
Expert Systems With Applications 200 (2022) 116966

Available online 24 March 2022
0957-4174/© 2022 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-
nc-nd/4.0/).

Probabilistic deep learning model as a tool for supporting the fast
simulation of a thermal–hydraulic code

Seunghyoung Ryu a, Hyeonmin Kim b, Seung Geun Kim a, Kyungho Jin b, Jaehyun Cho b,
Jinkyun Park b,*

a Artificial Intelligence Application & Strategy Team, Korea Atomic Energy Research Institute, 111, Daedeok-daero 989 beon-gil, Daejeon, 34057, South Korea
b Risk Assessment Research Team, Korea Atomic Energy Research Institute, 111, Daedeok-daero 989 beon-gil, Daejeon 34057, South Korea

A R T I C L E I N F O

Keywords:
Deep learning
LSTM
Surrogate model
Thermal-hydraulic code
Recurrent neural networks
Quantile regression
Positional encoding

A B S T R A C T

Following the Fukushima Daiichi accident, enhancing the safety of nuclear power plants has become the priority
mission for the future of nuclear energy. Probabilistic safety assessment (PSA) is a well-known technique to
quantify the anticipated risk of nuclear power plants according to the accident scenario. One approach to
strengthening nuclear safety is reducing the uncertainty in PSA by analyzing a wide spectrum of accident sce
narios. In doing this, massive simulations of thermal–hydraulic (TH) dynamics are required by running TH code.
As the computation time for such large-scale simulation is a heavy burden, it is necessary to develop a fast
simulation model, but related research has recently begun. For doing this, conditional autoencoder was firstly
introduced, however, prediction accuracy can be further improved by exploiting temporal characteristics of
simulation data. In this paper, we formalize deep learning-based fast simulation model of TH code, and propose a
novel deep learning model, namely ensemble quantile recurrent neural network (eQRNN). By leveraging bi-
directional long short-term memory, concatenative positional encoding, quantile regression, and model
ensemble, the proposed eQRNN can provide a more accurate prediction on the simulation results and uncertain
boundaries of its prediction. Compared to the base RNN model, the proposed eQRNN shows 39% and 28% lower
error overall in terms of mean absolute percentage error (MAPE) and mean squared error (MSE). Finally, eQRNN
achieved 75%, 79% lower MAPE and MSE than the existing conditional autoencoder-based model.

1. Introduction

After the Fukushima Daiichi accident in 2011, safety enhancement in
utilizing nuclear energy became the number one priority in the nuclear
industry. Since then, various research to strengthen the safety of nuclear
power plants (NPPs) has been actively conducted worldwide. During the
same period, great technological advancements led to the fourth indus
trial revolution involving artificial intelligence, big data, and the internet
of things. In particular, the deep learning technique is the most rapidly
emerging (and still developing) technology in the last decade. Through
diverse deep learning techniques, machines have been able to catch up
with or outperform human performance in various applications
including but not limited to natural language processing (Brown et al.,
2020), computer vision (Brock, De, Smith, & Simonyan, 2021), and the
game Go (Silver et al., 2017), areas in which it had been almost
impossible to surpass human performance in the past.

Based on these big successes, the use of deep learning techniques is
being actively adopted in various industrial sectors such as for smart
factories (Wang, Ma, Zhang, Gao, & Wu, 2018), smart grids (Lai, Zhong,
Pan, Ng, & Lai, 2021; Ryu, Choi, Lee, & Kim, 2019), smart cities (Chen
et al., 2019; Chen, Wang, Huang, De, & Coenen, 2021), and health care
(da Silva, Schmidt, da Costa, da Rosa Righi, & Eskofier, 2021; Faust,
Hagiwara, Hong, Lih, & Acharya, 2018). In this respect, it is natural to
expect that these deep learning techniques can also be employed in the
nuclear industry to achieve the next level of nuclear safety. Although
deep learning techniques in the nuclear industry are still in their infancy
at this moment, huge efforts are being made for related applications. As
part of this effort, typical topics in which deep learning techniques are
involved for enhancing the operational safety of NPPs are event diag
nosis (dos Santos, Pinheiro, do Desterro, & de Avellar, 2019; Lin, Wang,
& Wu, 2021; Radaideh, Pigg, Kozlowski, Deng, & Qu, 2020), reactor
anomaly detection (Caliva, de Ribeiro, & Mylonakis, 2018), sabotage

* Corresponding author.
E-mail addresses: ashryu@kaeri.re.kr (S. Ryu), hyeonmin@kaeri.re.kr (H. Kim), sgkim92@kaeri.re.kr (S.G. Kim), jin716@kaeri.re.kr (K. Jin), chojh@kaeri.re.kr

(J. Cho), kshpjk@kaeri.re.kr (J. Park).

Contents lists available at ScienceDirect

Expert Systems With Applications

journal homepage: www.elsevier.com/locate/eswa

https://doi.org/10.1016/j.eswa.2022.116966
Received 10 May 2021; Received in revised form 10 November 2021; Accepted 20 March 2022

mailto:ashryu@kaeri.re.kr
mailto:hyeonmin@kaeri.re.kr
mailto:sgkim92@kaeri.re.kr
mailto:jin716@kaeri.re.kr
mailto:chojh@kaeri.re.kr
mailto:kshpjk@kaeri.re.kr
www.sciencedirect.com/science/journal/09574174
https://www.elsevier.com/locate/eswa
https://doi.org/10.1016/j.eswa.2022.116966
https://doi.org/10.1016/j.eswa.2022.116966
https://doi.org/10.1016/j.eswa.2022.116966
http://crossmark.crossref.org/dialog/?doi=10.1016/j.eswa.2022.116966&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Expert Systems With Applications 200 (2022) 116966

2

detection (Chen & Demachi, 2019), signal reconstruction (Kim, Chae, &
Seong, 2020), and probabilistic safety assessment (PSA) (Kim, Cho, &
Park, 2020). A large portion of these studies have focused on the
detection and diagnosis of an event based on general machine learning
tasks (i.e., classification), while there are relatively few studies on PSA
applications.

A PSA is a methodology to evaluate the safety of an NPP by quan
tifying the amount of anticipated risk from diverse accident scenarios
that can result in an undesired consequence (e.g., core damage or the
release of radioactive materials to the environment). To achieve a higher
level of safety in NPPs, it is crucial to create a catalog that identifies
accident scenarios as realistically as possible. Theoretically, this can be
guaranteed by analyzing a broad spectrum of potential scenarios that
can be generated with respect to the combination of numerous factors (e.
g., the status of key components and the characteristics of human re
sponses) and their sequences. Accordingly, if we are able to identify the
consequence of each potential scenario by simulating its progression in
detail, it is possible to obtain the catalog of accident scenarios. This
simulation can be done by running a high precision thermal–hydraulic
(TH) code, where each simulation usually takes a couple of hours
depending on the nature of the combined factors.

Unfortunately, this approach is less advantageous because available
resources are limited in reality. Specifically, in the case of a highly
complicated system like an NPP, enormous calculation time of TH code
in simulating a huge number of possible scenarios is a technical burden
under finite computational resources. Therefore, the number of sce
narios to be simulated by TH code is limited to a certain range in
traditional PSA, and out-of-bound accident scenarios remain as the un
certainty in PSA results. In this regard, a fast and accurate surrogate
model of TH code is a potential solution that minimize the uncertainty in
PSA. The fast simulation model has advantages in the following points.
First, it expands the spectrum of accident scenarios within a limited
computational time at the expense of a small fraction of accuracy.
Therefore, the uncertainty in PSA can be mitigated as the number of
scenario is increased. Second, the fast simulation model allows us to
simulate a specific scenario in real-time, thus it can be further embedded
in the field operations.

Various methodologies can be used for building fast surrogate of TH
code, for example, reduced order modelling (Mandelli et al., 2016),
optimization algorithms (Abualigah, Diabat, Mirjalili, Abd Elaziz, &
Gandomi, 2021; Abualigah, Yousri, et al., 2021; Abualigah & Diabat,
2021), and deep learning (Kim et al., 2020). In this work, we build
surrogate in a data-driven way by leveraging deep learning. Deep
learning based fast simulation model of TH code was firstly introduced
by (Kim et al., 2020). With fully-connected neural network (FNN) as a
back-bone network structure, two-staged conditional autoencoder was
utilized for modeling latent feature space of TH code data effectively.
However, prediction accuracy can be further improved by leveraging
recurrent neural networks (RNN) that could effectively exploit temporal
features of time-series data. In doing this, we propose an ensemble
quantile recurrent neural network (eQRNN)-based in-situ model that
adopts bi-directional long short-term memory (LSTM), concatenative
positional encoding (PE), quantile regression, and model ensemble. By
combining these key elements, the proposed model shows improved
accuracy and provides the uncertain boundaries of prediction results.
Our contributions can be summarized as follows.

⋅ We formalize the framework of deep learning-based surrogate
model of TH code, and propose a novel deep neural network model for
TH code, i.e., eQRNN. By training the trajectory of key reactor variables,
the proposed eQRNN model shows the highest prediction accuracy
compared to the other baseline and existing models.

⋅ To improve the model accuracy, we adopt bi-directional LSTM and
propose concatenative PE. With concatenative PE, the RNN model could
achieve 16.31% lower MAPE on average compared to the model without
PE.

⋅ By applying multiple quantile regression with pinball loss, the

QRNN model gives a prediction of median as well as target quantiles to
provide the information of uncertain boundary of model results. More
over, experimental result shows that converting to a quantile model
improves the performance by leveraging the advantage of multi-task
learning.

⋅ Since the deep learning model manipulates the data in batch
manner, the result of multiple scenarios can be obtained at once through
trained eQRNN model, thus required computational time is drastically
reduced in seconds.

The rest of this paper is organized as follows. In Section 2, as the
background information of this study, a brief introduction about the
limitations of the traditional PSA approach is given along with the ne
cessity for a fast simulation technique. Section 3 then describes the
overall framework and proposed methodologies. After that, in Section 4,
the results of case studies are compared based on six different models.
Finally, the conclusions of this study are drawn in Section 5 with asso
ciated discussion and future work.

2. Background information

As mentioned at the end of Section 1, there are several limitations in
the traditional PSA approach, and one of them is the uncertainty of PSA
results (Aldemir, 2013). In order to soundly resolve this limitation, it is
necessary to incorporate a breakthrough technology such as a deep
learning technique. In this section, the limitation pertaining to the
identification of accident scenarios is explained with underlying idea for
developing a surrogate model of TH code.

2.1. Limitation in identifying accident scenarios

In general, it is anticipated that the more accident scenarios we
distinguish, the more realistic PSA results we have. To clarify this, let us
consider a hypothetical system as depicted in Fig. 1, which consists of
four components (Tank 1, Valves B and C, and Safety Disk) with an
annunciator warning of a high water level in Tank 1.

As shown in Fig. 1, a human operator can manually open or close two
valves (Valve B and Valve C) in order to maintain the water level of Tank
1 within a specific range. In addition, when the water level of Tank 1
exceeds a predefined set-point, an automatic control signal to close Valve
B is generated with a warning alarm to inform the human operator. In
this case, it is possible to develop diverse potential scenarios by
combining the status of the components with the responses of the human
operator (hereafter the term Event Heading will be used for representing
the status of each component). Then, for example, if an accident of this
hypothetical system is defined as a rupture of the Safety Disk, a catalog of
accident scenarios can be picked out from the inventory of potential
scenarios. Fig. 2 illustrates seven potential scenarios and three accident
scenarios (shaded in gray) developed from four Event Headings.

Fig. 1. Configuration of hypothetical system; modified from (Park, 2018).

S. Ryu et al.

Expert Systems With Applications 200 (2022) 116966

3

That is, of seven potential scenarios, it is expected that three sce
narios (#2, #5, and #7 in Fig. 2) result in the rupture of the Safety Disk.
It should be noted that running a TH code is necessary to determine the
consequence of each potential scenario. If we are able to estimate the
occurrence frequency of each accident scenario, the risk of this hypo
thetical system corresponds to the sum of the occurrence frequencies of
all accident scenarios. Actually, although the abovementioned expla
nation is too simple and exaggerated to fully exhibit the nature of the
PSA approach including its significant benefits, it is possible to say that
the very first step to visualize the risk of any system is to identify what
can go wrong (e.g., accident scenarios).

Accordingly, the identification of accident scenarios is one of the
crucial factors affecting the uncertainty of PSA results. It is natural then
to expect that the more accident scenarios we are able to identify for a
target system, the more the uncertainty of PSA results decreases. Un
fortunately, in reality, this idea is unrealistic for complicated systems
such as NPPs because the number of components to be considered for the
development of potential scenarios drastically goes up (i.e., an increase

of Event Headings in Fig. 2). In addition, the binary branch of each Event
Heading seems to be insufficient for representing the actual progression
of each potential scenario.

In order to clarify the latter aspect, let us consider the response of the
human operator pertaining to the Event Heading ‘Valve B manual close’.
In Fig. 2, only two conditions (Success and Failure) were considered to
describe the progression of the potential scenarios. However, it is more
relevant to assume that this response should be conducted when the
human operator properly recognizes the existence of the high-water
level alarm. This implies that, in terms of reducing the uncertainty of
PSA results, it is necessary to incorporate a spectrum of response times
into the progression of the potential scenarios (refer to Fig. 3). However,
computation time of simulating thermal–hydraulic dynamics in NPP to
obtain the consequence of each scenario is critical; it takes a couple of
hours depending on the nature of the combined factors. Considering the
number of potential scenarios to be analyzed, it is indispensable to
secure a breakthrough technology that allows us to extremely shorten
the run time of the TH code. For this reason, the use of a deep learning

Fig. 2. Example of potential scenarios and accident scenarios for the hypothetical system; modified from (Park, 2018).

Fig. 3. Underlying idea to reduce the uncertainty of PSA results; modified from (Park & Yoon, 2018).

S. Ryu et al.

Expert Systems With Applications 200 (2022) 116966

4

technique is considered in this study.

2.2. Development of a surrogate model from a deep learning perspective

In this section, we formulate the operation of a TH code in the
following function form to build a deep learning surrogate model. Let
x = [x1, x2,⋯, xd]

T
∈ Rd be an input column vector of the TH code,

where xi contains information of the events or actions that correspond to
Event Headings in Fig. 2. Then the TH code computes its output Y =

[y1, y2,⋯, yT]
T
∈ RT×N from x, where yt is observation of N output pro

cess parameters at time t. In short, the TH code is a function of x with an
output of multivariate time-series data representing the trajectories of
diverse process parameters. In this paper, we refer to this function Y =

f(x) as the external form of the TH code, whereas the internal form
calculates the results yt for each time-step autoregressively.

The original input vector x consists of different state variables. Let a
indicate a specific action that affects the progression of a potential
scenario. Then, the information of a can be represented with two state
variables xa = xk and ta = xk+1, where xa represents the degree of the
operator’s manual control or component status (e.g., degree of valve
opening), and ta corresponds to the time point when xa occurred (e.g.,
timing of valve opening). This pair of degree–timing state variables (xa,

ta) can be reformulated as a sequence za = [za
1, za

2,⋯, za
T] by setting za

t =

xa when t = ta; otherwise za
t = 0. Then the available information at

current time-step t can be denoted as zt =
[
z1

t ,⋯zd’

t
]T

. After converting
input vector x into time-series Z = [z1,⋯, zT]

T
∈ RT×d’ , the TH code

calculates the current output yt based on the past inputs z1, ⋯, zt, i.e.,
yt = g(z1,⋯, zt) = g(zt ,ht− 1), where h is a hidden representation of the
past sequence.

Following the above formulation, we classify the TH code surrogate
into two classes: i) in-situ model and ii) stepwise model. The in-situ
model is a surrogate of external function Y = f(x), while the stepwise
model is a surrogate of internal function yt = g(zt ,ht− 1). The main dif
ference between the two models is whether the action information is
available in advance or not. The advantage of the in-situ model is its
capability to leverage action information in advance. Hence it is easier to
train and shows more accurate results within a fixed time window. On
the other hand, the stepwise model works more similarly to the internal
operation of TH code. Generally, TH code calculates the expected
behavior (process parameter) of a target system (e.g., an NPP) at the
next step based on its physics model and the associated states. Thus,
stepwise model reflects the effect of the degree and the time of an action
in real-time. Also, the length of the output is not limited to the specific
time window because it predicts the output of the next time step
recursively. However, the major drawbacks of the stepwise model are
training difficulty due to sparsity of Z in temporal domain, and the
accumulation of prediction errors as the prediction is performed recur
sively.

In this paper, we focus on the development of the in-situ model, i.e., a
surrogate for Y = f(x). To this end, with the massive input and output
data obtained from TH code {(xi,Yi)}, a deep learning model should be
trained so that it can generate the trajectories of the process parameters
even from untrained scenarios. Indeed, the feasibility of the concept of a
deep learning-based surrogate model was successfully demonstrated
recently (Kim et al., 2020); in this study, a prototype of the in-situ model
based on the two-staged conditional autoencoder (cAE) was introduced.
The unique feature of the cAE model is that the latent space of the in-situ
model is pre-trained via an autoencoder. In the first stage, the network
learns to extract the important features by unsupervised learning of the
trajectories. Then in the second stage, the in-situ model is fine-tuned
from the pre-trained network where the latent vector from autoen
coder is added to the input scenario vector. This two-stage approach
helps to increase training efficiency and shows more accurate prediction
results compared to fully connected neural network (FNN) and recurrent
neural network (RNN) architectures. However, it was observed that the

model has lower accuracy when the trajectory fluctuates. Therefore, to
increase model accuracy with a simplified training process, a novel ar
chitecture, namely eQRNN, is proposed in this study.

3. Framework and methodologies

To provide a more accurate and reliable surrogate model for TH
code, we propose a novel in-situ model by leveraging four key elements:
a) bi-directional LSTM, b) concatenative PE, c) quantile regression, and
d) model ensemble. In this section, we illustrate the overall framework
of the proposed model, and describe the operation of the key elements.

3.1. Overall model framework

The overall framework of the proposed model is illustrated in Fig. 4.
First, we build a TH code database by running Multi-Dimensional
Analysis of Reactor Safety (MARS) code. Then TH code input x (state
variables) and output Y (process parameter) are each divided into
training, validation, and test sets. Next, channel-wise Z-score normali
zation is performed for both x and Y in the data preprocessing stage.
Hence, xk becomes (xk − μk)/σk, where μk and σk are the mean and
standard deviation of xk. The dotted box in Fig. 4 illustrates the structure
of a single QRNN model. It takes normalized x as an input and predicts
Yτ, where τ is the predetermined target quantile. After the neural
network receives the input vector, it expands the dimension of x along
the time axis. Then, PE vectors pt are concatenated to xt . After applying
PE, the converted input vectors (i.e.,

[
xT

t , pT
t
]T) are fed to the bi-

directional LSTM layers and subsequently to the dense layers, where
the last dense layer generates a value corresponding to the target
quantile. In our experiment, we select the target quantile τ = {0.1,0.3,
0.5, 0.7, 0.9}, which covers predictions with a confidence interval be
tween 10% and 90%. Finally, multiple QRNN models can be trained by
setting different random seed and weight initializations for model
ensemble.

In following subsections, we describe the operation of the a) bi-
directional LSTM, b) concatenative PE, c) quantile regression, and d)
model ensemble in detail.

3.2. Neural networks and bi-directional LSTM

In this section, brief explanations about existing deep learning
models are given, including FNN, RNN, and bi-directional LSTM that
were considered for the construction of the proposed framework.

First of all, an FNN is a basic artificial neural network structure that is
composed of a number of dense layers (referred to as fully connected
layers) with many nodes. A dense layer has weights, biases, and
nonlinear activation functions including sigmoid, tanh, and rectified
linear unit (ReLU) that perform a nonlinear transformation on the
weighted summation of the layer input. Therefore, each layer works as a
vector-to-vector nonlinear function that takes the output of a previous
layer as the input. By stacking multiple dense layers, the FNN achieves
powerful abstraction capability. As its name states, each node in the
upper layer is connected to every node in the lower layer; every nodes
are treated equally. Therefore, it is structurally difficult for FNN to
consider the concepts such as order, location, or context between nodes.
Thus, the FNN does not efficiently utilize the spatial or temporal re
lationships that are supposed to be implicitly involved in input vectors.
This led to the development of the convolutional neural network (CNN)
and the RNN, which are good at dealing with image and time-series data
by incorporating spatial and temporal relationships, respectively.

An RNN is a class of neural network architecture that receives output
or hidden states of the previous time-step as an input of the current time-
step. Various RNN architectures have been developed so far, but long
short-term memory (LSTM) (Hochreiter & Schmidhuber, 1997) is the
most common (and still powerful) among them. The base RNN

S. Ryu et al.

Expert Systems With Applications 200 (2022) 116966

5

architecture suffers from capturing the long-term dependency of long
sequential data due to several technical issues such as the vanishing
gradient problem. In LSTM, there are gates that control the flow of input
data, and cells that work as a memory of hidden states. The gated
connection in LSTM establishes a kind of highway that conveys gradi
ents to the distant past (Karpathy, Johnson, & Fei-Fei, 2015). This makes
it possible to overcome the vanishing gradient problem so the network
can learn long-term dependency. In considering problem, the output is
long-term time-series data from multiple sensors, thus LSTM is suitable
solution rather than FNN (general network structure) or convolutional
neural network (which is specialized to image data). The structure of the
original LSTM is depicted in Fig. 5. Compared to the node of an FNN, an
LSTM consists of many cells with relevant weights, biases, and activa
tion functions.

In dealing with sequential data (e.g., time-series data), tasks are

typically classified into many-to-many or many-to-one problems ac
cording to the shape of the input–output pair. For example, the stepwise
model in our case solves the many-to-many problem since it needs to
calculate yt for all time-step t with zt. The in-situ model, however, is
basically for the one-to-many problem, which is atypical, for which a
simple approach is to convert it to a many-to-many problem by tiling the
input vector along the time axis: xt = x,∀t ∈ [0,T], where T is the total
simulation time. Therefore, the appearance of the in-situ model is Y =

f(x), and the RNN-based in-situ model learns yt = f(xt ,ht− 1), as distinct
from the stepwise model yt = g(zt ,ht− 1).

It should be noted that one of the key differences between the in-situ
model and the stepwise model is whether action data is available in
advance or not. The input vector of the in-situ model already contains
the time of action; hence, it can be regarded as knowing or planning
action in advance. It is therefore possible to utilize bi-directional LSTM

Fig. 4. Overall framework of the eQRNN in-situ model.

Fig. 5. The structure of LSTM; modified from (Olah, 2015).

S. Ryu et al.

Expert Systems With Applications 200 (2022) 116966

6

(Schuster & Paliwal, 1997), where the information also flows backward
in time (future to past). Bi-directional LSTM is composed of two LSTM
layers with different directions. The forward direction layer (i.e., dark
colored LSTMs in Fig. 4) is the same as the above RNN model yf

t = f f (xt ,

ht− 1). On the contrary, the backward direction layer (white LSTMs in
Fig. 4, behind the forward direction layer) learns yb

t = fb(xt , ht+1).
Finally, yt can be derived from yf

t and yb
t .

3.3. Positional encoding

In a seminal paper of deep learning, “Attention is all you need”
(Vaswani et al., 2017), PE was introduced with a transformer architec
ture to capture an order-related feature in text data. Although we do not
utilize transformer architecture here, we apply PE with LSTM to
leverage temporal information explicitly during the training and infer
ence stages, whereas the base RNN in-situ model takes the same input
vector for all time-steps. With PE, the time-step t is encoded to a vector,

pt =
[
pt,1,⋯, pt,d

]T
∈ ℝd. This vector can be formulated in several ways

(e.g., absolute PE, relative PE (Ke, He, & Liu, 2020)), and we apply si
nusoidal PE, which is generally used in many applications (Choi, Kim, &
Choo, 2020; Mildenhall et al., 2020). Sinusoidal PE generates pt by the
following equation.

pi,j =

{
sin

(
t
/

10000(i/d)), ​ ​ ​ if ​ i ​ is ​ even,
cos

(
t
/

10000(i/d)), ​ ​ ​ if ​ i ​ is ​ odd.
(1)

In the original work of (Vaswani et al., 2017), pt has the same
dimension as input vector xt, and the network is trained based on their
summation x̂t = xt + pt, i.e., additive PE. The additive PE shares the axis
between xt and pt, and thus the order information is embedded to x̂t.
This x̂t can be considered as an engineered feature, but also may cause
semantic distortion in the proposed framework. For example, if xk de
notes the degree of valve opening, then adding p(⋅),k to xk directly
changes the meaning of the value. This can be mitigated if the dimension
is high enough to prevent information loss after the summation of xt and
pt; for example, the dimension of xt was 512 in (Vaswani et al., 2017).
However, in case of the proposed in-situ model, the dimensions of the
state (16 dimensions in our case) are relatively small to cover both state
and positional information. In this regard, we propose concatenative PE

where the input becomes x̂t =

[
xt
pt

]

. Thus, concatenative PE explicitly

separates the scenario-space and time–space. To support this, we show
that the additive PE is regularized version of concatenative PE in
Proposition 1.

Proposition 1. For input vector xt and PE vector pt in same dimen
sion, corresponding weight matrices Wx,Wp, additive PE is constrained
on its weights so that Wx = Wp, whereas concatenative PE is not.

Proof. Suppose transformed input x̂t goes through typical fully con
nected layer which can be denoted as z = σ(Wx̂t) where nonlinear
activation function σ and weights W with inherent bias term. Let z be a
dz-dimensional vector and xt , pt be d-dimensional input and PE vectors,
respectively. In additive PE, x̂t is [xt + pt] and W is dz × d matrix. Then,

W x̂t is Wxt + Wpt . On the other hand x̂t in concatenative PE is
[

xt
pt

]

∈

R2d and W is dz × 2d matrix. By separating W into two dz × d sub-weight

matrices (W = [Wx, Wp]), calculation of Wx̂t becomes Wx̂t =
[
Wx,

Wp
]
[

xt
pt

]

= Wxxt + Wppt. Comparing the two equations, additive PE is

constrained on its weights W to be W = Wx = Wp.
Because weights in concatenative PE are not constrained on the

condition of Wx = Wp, the accuracy may increase by finding optimal
weights for xt and pt , independently. Note that for concatenative PE, the
dimension of PE vector dPE can differ from xt unlike additive PE, and we

set dPE to 8, which is half of the original input dimension.

3.4. Quantile regression with pinball loss

For some TH code results, oscillating parts are observed. They might
be actual physical phenomena, or artifacts generated by the code itself.
Whichever case is true, the surrogate model should be able to accurately
approximate the TH code result. In addition, if probabilistic information
is able to be provided to analysts, operators, and decision-makers, it is
helpful to know which results of the surrogate model are accepted. For
this, instead of the typical mean squared error (MSE) loss, we utilize
quantile regression by training the neural network with pinball loss
(Steinwart & Christmann, 2011). The quantile model is targeted to learn
the median and other quantiles, whereas the base in-situ model is
trained with MSE loss to predict the mean value from output distribu
tion. For a random variable X and its cumulative distribution function
FX(x), the τ-th quantile is F− 1

X (τ), where τ ∈ (0, 1). The quantile model
outputs the τ-th quantile, and hence the quantile in-situ model becomes
[Yτ1 ,Yτ2 ,⋯] = f(x) . Since there is no exact label for target quantiles, loss
needs to be calculated based on a single sample from the under
lyingunknown distribution. Quantile regression can be achieved by
minimizing pinball loss (Biau & Patra, 2011; Koenker & Hallock, 2001).
For the τ-th quantile, the pinball loss is.

Lτ(y, ŷ) = f (x) =
{

τ(y − ŷ), if y ≥ ŷ
(τ − 1)(y − ŷ), if y < ŷ (2)

where y is the real value and ŷ is a prediction of the τ-th quantile.
Intuitively, pinball loss is a tilted absolute error with respect to the target
quantile. For low quantiles τ < 0.5, pinball loss incurs more penalty
when the model over-predicts (i.e., ŷ ≥ y), and consequently, the
network is trained to under-predict. Conversely, the network over-
predicts for high quantiles τ > 0.5.

3.5. Model ensemble

We also apply model ensemble to improve the generalization per
formance. As illustrated in Fig. 4, we build five models that have the
same structure but are trained with different random seed and weight
initializations. Thus, we could obtain five results for the same input
vector, and the result of the ensemble model is the average of those five
results. Since neural networks are powerful nonlinear function estima
tors, the model can be overfitted to the training set, which leads to bad
performance in the inference of the test set. This is called overfitting, a
problem that model ensemble can mitigate.

4. Case studies

In this section, we introduce preliminary results with simple FNN
and RNN models, and then describe the data configuration, model
structure, and experimental results from four target process variables.

4.1. Preliminary results with simple FNN and LSTM

Figure 6 shows a part of the preliminary results obtained from simple
FNN and LSTM based in-situ models. The target process parameter is the
pressure of a pressurizer (PZR). The simple FNN model has one hidden
layer with 100 nodes, and the simple RNN has one LSTM layer with 128
cells and one output dense layer with a single node. Note that the FNN
directly expands the input vector into sequential output data, while the
LSTM model first expands the input vector along the time axis and then
extracts the features, producing scalar values as univariate time-series
output. As can be seen in Fig. 6, the simple FNN and RNN models pre
dicted the trajectory of the PZR pressure with relatively low accuracy.
Although the results seem to generally follow the trend of the real tra
jectory, there exists plenty of room for accuracy improvement.

S. Ryu et al.

Expert Systems With Applications 200 (2022) 116966

7

Specifically, these two models struggled with predicting (1) the up and
down pattern around 500 s in Fig. 6a, and (2) the fluctuating pattern
after 2,500 s in Fig. 6b.

4.2. Description of TH code simulation data

In order to systematically and effectively respond to an accident in an
NPP, human operators working in the main control room must take a
series of actions based on the instructions of the emergency operating
procedures (EOPs). Accordingly, each potential scenario should include
a sequence of such human operator actions (for convenience, the term
required tasks will be used hereafter). This implies that, in order to train a
deep learning model, it is essential to build a large database that con
tains TH code results with respect to diverse potential scenarios. For this
reason, we developed a total of 104,625 potential scenarios that include
the required tasks, as summarized in Table 1.

The catalog of required tasks considered in the development of the
potential scenarios was carefully selected with the support of a domain
expert with sufficient experience in NPP operations. To this end, two
kinds of representative initiating events (IEs) and the contents of the
EOPs to cope with them were meticulously reviewed. Ultimately, we
decided to focus on the main steam line break (MSLB) and steam
generator tube rupture (SGTR) IEs with varying break sizes: 1A, 2A, and

4A for SGTR, and 1A and 2A for MSLB. Then we set up the degree and/or
timing of six required tasks that should be conducted for coping with the
early stages of the IEs. These six required tasks are: (1) opening the
charging valve, (2) turning the PZR heater on, (3) checking the safety
injection actuation signal (SIAS), (4) manually stopping the reactor
coolant pump (RCP), (5) opening the turbine bypass valve (TBV), and
(6) opening the atmospheric dump valve (ADV). The degree of these
required tasks is set to [0,100] for binary control cases (e.g., Start/Stop
or Open/Close), and [0, 50,100] or [0,5, 10, 25,50,75,100] for contin
uous control cases (e.g., 50% opened valve). In addition, the timing of
each required task is set to the mean, 5th, 95th, and 99th percentile
values with an immediate response (i.e., timing is equal to 0), which
were determined from an existing human performance database (Kim
et al., 2019). Hence, the input vector x can be constructed based on the
combination of degrees and timings described in Table 1. Note that the
number of potential scenarios does not exactly match the number of full
combinations based on the degrees and timings, because we did not
consider inappropriate combinations resulting from unrealistic se
quences of timings.

With respect to each potential scenario, the trajectories of four key
process variables that can represent the safety status of NPPs were
collected up to 3600 s at 10 s intervals (i.e., each trajectory consists of
360 data points). These key process variables are: (1) PZR pressure
(PZRP), (2) PZR level (PZRL), (3) reactor coolant system (RCS) sub
cooling margin (RCM), and (4) steam generator #1 pressure (SG1P) of
which one or more tubes were ruptured.

After finishing the collection of trajectories D (the term D will
represent the whole dataset), we classified datasets into training, vali
dation, and test sets. We further divided test set into two subsets, namely
Testin and Testout sets, to check the prediction performance of untrained
scenarios having different prediction difficulty. First, Testout is
composed of trajectory data with x5 = 3.6 (i.e., any trajectory data
pertaining to the start of PRZ heater at 3.6 min when PRZP is lower than
a set point). The rest of the trajectory data (D − Testout) is randomly
divided into training, validation, and Testin according to the data split
ratio of 7:1:2. By doing this, more neighboring scenarios of Testin are
used for training, thus Testout becomes more difficult to predict. Finally,
these Testin and Testout sets will be used to investigate the prediction
accuracy of eQRNN (refer to Section 4.5) and each dataset is summa
rized in Table 2.

4.3. Description of model structure

In the experiment, we compared the proposed QRNN and its
ensemble (eQRNN) to four different deep learning models. Table 3
summarizes the network structure of each model with the layer type and
corresponding network parameters.

In Table 3, the values in parentheses describe different layer

Fig. 6. Prediction examples of simple neural network models.

Table 1
Scenario configuration.

Index
(k)

Degree
(xk)

Time*
(xk)

Description

1 1 (1A), 2 (2A),4
(4A)

— Break size (A: area)
SGTR: 1A, 2A, 4A, / MSLB: 1A, 2A

2, 3 0, 50, 100 0, 1.77, 3.1,
5.425, 9.3

PZR level below the set point;
Charging valve open

4, 5 0, 50, 100 0, 2.06, 3.6,
6.3, 10.8

PZR pressure below the set point;
PZR heater on

6, 7 0, 1 0, 2.06, 3.6,
6.3, 10.8

PZR pressure below the set point;
SIAS actuate

8, 9 0 (No trip),1
(Trip)

0, 2.06, 3.6,
6.3, 10.8

PZR pressure below the set point;
RCP 1A & 2A trip

10, 11 0 (No trip),1
(Trip)

0, 2.06, 3.6
6.3, 10.8

PCS margin below the set point;
RCP 1A & 1B & 2A & 2B trip

12, 13 0, 5, 10, 25,
50, 75, 100

0, 2.629, 4.6,
8.05, 13.8

RCS temp above the set point;
TBV open

14, 15 0, 5, 10, 25,
50, 75, 100

0, 2.629, 4.6,
8.05, 13.8

RCS temp below the set point;
ADV open

16 0 (SGTR),1
(MSLB)

— Class of initiating events

*Minute.
SGTR: Steam Generator Tube Rupture; MSLB: Main Steam Line Break; SIAS:
Safety Injection Actuation Signal; RCP: Reactor Coolant Pump; TBV: Turbine
Bypass Valve; ADV: Atmospheric Dump Valve.

S. Ryu et al.

Expert Systems With Applications 200 (2022) 116966

8

properties: i) the output shape for Input and Tile, ii) the number of
neurons/cells for Dense and Bi-LSTM, and iii) the dropout rates for
Dropout. The abbreviations aPE and cPE stand for additive and con
catenative PE. All models share the same hyper-parameters, as listed in
Table 4. MSE is used as the loss function except for with the QRNN,
which utilizes pinball loss. Weights are trained with the Adam optimizer
with a recommended initial learning rate of 0.001 (Kingma & Ba, 2014),
and we set the epochs to 150. During the training, learning rate decay
and early stopping are applied by monitoring the validation loss. All
models are built using tensorflow (Abadi et al., 2016), and hyper
parameters are modified from the API documentation. In experiments,
we build a model for each variable (i.e., univariate output), and an
effective way to perform multivariate quantile regression with a single
model remains for future work. Note that the FNN and RNN model is not
the same model used in Fig. 6, and have increased model complexity.

To examine the advantages of the proposed model (utilizing bi-
LSTM, concatenative PE, quantile regression, and model ensemble),

we first fixed the base RNN structure and hyper-parameters by trial and
error, and then compared the results by incrementally adding each
modules. The base FNN and RNN structures (which we note provided a
reasonable level of accuracy) were determined by trial and error, and
thus their performance may increase through further optimization and
tuning of the model structure and hyper-parameters (e.g., grid search,
Bayesian optimization), which is beyond our scope of research.

4.4. Results

In this section, we compare the results of four target process variables
in terms of mean absolute percentage error (MAPE) and MSE. Subscripts
in and out indicate the result of Testin and Testout, respectively. The
MAPE and MSE of QRNN and eQRNN are calculated based on the pre
diction of the median in order to compare with the results of the point
forecast models: FNN, RNN, RNNaPE, and RNNcPE. Note that we alter the
prediction error for atmospheric pressure to zero for the result of SG1P,
because the error for a small denominator (which is less important in
terms of the overall system) dominates the error for a high-pressure
region of interest.

Table 5 shows the mean and standard deviation of MAPE and MSE
between the real values from the TH code run and the predictions from
the diverse deep learning models. Except for eQRNN, we present the
result having the smallest MSE among five trials per each model (FNN,
RNNs, and QRNN). The bold and underlined values indicate the column-
wise lowest and the second-lowest value, respectively. First, the FNN
model shows the worst error rates among the six models due to its
structural limitation (refer to Section 3.2). Compared to the FNN, the
error rate of the baseline RNN model (bi-directional LSTM without PE) is
significantly reduced. The average MAPE (average over the entire test
set) is decreased by 62.9%, 71.4%, 61.8%, and 67.3% in the order of
PZRP, PZRL, RCM, and SG1P, respectively; from now on, all comparison
results are given in the same order. Although the base RNN exploits the
same input for all time-steps, it could achieve improved accuracy thanks
to the increased model complexity and structural advantage of LSTM.

Applying PE to the RNN provides further performance improve
ments. Both additive and concatenative PE show lower error rates
compared to the base RNN without PE. The MAPE of RNNaPE is
decreased by 11.2%, 9.6%, and 7.7% on average for PZRP, RCM, and
SG1P; for the case of RCM, the error increased by 0.1%. As we expected,
the accuracy of the concatenative PE shows better performance than the
additive PE. The MAPE of RNNcPE is decreased by 27.8%, 11.4%, 20.0%,
and 6.1% compared to the base RNN model. This result implies that
utilizing temporal information explicitly via concatenation is helpful in
the case of low-dimensional data.

Next, we compare the results of QRNN and eQRNN. These results
show that the change to a quantile model yields further improvements in
model accuracy. Moreover, both models provide the uncertain bound
aries of the prediction result. As can be seen in Table 5, eQRNN shows
the best performance in most cases. Compared to RNNcPE, MAPE is
reduced by 14.6%, 42.6%, 19.8%, and 8.8% for QRNN and by 20.7%,
42.6%, 26.3%, and 18.4% for eQRNN, respectively. Also, eQRNN and
QRNN show lower standard deviations in most cases.

The improved performance of eQRNN is also recognized by the
empirical cumulative distribution function (ECDF) of MAPE and MSE.
Figs. 7 and 8 plot the ECDF of MAPE and MSE distributions over the
entire test set. The ECDF in the upper left corner implies better accuracy
because it has a lower mean and variance. For all cases, eQRNN out
performs the other models, followed by QRNN, RNNcPE, RNNaPE, RNN,
and FNN in order.

Specifically, utilization of quantile regression leads to notable per
formance improvement, which can be observed in the form of gaps be
tween the two graphs. For example, there exists a gap between the graph
of RNNcPE and eQRNN in Fig. 7b, c, d, and Fig. 8d. This performance
improvement can be interpreted as follows. By changing to a quantile
model and training with pinball loss, the QRNN model obtains the

Table 2
Dataset configuration.

Dataset (D) Size Description

Training 60,637
(58%)

Training set for weight update from D − Testout

Validation 7,988 (8%) Validation set for hyper-parameter selection from
(D − Testout)

Testin 18,000
(17%)

Randomly selected scenarios from D − Testout

Testout 18,000
(17%)

Specific case with x5 = 3.6

Table 3
Model structure.

Model Structure Description

FNN Input(16) - Dense(64) - Dense
(128) - Dense(256) - Dropout
(0.2) - Dense(360)

FNN in-situ model

RNN Input(16) - Tile(16,360) -
BiLSTM(256) - BiLSTM(256) -
Dense(128) - Dense(64)s-
Dropout(0.2) - Dense
(1)

Bi-directional LSTM model

RNNaPE Input(16) - Tile(16,360) - aPE
(16,360) - BiLSTM(256) -
BiLSTM(256) - Dense(128)-
Dense(64) - Dropout(0.2) -
Dense
(1)

Bi-directional LSTM model with
additive PE, dPE = 16, weighted by
0.5

RNNcPE Input(16) - Tile(16,360) - cPE
(24,360) - BiLSTM(256) -
BiLSTM(256) - Dense(128)-
Dense(64) - Dropout(0.2) -
Dense
(1)

Bi-directional LSTM model with
concatenative PE, dPE = 8.

QRNNcPE Input(16) - Tile(16,360) - cPE
(24,360) - BiLSTM(256) -
BiLSTM(256) - Dense(128)-
Dense(64) - Dropout(0.2) -
Dense
(5)

Bi-directional LSTM model with
concatenative PE and quantile
regression τ =

(0.1,0.3, 0.5,0.7,0.9).

eQRNNcPE Same as QRNN Ensemble of five QRNN models

Table 4
Hyper-parameters.

Hyper-parameter Configuration

Loss MSE, Pinball loss (for QRNN)
Optimizer Adam
Learning rate 1e-3 (with reduced LR on plateau)
Batch size 512
Epochs 150 (with early stopping)

S. Ryu et al.

Expert Systems With Applications 200 (2022) 116966

9

Table 5
Prediction error comparison.

Model MAPEin MAPEout MSEin MSEout

mean std mean std mean std mean std

Target PZRP
FNN 2.04 1.49 2.21 1.73 11.7 25.2 15 45
RNN 0.7 0.62 0.88 0.85 3.2 9.1 4.96 17.3
RNNaPE 0.58 0.56 0.82 1.07 2.67 10.2 6.11 42.3
RNNcPE 0.47 0.46 0.67 0.91 1.92 7.39 5.08 47.3
QRNNcPE 0.42 0.48 0.55 0.93 2.05 8.35 3.65 33.6
eQRNNcPE 0.37 0.47 0.53 0.77 1.77 7.53 3.45 18.8

Target PZRL
FNN 2.07 1.76 2.55 3.02 1.3 6.58 3.33 17.8
RNN 0.52 0.65 0.8 1.64 0.2 4.18 1.35 18
RNNaPE 0.49 0.94 0.83 2.25 0.23 6.38 1.49 15.5
RNNcPE 0.44 0.5 0.73 1.96 0.15 2.78 1.44 20.3
QRNNcPE 0.27 0.53 0.4 0.96 0.15 3.57 0.55 10.1
eQRNNcPE 0.24 0.47 0.43 1.29 0.14 3.6 0.65 9.34

Target RCM
FNN 11.9 47.79 12.4 12.4 9.7 32.6 14 76.3
RNN 4.3 39.2 4.99 6.4 2.64 24 13.1 173.4
RNNaPE 3.82 36.2 4.58 6.19 2.77 29.3 12.1 157.1
RNNcPE 3.29 28 4.14 5.76 2.37 26.2 7.12 105.9
QRNNcPE 2.71 39.4 3.25 4.83 2.5 28.9 6.13 88.8
eQRNNcPE 2.44 32.3 3.04 4.58 2.09 26.5 6.05 67.2

Target SG1P
FNN 0.78 1.71 0.78 0.75 1.33 3.06 1.45 3.53
RNN 0.25 0.25 0.26 0.34 0.17 1.86 0.28 2.57
RNNaPE 0.22 0.29 0.24 0.36 0.17 2.31 0.29 2.62
RNNcPE 0.23 0.3 0.25 0.35 0.18 2.3 0.28 2.31
QRNNcPE 0.21 0.37 0.23 0.45 0.23 3.51 0.37 4.37
eQRNNcPE 0.18 0.37 0.21 0.44 0.2 3.38 0.35 4.18

Fig. 7. Empirical CDF of error distribution (MAPE).

S. Ryu et al.

Expert Systems With Applications 200 (2022) 116966

10

advantage of multi-task learning (Rodrigues & Pereira, 2020). In multi-
task learning, the model can learn key domain information that can be
shared in performing multiple tasks, and thus generalization perfor
mance is improved. In this perspective, a quantile model performs
multiple tasks, i.e., prediction of different quantiles. There exists a
nonlinear relationship between two quantiles Yτ1 , Yτ2 , and they share
key base information (input vector). Thus, training them together is a
simplified multi-task learning problem, where the tasks are scored from
a single label by pinball loss.

We further compared the performance of QRNN to other models
(including cAE model (Kim et al., 2020), and deeper FNN) in terms of
model parameter, inference time, and error metrics. Experimental re
sults on PZRP data is given in Table 6. Model parameter is the number of
trainable weights in neural network, and inference time is time spent on
the prediction of all scenarios in Testin set with mini batch size of 64. As
can be seen, RNN based models have higher model complexity, and
requires longer inference time due to recurrent loop in LSTM network.
But considering the time taken in the original TH code simulation (more
than hours for 1 accident scenario), inference time of RNN in second
order for 18,000 scenarios is negligible. Next, in order to support that
the performance improvement in QRNN model is not simply due to

increase in model parameters, we compared the results of deeper FNN
(DFNN) which has similar number of model parameters as RNN by
increasing the depth and width of base FNN. According to the results,
DFNN shows much lower error rates compared to FNN, but the errors are
still higher than that of RNN. Furthermore, the error of QRNN is reduced
by almost half of DFNN, and these results imply that the multiple
quantile regression and concatenative positional encoding are the main
drivers of performance improvement without significant change in
model complexity. We further performed experiments on recently
developed cAE. cAE achieved higher accuracy than FNN, but lower than
RNN due to structural limitation of FNN based approach. Finally, the
proposed QRNN shows 73% and 77% lower MAPE and MSE than cAE
(75% and 79% compared to eQRNN).

4.5. Visualization of prediction

In order to perform a qualitative analysis on the results visually, the
predicted trajectories of randomly selected scenarios are given in Fig. 9.
Here, Fig. 9a is an example of a PZRP prediction. Note that the MAPE of
eQRNN is 1.02%, which is a lot higher than the average MAPE of Testin
(0.37%). The predictions of the RNN-based models follow the original
trajectory as well. However, the oscillating pattern that occurs after
3,000 s is flattened. In these areas, QRNN and eQRNN have advantages
since they provide quantile predictions that cover the oscillations. The
second example, in Fig. 9b, is the result of PZRL, where all models show
similar results. Fig. 9c is an example RCM prediction with scenario
number 13,747 in Testout. Unlike the previous examples (Fig. 9a & b),
each model generates a different trajectory. Specifically, the trajectories
are different between 1,000–3,000 s, where the shape of the graph
changes dynamically. Compared to the other process parameters, the
results of RCM show roughly 10 times higher MAPE; the MAPEs of
QRNN and eQRNN for this example are 3% and 2.66%. However, the
uncertain area given by eQRNN covers the original trajectory. The final
example of SG1P is given in Fig. 9d. In this example, only RNN, QRNN,
and eQRNN models have a similar shape to the original graph, with

Fig. 8. Empirical CDF of error distribution (MSE).

Table 6
Model Comparison on PZRP dataset.

Model Model
parameter

Inference
time

MAPEin MAPEout MSEin MSEout

FNN 135 k 0.2 s 2.04 2.21 11.7 15
cAE 220 k(418

k)*
0.2 s 1.69 1.96 9.49 15.19

DFNN 2,420 k 0.2 s 0.81 1.12 3.95 7.24
RNN 2,208 k 9.1 s 0.7 0.88 3.2 4.96
RNNaPE 2,208 k 9.2 s 0.58 0.82 2.67 6.11
RNNcPE 2,224 k 9.3 s 0.47 0.67 1.92 5.08
QRNNcPE 2,225 k 9.4 s 0.42 0.55 2.05 3.65

*parameter of autoencoder.

S. Ryu et al.

Expert Systems With Applications 200 (2022) 116966

11

MAPEs of these models of 0.62%, 0.34%, and 0.29%, respectively.

5. Discussions and conclusion

As briefly discussed in Section 2.1, the identification of accident
scenarios is crucial for reducing the uncertainty of PSA results. Unfor
tunately, each accident scenario should be determined by using a precise
TH code, for which the run time takes several hours on average.
Accordingly, a breakthrough technology that allows us to predict the
consequence of a potential scenario within a very short time can resolve
this issue. For this reason, in this paper, we investigated a surrogate
model of TH code and proposed a novel framework of an in-situ model
based on deep learning. Notably, the eQRNN, the proposed model,
provides the uncertainty boundaries of the prediction results. By
leveraging bi-directional LSTM, concatenative PE, quantile regression,
and model ensemble, the proposed eQRNN outperforms other deep
learning models. To verify the suggested model, the results from four
process parameters (i.e., PZR pressure, PZR level, RCS margins, and
SG#1 pressure) were compared between models in terms of MAPE and
MSE. Each increasingly complex model improves the prediction accu
racy; specifically, the concatenative PE and quantile model shows
notable error reduction. Compared to the base RNN, the proposed
eQRNN model shows 43%, 49%, 41%, and 23% lower MAPE for PZRP,
PZRL, RCM, and SG1P, respectively: overall, 39% lower MAPE and 28%
lower MSE. This strongly implies that a fast running in-situ model can be
secured with an affordable range of prediction error.

Currently, a model that generates only a univariate output has been
developed. For the actual application of such a model, it is necessary to
make several models according to the variables that affect the scenario
(i.e., to monitor the variables that make diverse scenarios). This would

affect calculation time and volume, as the number of models increases
according to the number of variables to be monitored. Therefore, a
multivariate model is needed to solve this problem.

In the case of the in-situ model, the output of the model is made for
full-length simulation. Although there is an advantage in that quick
branching is possible in consideration of the status of components with
the response of human operators at all times, the model always calcu
lates the full-length simulation time when either a new status of the
components or a new response of the human operator is given. There
fore, it is necessary to slice and merge the data in order to make a new
potential scenario. For example, when using a model based on eQRNN
where branching should be performed considering quantiles, the num
ber of inferences will increase the same amount as the number of
quantiles to be considered for each branching point.

In order to overcome this limitation, a stepwise model was consid
ered. Even though the stepwise model is sensitive to error and harder to
train than the in-situ model, it calculates the output using previous in
formation. With this virtue, it is able to reflect actions in real-time more
easily than the in-situ model can. Moreover, the stepwise model can be
developed for on-site trajectory generation, which can also be applied to
the development of reinforcement-learning-based autonomous opera
tion models. Therefore, as a parallel work, a feasibility study of the
stepwise model is ongoing.

Nevertheless, it is evident that the in-situ model proposed in this
study plays a significant role in reducing the uncertainty of PSA results
by discovering unknown accident scenarios. In order to clarify this
claim, let us consider a series of Event Headings exemplified below, which
consist of specific conditions and the required action to be taken by
human operators when these conditions are met.

Fig. 9. Examples of prediction results.

S. Ryu et al.

Expert Systems With Applications 200 (2022) 116966

12

• Event Heading 1: Adjust Valve A when the pressure of Tank B is lower
than 50 kgf/cm2.

• Event Heading 2: Operate Heater C unless the pressure of Tank D is
greater than 75 kgf/cm2.

• Event Heading 3: Start Pump E when the water level of Tank B is
increasing.

• Event Heading n: […].

In traditional PSA, due to the limitation of available resources in TH
code simulations, the variability of potential scenarios is reduced by
introducing a series of conservative assumptions. It should be empha
sized that these conservative assumptions are themselves generated
based on the results of intensive TH code runs for a large number of
potential scenarios. Therefore, although it seems that the sequence of
Event Headings is simple (i.e., static sequence), it is strongly expected
that most accident scenarios can be covered by traditional PSA because
numerous potential scenarios of which the consequence is trivial are
already excluded. However, it is more realistic to assume that the
sequence of Event Headings is variable depending on the characteristics
of the responses previously done by human operators (i.e., dynamic
sequence). That is, in accordance with the timing and/or the degree of
opening of Valve A in the above Event Heading 1, it is natural to assume
that the next Event Heading could either be Event Heading 2 or Event
Heading 3. In other words, the result of the human response included in
Event Heading 1 can affect which Event Heading should appear next.

If this dynamic sequence is indeed the more realistic assumption,
then the number of simulations using a precise TH code will drastically
increase because of the existence of hidden potential scenarios (Heo,
Baek, Kwon, Kim, & Park, 2021)(). In this case, the use of the in-situ
model proposed in this study should be considered for its contribu
tions in revealing the inventory of additional accident scenarios from
these additional potential scenarios, which have not been considered in
traditional PSA before. This study is a good starting point to accomplish
this goal.

CRediT authorship contribution statement

Seunghyoung Ryu: Investigation, Methodology, Software, Writing
– original draft. Hyeonmin Kim: Conceptualization, Data curation,
Writing – original draft. Seung Geun Kim: Validation, Writing – review
& editing. Kyungho Jin: Validation, Writing – review & editing. Jae
hyun Cho: Funding acquisition, Project administration. Jinkyun Park:
Conceptualization, Funding acquisition, Supervision, Writing – review
& editing.

Declaration of Competing Interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Acknowledgement

This work was supported by the Nuclear Research & Development
Program grant from the National Research Foundation of Korea (NRF),
funded by the Ministry of Science and ICT (NRF 2019M2C9A1055906
and NRF 2020M2C9A1061638).

References

Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M., Ghemawat, S.,
Irving, G., Isard, M., & &. (2016). Tensorflow: A system for large-scale machine learning,
16 pp. 265–283). OSDI.

Abualigah, L., & Diabat, A. (2021). Advances in sine cosine algorithm: A comprehensive
survey. Artificial Intelligence Review, 1–42.

Abualigah, L., Diabat, A., Mirjalili, S., Abd Elaziz, M., & Gandomi, A. H. (2021). The
arithmetic optimization algorithm. Computer Methods in Applied Mechanics and
Engineering, 376, Article 113609.

Abualigah, L., Yousri, D., Abd Elaziz, M., Ewees, A. A., Al-qaness, M. A. A., &
Gandomi, A. H. (2021). Aquila optimizer: A novel meta-heuristic optimization
Algorithm. Computers & Industrial Engineering, 157, Article 107250.

Aldemir, T. (2013). A survey of dynamic methodologies for probabilistic safety
assessment of nuclear power plants. Annals of Nuclear Energy, 52, 113–124.

Biau, G., & Patra, B. (2011). Sequential quantile prediction of time series. IEEE
Transactions on Information Theory, 57(3), 1664–1674.

Brock, A., De, S., Smith, S. L., & Simonyan, K. (2021). High-performance large-scale
image recognition without normalization. International Conference on Machine
Learning (PMLR), 1059–1071.

Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal, P., Askell, A., et al.
(2020). Language models are few-shot learners. Advances in neural information
processing systems, 33, 1877–1901.

Caliva, F., de Ribeiro, F. S., Mylonakis, A., Demazi’ere, C., Vinai, P., Leontidis, G., &
Kollias, S. (2018). A deep learning approach to anomaly detection in nuclear
reactors. 2018 International Joint Conference on Neural Networks (IJCNN), 1–8.

Chen, Q., Wang, W., Huang, K., De, S., & Coenen, F. (2021). Multi-modal generative
adversarial networks for traffic event detection in smart cities. Expert Systems with
Applications, 177, Article 114939.

Chen, Q., Wang, W., Wu, F., De, S., Wang, R., Zhang, B., & Huang, X. (2019). A survey on
an emerging area: Deep learning for smart city data. IEEE Transactions on Emerging
Topics in Computational Intelligence, 3(5), 392–410.

Chen, S., & Demachi, K. (2019). Proposal of an insider sabotage detection method for
nuclear security using deep learning. Journal of Nuclear Science and Technology, 56
(7), 599–607.

Choi, S., Kim, J. T., & Choo, J. (2020). Cars can’t fly up in the sky: Improving urban-scene
segmentation via height-driven attention networks. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (pp. 9373–9383).

da Silva, D. B., Schmidt, D., da Costa, C. A., da Rosa Righi, R., & Eskofier, B. (2021).
DeepSigns: A predictive model based on Deep Learning for the early detection of
patient health deterioration. Expert Systems with Applications, 165, Article 113905.

dos Santos, M. C., Pinheiro, V. H. C., do Desterro, F. S. M., de Avellar, R. K., et al. (2019).
Deep rectifier neural network applied to the accident identification problem in a
PWR nuclear power plant. Annals of Nuclear Energy, 133, 400–408.

Faust, O., Hagiwara, Y., Hong, T. J., Lih, O. S., & Acharya, U. R. (2018). Deep learning for
healthcare applications based on physiological signals: A review. Computer Methods
and Programs in Biomedicine, 161, 1–13.

Heo, G., Baek, S., Kwon, D., Kim, H., & Park, J. (2021). Recent reserch towards integrated
deterministic-probabilistic safety assessment in Korea. Nuclear Engineering and
Technology, 53(11), 3465–3473.

Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural Computation,
9(8), 1735–1780.

Karpathy, A., Johnson, J., & Fei-Fei, L. (2015). Visualizing and understanding recurrent
networks. ArXiv Preprint. ArXiv:1506.02078.

Ke, G., He, D., & Liu, T.-Y. (2020). Rethinking positional encoding in language pre-
training. International Conference on Learning Representations.

Kim, Y., Kim, J., Park, J., Choi, S. Y., Kim, S., Jung, W., ... & Shin, S. K. (2019). An HRA
Method for Digital Main Control Rooms–Part I: Estimating the Failure Probability of
Timely Performance. KAERI/TR-7607/2019.

Kim, H., Cho, J., & Park, J. (2020). Application of a deep learning technique to the
development of a fast accident scenario identifier. IEEE Access, 8, 177363–177373.

Kim, S. G., Chae, Y. H., & Seong, P. H. (2020). Development of a generative-adversarial-
network-based signal reconstruction method for nuclear power plants. Annals of
Nuclear Energy, 142, Article 107410.

Koenker, R., & Hallock, K. F. (2001). Quantile regression. Journal of Economic
Perspectives, 15(4), 143–156.

Lai, C. S., Zhong, C., Pan, K., Ng, W. W. Y., & Lai, L. L. (2021). A deep learning based
hybrid method for hourly solar radiation forecasting. Expert Systems with
Applications, 177, Article 114941.

Lin, T.-H., Wang, T.-C., & Wu, S.-C. (2021). Deep learning schemes for event
identification and signal reconstruction in nuclear power plants with sensor faults.
Annals of Nuclear Energy, 154, Article 108113.

Park, Jinkyun, & Yoon, Jae Young (2018). Toward the use of deep learning techniques to
enhance PSA quality: A digital twin. Proceedings of the Korea Nuclear Society 2018
Fall Meeting.

Kingma, D. P., & Ba, J. (2014). Adam: A method for stochastic optimization. ArXiv
Preprint ArXiv:1412.6980.

Mandelli, D., Alfonsi, A., Talbot, P., Wang, C., Maljovec, D., Smith, C., Rabiti, C., &
Cogliati, J. (2016). An overview of reduced order modeling techniques for safety
applications.

Mildenhall, B., Srinivasan, P. P., Tancik, M., Barron, J. T., Ramamoorthi, R., & Ng, R.
(2020). Nerf: Representing scenes as neural radiance fields for view synthesis.
European Conference on Computer Vision, 405–421.

Olah, C. (2015). Understanding lstm networks. URL Http://Colah. Github. Io/Posts/2015-
08-Understanding-LSTMs.

Park, J. K. (2018). Feasibility study on the digital twin of a PSA scenario development based
on a deep-learning technique. Korea Atomic Energy Research Institute, Article KAERI/
RR-4379/2018.

Radaideh, M. I., Pigg, C., Kozlowski, T., Deng, Y., & Qu, A. (2020). Neural-based time
series forecasting of loss of coolant accidents in nuclear power plants. Expert Systems
with Applications, 160, Article 113699.

S. Ryu et al.

http://refhub.elsevier.com/S0957-4174(22)00392-X/h0005
http://refhub.elsevier.com/S0957-4174(22)00392-X/h0005
http://refhub.elsevier.com/S0957-4174(22)00392-X/h0005
http://refhub.elsevier.com/S0957-4174(22)00392-X/h0010
http://refhub.elsevier.com/S0957-4174(22)00392-X/h0010
http://refhub.elsevier.com/S0957-4174(22)00392-X/h0015
http://refhub.elsevier.com/S0957-4174(22)00392-X/h0015
http://refhub.elsevier.com/S0957-4174(22)00392-X/h0015
http://refhub.elsevier.com/S0957-4174(22)00392-X/h0020
http://refhub.elsevier.com/S0957-4174(22)00392-X/h0020
http://refhub.elsevier.com/S0957-4174(22)00392-X/h0020
http://refhub.elsevier.com/S0957-4174(22)00392-X/h0025
http://refhub.elsevier.com/S0957-4174(22)00392-X/h0025
http://refhub.elsevier.com/S0957-4174(22)00392-X/h0030
http://refhub.elsevier.com/S0957-4174(22)00392-X/h0030
http://refhub.elsevier.com/S0957-4174(22)00392-X/h0035
http://refhub.elsevier.com/S0957-4174(22)00392-X/h0035
http://refhub.elsevier.com/S0957-4174(22)00392-X/h0035
http://refhub.elsevier.com/S0957-4174(22)00392-X/h0040
http://refhub.elsevier.com/S0957-4174(22)00392-X/h0040
http://refhub.elsevier.com/S0957-4174(22)00392-X/h0040
http://refhub.elsevier.com/S0957-4174(22)00392-X/h0050
http://refhub.elsevier.com/S0957-4174(22)00392-X/h0050
http://refhub.elsevier.com/S0957-4174(22)00392-X/h0050
http://refhub.elsevier.com/S0957-4174(22)00392-X/h0055
http://refhub.elsevier.com/S0957-4174(22)00392-X/h0055
http://refhub.elsevier.com/S0957-4174(22)00392-X/h0055
http://refhub.elsevier.com/S0957-4174(22)00392-X/h0060
http://refhub.elsevier.com/S0957-4174(22)00392-X/h0060
http://refhub.elsevier.com/S0957-4174(22)00392-X/h0060
http://refhub.elsevier.com/S0957-4174(22)00392-X/h0065
http://refhub.elsevier.com/S0957-4174(22)00392-X/h0065
http://refhub.elsevier.com/S0957-4174(22)00392-X/h0065
http://refhub.elsevier.com/S0957-4174(22)00392-X/h0070
http://refhub.elsevier.com/S0957-4174(22)00392-X/h0070
http://refhub.elsevier.com/S0957-4174(22)00392-X/h0070
http://refhub.elsevier.com/S0957-4174(22)00392-X/h0075
http://refhub.elsevier.com/S0957-4174(22)00392-X/h0075
http://refhub.elsevier.com/S0957-4174(22)00392-X/h0075
http://refhub.elsevier.com/S0957-4174(22)00392-X/h0080
http://refhub.elsevier.com/S0957-4174(22)00392-X/h0080
http://refhub.elsevier.com/S0957-4174(22)00392-X/h0080
http://refhub.elsevier.com/S0957-4174(22)00392-X/optvzXi9nsyR1
http://refhub.elsevier.com/S0957-4174(22)00392-X/optvzXi9nsyR1
http://refhub.elsevier.com/S0957-4174(22)00392-X/optvzXi9nsyR1
http://refhub.elsevier.com/S0957-4174(22)00392-X/h0090
http://refhub.elsevier.com/S0957-4174(22)00392-X/h0090
http://refhub.elsevier.com/S0957-4174(22)00392-X/h0095
http://refhub.elsevier.com/S0957-4174(22)00392-X/h0095
http://refhub.elsevier.com/S0957-4174(22)00392-X/h0100
http://refhub.elsevier.com/S0957-4174(22)00392-X/h0100
http://refhub.elsevier.com/S0957-4174(22)00392-X/h0105
http://refhub.elsevier.com/S0957-4174(22)00392-X/h0105
http://refhub.elsevier.com/S0957-4174(22)00392-X/h0110
http://refhub.elsevier.com/S0957-4174(22)00392-X/h0110
http://refhub.elsevier.com/S0957-4174(22)00392-X/h0110
http://refhub.elsevier.com/S0957-4174(22)00392-X/h0120
http://refhub.elsevier.com/S0957-4174(22)00392-X/h0120
http://refhub.elsevier.com/S0957-4174(22)00392-X/h0125
http://refhub.elsevier.com/S0957-4174(22)00392-X/h0125
http://refhub.elsevier.com/S0957-4174(22)00392-X/h0125
http://refhub.elsevier.com/S0957-4174(22)00392-X/h0130
http://refhub.elsevier.com/S0957-4174(22)00392-X/h0130
http://refhub.elsevier.com/S0957-4174(22)00392-X/h0130
http://refhub.elsevier.com/S0957-4174(22)00392-X/h0140
http://refhub.elsevier.com/S0957-4174(22)00392-X/h0140
http://refhub.elsevier.com/S0957-4174(22)00392-X/h0140
http://refhub.elsevier.com/S0957-4174(22)00392-X/h0150
http://refhub.elsevier.com/S0957-4174(22)00392-X/h0150
http://refhub.elsevier.com/S0957-4174(22)00392-X/h0150
http://refhub.elsevier.com/S0957-4174(22)00392-X/h0160
http://refhub.elsevier.com/S0957-4174(22)00392-X/h0160
http://refhub.elsevier.com/S0957-4174(22)00392-X/h0160

Expert Systems With Applications 200 (2022) 116966

13

Rodrigues, F., & Pereira, F. C. (2020). Beyond expectation: Deep joint mean and quantile
regression for spatiotemporal problems. IEEE Transactions on Neural Networks and
Learning Systems, 31(12), 5377–5389.

Ryu, S., Choi, H., Lee, H., & Kim, H. (2019). Convolutional autoencoder based feature
extraction and clustering for customer load analysis. IEEE Transactions on Power
Systems, 35(2), 1048–1060.

Schuster, M., & Paliwal, K. K. (1997). Bidirectional recurrent neural networks. IEEE
Transactions on Signal Processing, 45(11), 2673–2681.

Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou, I., Huang, A., Guez, A., , …
Bolton, A., et al. (2017). Mastering the game of go without human knowledge.
Nature, 550(7676), 354–359.

Steinwart, I., & Christmann, A. (2011). Estimating conditional quantiles with the help of
the pinball loss. Bernoulli, 17(1), 211–225.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., …
Polosukhin, I. (2017). Attention is all you need. Advances in Neural Information
Processing Systems, 5998–6008.

Wang, J., Ma, Y., Zhang, L., Gao, R. X., & Wu, D. (2018). Deep learning for smart
manufacturing: Methods and applications. Journal of Manufacturing Systems, 48,
144–156.

S. Ryu et al.

http://refhub.elsevier.com/S0957-4174(22)00392-X/h0165
http://refhub.elsevier.com/S0957-4174(22)00392-X/h0165
http://refhub.elsevier.com/S0957-4174(22)00392-X/h0165
http://refhub.elsevier.com/S0957-4174(22)00392-X/h0170
http://refhub.elsevier.com/S0957-4174(22)00392-X/h0170
http://refhub.elsevier.com/S0957-4174(22)00392-X/h0170
http://refhub.elsevier.com/S0957-4174(22)00392-X/h0175
http://refhub.elsevier.com/S0957-4174(22)00392-X/h0175
http://refhub.elsevier.com/S0957-4174(22)00392-X/h0180
http://refhub.elsevier.com/S0957-4174(22)00392-X/h0180
http://refhub.elsevier.com/S0957-4174(22)00392-X/h0180
http://refhub.elsevier.com/S0957-4174(22)00392-X/h0185
http://refhub.elsevier.com/S0957-4174(22)00392-X/h0185
http://refhub.elsevier.com/S0957-4174(22)00392-X/h0190
http://refhub.elsevier.com/S0957-4174(22)00392-X/h0190
http://refhub.elsevier.com/S0957-4174(22)00392-X/h0190
http://refhub.elsevier.com/S0957-4174(22)00392-X/h0195
http://refhub.elsevier.com/S0957-4174(22)00392-X/h0195
http://refhub.elsevier.com/S0957-4174(22)00392-X/h0195

	Probabilistic deep learning model as a tool for supporting the fast simulation of a thermal–hydraulic code
	1 Introduction
	2 Background information
	2.1 Limitation in identifying accident scenarios
	2.2 Development of a surrogate model from a deep learning perspective

	3 Framework and methodologies
	3.1 Overall model framework
	3.2 Neural networks and bi-directional LSTM
	3.3 Positional encoding
	3.4 Quantile regression with pinball loss
	3.5 Model ensemble

	4 Case studies
	4.1 Preliminary results with simple FNN and LSTM
	4.2 Description of TH code simulation data
	4.3 Description of model structure
	4.4 Results
	4.5 Visualization of prediction

	5 Discussions and conclusion
	CRediT authorship contribution statement

	Declaration of Competing Interest
	Acknowledgement
	References

