptiveness of our framework
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compared to previous methods in handling time-varying user preferences. Particularly,
our DPB method effectively minimizes cumulative regret, while other approaches strug-
gle in this regard. User studies further validate the competitiveness of DPB in time-
varying environments with environmental changes and robot behavior adaptation over
repeated interactions.

In robotics, addressing the time-varying preferences of users is crucial, as their expec-
tations can shift depending on the context or environment. Robotic systems are required to
perform a wide range of actions across diverse scenarios, adapting their behavior to evolv-
ing human needs. For instance, in autonomous driving systems, the DPB method enables
vehicles to modify their driving styles—such as acceleration, braking, or lane-changing.
Passengers preferring a smoother, more conservative ride may find the vehicle adjusting
its behavior accordingly, while those prioritizing efficiency could benefit from optimized
travel times. This continuous learning and adaptation enhance the personalization and
comfort of autonomous systems. It would be interesting to consider additional factors such
as emotions or social contexts that influence preference changes. Exploring these aspects
and developing a unified model capable of perceiving user states and learning preferences
across diverse users represent promising directions for future research.
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Appendix A. Proof of Theorem 1

Proof. The proof techniques are basically similar to [12,17], but the definition of Vt is
different, and hence the proof of [12,17] is not directly applicable. Let us decompose
the upper bound into three terms. First, let us define the gradient of (5) as gt−1(θ) :=
∑t−1

s=1 γt−1−sµ
(
X⊺

s θ
)
Xs + λθ. Then, gt−1(θ̂t) = ∑t−1

s=1 γt−1−sXsRs holds due to the update
rule of θ̂t. We define the Jacobian of gt−1 as Jt−1(θ) := ∑t−1

s=1 γt−1−sµ̇
(
X⊺

s θ
)
XsX⊺

s + λId.
From the fundamental theorem of calculus, we have,

Gt−1(θ
∗
t , θ) :=

∫ 1

0
Jt−1(xθ∗t + (1− x)θ)dx (A1)

gt−1(θ
∗
t )− gt−1(θ) = Gt−1(θ

∗
t , θ)(θ∗t − θ) (A2)

where cµVt ≤ Gt−1(θ
∗
t , θ). By using these facts, we can decompose the bound into three

terms as follows,
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∥θ̂t − θ∗t ∥Vt =
∥∥∥Gt−1(θ

∗
t , θ)−1(gt−1(θ

∗
t )− gt−1(θ̂t)

)∥∥∥
Vt

(A3)

≤
∥∥∥∥ 1

cµ
V−1

t
(

gt−1(θ
∗
t )− gt−1(θ̂t)

)∥∥∥∥
Vt

(A4)

≤ 1
cµ

∥∥∥∥∥t−1

∑
s=1

γt−1−s(µ
(
X⊺

s θ∗t
)
− Rs

)
Xs

∥∥∥∥∥
V−1

t

+
∥λθ∗t ∥V−1

t

cµ
(A5)

≤ 1
cµ

∥∥∥∥∥t−N(γ)−1

∑
s=1

γt−1−s(µ
(
X⊺

s θ∗t
)
− µ

(
X⊺

s θ∗s
))

Xs

∥∥∥∥∥
V−1

t

+
1
cµ

∥∥∥∥∥t−1

∑
s=1

γt−1−sηsXs

∥∥∥∥∥
V−1

t

+

√
λS

cµ
≤ αt (A6)

where ηs := µ(X⊺
s θ∗t )− Rs and the last inequality holds due to the definition of T (γ). Each

term will be bounded by Lemma A1 and Lemma A2, and then αt is obtained.

Lemma A1 (Proposition 2 in [17]). Consider a random variable, Bt := ∑
t−N(γ)−1
s=1 γt−1−s

(µ
(
X⊺

s θ∗t
)
− µ

(
X⊺

s θ∗s
)
)Xs. For all t ∈ T (γ), the following bound holds

∥Bt∥V−1
t
≤ 2SD2/

√
λ · γN(γ)/(1− γ). (A7)

Lemma A2. Let St−1 be ∑t−1
s=1 γt−1−sηsXs. The following deviation inequality holds with proba-

bility at most δ

∃t ≥ 0, ∥St−1∥V−1
t
≥

√
2 ln(1/δ) + ln(det(Vt/λ)) (A8)

Proof Sketch. The proof can be achieved by following the same procedure in [12] for Vt.
Note that the results in [12] cannot be directly applied to our case since the definition of Vt
is different from [12], but it can be done similarly to [12].

Appendix B. Proof of Theorem 2

Proof. We first decompose the regret into two terms. From (4), we have

|(X∗t )
⊺θ̂t|+ αt∥X∗t ∥V−1

t
≤ |X⊺

t θ̂t|+ αt∥Xt∥V−1
t

(A9)

where X∗t := maxX∈X |X⊺θ∗t | and Xt is the query selected by the algorithm. From (A9), we
can bound the difference of logistics. For t ∈ T (γ), we have

|(X∗t )
⊺θ∗t | − |X

⊺
t θ∗t | ≤ |(X∗t )

⊺θ̂t| − |X⊺
t θ̂t|+ |(X∗t )

⊺θ∗t |
− |(X∗t )

⊺θ̂t|+ |X⊺
t θ̂t| − |X⊺

t θ∗t | ≤ 2αT∥Xt∥V−1
t

(A10)

where the inequalities hold due to Theorem 1 for t ∈ T (γ). By using this fact, we can
decompose and bound the cumulative regret as follows

RT
(a)
≤

T

∑
t=1
|(X∗t )

⊺θ∗t | −
∣∣X⊺

t θ∗t
∣∣ (A11)

≤ ∑
t/∈T (γ)

|(X∗t )
⊺θ∗t | −

∣∣X⊺
t θ∗t

∣∣+ ∑
t∈T (γ)

|(X∗t )
⊺θ∗t | −

∣∣X⊺
t θ∗t

∣∣
(b)
≤ BT N(γ) + 2αT ∑

t∈T (γ)
∥Xt∥V−1

t
(A12)
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where (a) holds due to the 1-Lipschitz continuity of µ, and (b) holds by (A9) and the
definition of T (γ). Now, we will bound the second term as follows

2αT

T

∑
t=1
∥Xt∥V−1

t
≤ 2αT

√√√√T
T

∑
t=1
∥Xt∥2

V−1
t

(A13)

≤ 2αT

[
(1 + Dλ−1)T

T

∑
t=1
∥Xt∥2

V−1
t+1

]1/2

(A14)

≤ 2αT

√
(1 + Dλ−1)T

[
ln
(

det(VT+1)

det(λId)

)
+ dT ln

(
1
γ

)]
(A15)

≤ 2αT

[
(λ−1D + 1)Td ln

(
dλ(1− γ) + D2

dλ(1− γ)

)]1/2

(A16)

≤ O
(

αT
√

dT
)

(A17)

where inequalities can be derived using lemmas in [12]. Then, by setting γ = 1− (dT)−1/2,
we have that N(γ) ≤ O(d1/2T1/2 ln(dT)) and γN(γ) ≤ O(d−1/2T−1/2). Then, αT can be
bounded as

αT ≤ O
(√

d ln(T1/2/d1/2) + 2 ln(1/δ)

)
. (A18)

By plugging all bounds into (A12), the cumulative regret bound is computed as
O(BTd1/2T1/2).
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