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A B S T R A C T   

Following the Fukushima Daiichi accident, enhancing the safety of nuclear power plants has become the priority 
mission for the future of nuclear energy. Probabilistic safety assessment (PSA) is a well-known technique to 
quantify the anticipated risk of nuclear power plants according to the accident scenario. One approach to 
strengthening nuclear safety is reducing the uncertainty in PSA by analyzing a wide spectrum of accident sce
narios. In doing this, massive simulations of thermal–hydraulic (TH) dynamics are required by running TH code. 
As the computation time for such large-scale simulation is a heavy burden, it is necessary to develop a fast 
simulation model, but related research has recently begun. For doing this, conditional autoencoder was firstly 
introduced, however, prediction accuracy can be further improved by exploiting temporal characteristics of 
simulation data. In this paper, we formalize deep learning-based fast simulation model of TH code, and propose a 
novel deep learning model, namely ensemble quantile recurrent neural network (eQRNN). By leveraging bi- 
directional long short-term memory, concatenative positional encoding, quantile regression, and model 
ensemble, the proposed eQRNN can provide a more accurate prediction on the simulation results and uncertain 
boundaries of its prediction. Compared to the base RNN model, the proposed eQRNN shows 39% and 28% lower 
error overall in terms of mean absolute percentage error (MAPE) and mean squared error (MSE). Finally, eQRNN 
achieved 75%, 79% lower MAPE and MSE than the existing conditional autoencoder-based model.   

1. Introduction 

After the Fukushima Daiichi accident in 2011, safety enhancement in 
utilizing nuclear energy became the number one priority in the nuclear 
industry. Since then, various research to strengthen the safety of nuclear 
power plants (NPPs) has been actively conducted worldwide. During the 
same period, great technological advancements led to the fourth indus
trial revolution involving artificial intelligence, big data, and the internet 
of things. In particular, the deep learning technique is the most rapidly 
emerging (and still developing) technology in the last decade. Through 
diverse deep learning techniques, machines have been able to catch up 
with or outperform human performance in various applications 
including but not limited to natural language processing (Brown et al., 
2020), computer vision (Brock, De, Smith, & Simonyan, 2021), and the 
game Go (Silver et al., 2017), areas in which it had been almost 
impossible to surpass human performance in the past. 

Based on these big successes, the use of deep learning techniques is 
being actively adopted in various industrial sectors such as for smart 
factories (Wang, Ma, Zhang, Gao, & Wu, 2018), smart grids (Lai, Zhong, 
Pan, Ng, & Lai, 2021; Ryu, Choi, Lee, & Kim, 2019), smart cities (Chen 
et al., 2019; Chen, Wang, Huang, De, & Coenen, 2021), and health care 
(da Silva, Schmidt, da Costa, da Rosa Righi, & Eskofier, 2021; Faust, 
Hagiwara, Hong, Lih, & Acharya, 2018). In this respect, it is natural to 
expect that these deep learning techniques can also be employed in the 
nuclear industry to achieve the next level of nuclear safety. Although 
deep learning techniques in the nuclear industry are still in their infancy 
at this moment, huge efforts are being made for related applications. As 
part of this effort, typical topics in which deep learning techniques are 
involved for enhancing the operational safety of NPPs are event diag
nosis (dos Santos, Pinheiro, do Desterro, & de Avellar, 2019; Lin, Wang, 
& Wu, 2021; Radaideh, Pigg, Kozlowski, Deng, & Qu, 2020), reactor 
anomaly detection (Caliva, de Ribeiro, & Mylonakis, 2018), sabotage 
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detection (Chen & Demachi, 2019), signal reconstruction (Kim, Chae, & 
Seong, 2020), and probabilistic safety assessment (PSA) (Kim, Cho, & 
Park, 2020). A large portion of these studies have focused on the 
detection and diagnosis of an event based on general machine learning 
tasks (i.e., classification), while there are relatively few studies on PSA 
applications. 

A PSA is a methodology to evaluate the safety of an NPP by quan
tifying the amount of anticipated risk from diverse accident scenarios 
that can result in an undesired consequence (e.g., core damage or the 
release of radioactive materials to the environment). To achieve a higher 
level of safety in NPPs, it is crucial to create a catalog that identifies 
accident scenarios as realistically as possible. Theoretically, this can be 
guaranteed by analyzing a broad spectrum of potential scenarios that 
can be generated with respect to the combination of numerous factors (e. 
g., the status of key components and the characteristics of human re
sponses) and their sequences. Accordingly, if we are able to identify the 
consequence of each potential scenario by simulating its progression in 
detail, it is possible to obtain the catalog of accident scenarios. This 
simulation can be done by running a high precision thermal–hydraulic 
(TH) code, where each simulation usually takes a couple of hours 
depending on the nature of the combined factors. 

Unfortunately, this approach is less advantageous because available 
resources are limited in reality. Specifically, in the case of a highly 
complicated system like an NPP, enormous calculation time of TH code 
in simulating a huge number of possible scenarios is a technical burden 
under finite computational resources. Therefore, the number of sce
narios to be simulated by TH code is limited to a certain range in 
traditional PSA, and out-of-bound accident scenarios remain as the un
certainty in PSA results. In this regard, a fast and accurate surrogate 
model of TH code is a potential solution that minimize the uncertainty in 
PSA. The fast simulation model has advantages in the following points. 
First, it expands the spectrum of accident scenarios within a limited 
computational time at the expense of a small fraction of accuracy. 
Therefore, the uncertainty in PSA can be mitigated as the number of 
scenario is increased. Second, the fast simulation model allows us to 
simulate a specific scenario in real-time, thus it can be further embedded 
in the field operations. 

Various methodologies can be used for building fast surrogate of TH 
code, for example, reduced order modelling (Mandelli et al., 2016), 
optimization algorithms (Abualigah, Diabat, Mirjalili, Abd Elaziz, & 
Gandomi, 2021; Abualigah, Yousri, et al., 2021; Abualigah & Diabat, 
2021), and deep learning (Kim et al., 2020). In this work, we build 
surrogate in a data-driven way by leveraging deep learning. Deep 
learning based fast simulation model of TH code was firstly introduced 
by (Kim et al., 2020). With fully-connected neural network (FNN) as a 
back-bone network structure, two-staged conditional autoencoder was 
utilized for modeling latent feature space of TH code data effectively. 
However, prediction accuracy can be further improved by leveraging 
recurrent neural networks (RNN) that could effectively exploit temporal 
features of time-series data. In doing this, we propose an ensemble 
quantile recurrent neural network (eQRNN)-based in-situ model that 
adopts bi-directional long short-term memory (LSTM), concatenative 
positional encoding (PE), quantile regression, and model ensemble. By 
combining these key elements, the proposed model shows improved 
accuracy and provides the uncertain boundaries of prediction results. 
Our contributions can be summarized as follows. 

⋅ We formalize the framework of deep learning-based surrogate 
model of TH code, and propose a novel deep neural network model for 
TH code, i.e., eQRNN. By training the trajectory of key reactor variables, 
the proposed eQRNN model shows the highest prediction accuracy 
compared to the other baseline and existing models. 

⋅ To improve the model accuracy, we adopt bi-directional LSTM and 
propose concatenative PE. With concatenative PE, the RNN model could 
achieve 16.31% lower MAPE on average compared to the model without 
PE. 

⋅ By applying multiple quantile regression with pinball loss, the 

QRNN model gives a prediction of median as well as target quantiles to 
provide the information of uncertain boundary of model results. More
over, experimental result shows that converting to a quantile model 
improves the performance by leveraging the advantage of multi-task 
learning. 

⋅ Since the deep learning model manipulates the data in batch 
manner, the result of multiple scenarios can be obtained at once through 
trained eQRNN model, thus required computational time is drastically 
reduced in seconds. 

The rest of this paper is organized as follows. In Section 2, as the 
background information of this study, a brief introduction about the 
limitations of the traditional PSA approach is given along with the ne
cessity for a fast simulation technique. Section 3 then describes the 
overall framework and proposed methodologies. After that, in Section 4, 
the results of case studies are compared based on six different models. 
Finally, the conclusions of this study are drawn in Section 5 with asso
ciated discussion and future work. 

2. Background information 

As mentioned at the end of Section 1, there are several limitations in 
the traditional PSA approach, and one of them is the uncertainty of PSA 
results (Aldemir, 2013). In order to soundly resolve this limitation, it is 
necessary to incorporate a breakthrough technology such as a deep 
learning technique. In this section, the limitation pertaining to the 
identification of accident scenarios is explained with underlying idea for 
developing a surrogate model of TH code. 

2.1. Limitation in identifying accident scenarios 

In general, it is anticipated that the more accident scenarios we 
distinguish, the more realistic PSA results we have. To clarify this, let us 
consider a hypothetical system as depicted in Fig. 1, which consists of 
four components (Tank 1, Valves B and C, and Safety Disk) with an 
annunciator warning of a high water level in Tank 1. 

As shown in Fig. 1, a human operator can manually open or close two 
valves (Valve B and Valve C) in order to maintain the water level of Tank 
1 within a specific range. In addition, when the water level of Tank 1 
exceeds a predefined set-point, an automatic control signal to close Valve 
B is generated with a warning alarm to inform the human operator. In 
this case, it is possible to develop diverse potential scenarios by 
combining the status of the components with the responses of the human 
operator (hereafter the term Event Heading will be used for representing 
the status of each component). Then, for example, if an accident of this 
hypothetical system is defined as a rupture of the Safety Disk, a catalog of 
accident scenarios can be picked out from the inventory of potential 
scenarios. Fig. 2 illustrates seven potential scenarios and three accident 
scenarios (shaded in gray) developed from four Event Headings. 

Fig. 1. Configuration of hypothetical system; modified from (Park, 2018).  
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That is, of seven potential scenarios, it is expected that three sce
narios (#2, #5, and #7 in Fig. 2) result in the rupture of the Safety Disk. 
It should be noted that running a TH code is necessary to determine the 
consequence of each potential scenario. If we are able to estimate the 
occurrence frequency of each accident scenario, the risk of this hypo
thetical system corresponds to the sum of the occurrence frequencies of 
all accident scenarios. Actually, although the abovementioned expla
nation is too simple and exaggerated to fully exhibit the nature of the 
PSA approach including its significant benefits, it is possible to say that 
the very first step to visualize the risk of any system is to identify what 
can go wrong (e.g., accident scenarios). 

Accordingly, the identification of accident scenarios is one of the 
crucial factors affecting the uncertainty of PSA results. It is natural then 
to expect that the more accident scenarios we are able to identify for a 
target system, the more the uncertainty of PSA results decreases. Un
fortunately, in reality, this idea is unrealistic for complicated systems 
such as NPPs because the number of components to be considered for the 
development of potential scenarios drastically goes up (i.e., an increase 

of Event Headings in Fig. 2). In addition, the binary branch of each Event 
Heading seems to be insufficient for representing the actual progression 
of each potential scenario. 

In order to clarify the latter aspect, let us consider the response of the 
human operator pertaining to the Event Heading ‘Valve B manual close’. 
In Fig. 2, only two conditions (Success and Failure) were considered to 
describe the progression of the potential scenarios. However, it is more 
relevant to assume that this response should be conducted when the 
human operator properly recognizes the existence of the high-water 
level alarm. This implies that, in terms of reducing the uncertainty of 
PSA results, it is necessary to incorporate a spectrum of response times 
into the progression of the potential scenarios (refer to Fig. 3). However, 
computation time of simulating thermal–hydraulic dynamics in NPP to 
obtain the consequence of each scenario is critical; it takes a couple of 
hours depending on the nature of the combined factors. Considering the 
number of potential scenarios to be analyzed, it is indispensable to 
secure a breakthrough technology that allows us to extremely shorten 
the run time of the TH code. For this reason, the use of a deep learning 

Fig. 2. Example of potential scenarios and accident scenarios for the hypothetical system; modified from (Park, 2018).  

Fig. 3. Underlying idea to reduce the uncertainty of PSA results; modified from (Park & Yoon, 2018).  
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technique is considered in this study. 

2.2. Development of a surrogate model from a deep learning perspective 

In this section, we formulate the operation of a TH code in the 
following function form to build a deep learning surrogate model. Let 
x = [x1, x2,⋯, xd]

T
∈ Rd be an input column vector of the TH code, 

where xi contains information of the events or actions that correspond to 
Event Headings in Fig. 2. Then the TH code computes its output Y =

[y1, y2,⋯, yT]
T
∈ RT×N from x, where yt is observation of N output pro

cess parameters at time t. In short, the TH code is a function of x with an 
output of multivariate time-series data representing the trajectories of 
diverse process parameters. In this paper, we refer to this function Y =

f(x) as the external form of the TH code, whereas the internal form 
calculates the results yt for each time-step autoregressively. 

The original input vector x consists of different state variables. Let a 
indicate a specific action that affects the progression of a potential 
scenario. Then, the information of a can be represented with two state 
variables xa = xk and ta = xk+1, where xa represents the degree of the 
operator’s manual control or component status (e.g., degree of valve 
opening), and ta corresponds to the time point when xa occurred (e.g., 
timing of valve opening). This pair of degree–timing state variables (xa,

ta) can be reformulated as a sequence za = [za
1, za

2,⋯, za
T ] by setting za

t =

xa when t = ta; otherwise za
t = 0. Then the available information at 

current time-step t can be denoted as zt =
[
z1

t ,⋯zd’

t
]T

. After converting 
input vector x into time-series Z = [z1,⋯, zT ]

T
∈ RT×d’ , the TH code 

calculates the current output yt based on the past inputs z1, ⋯, zt, i.e., 
yt = g(z1,⋯, zt) = g(zt ,ht− 1), where h is a hidden representation of the 
past sequence. 

Following the above formulation, we classify the TH code surrogate 
into two classes: i) in-situ model and ii) stepwise model. The in-situ 
model is a surrogate of external function Y = f(x), while the stepwise 
model is a surrogate of internal function yt = g(zt ,ht− 1). The main dif
ference between the two models is whether the action information is 
available in advance or not. The advantage of the in-situ model is its 
capability to leverage action information in advance. Hence it is easier to 
train and shows more accurate results within a fixed time window. On 
the other hand, the stepwise model works more similarly to the internal 
operation of TH code. Generally, TH code calculates the expected 
behavior (process parameter) of a target system (e.g., an NPP) at the 
next step based on its physics model and the associated states. Thus, 
stepwise model reflects the effect of the degree and the time of an action 
in real-time. Also, the length of the output is not limited to the specific 
time window because it predicts the output of the next time step 
recursively. However, the major drawbacks of the stepwise model are 
training difficulty due to sparsity of Z in temporal domain, and the 
accumulation of prediction errors as the prediction is performed recur
sively. 

In this paper, we focus on the development of the in-situ model, i.e., a 
surrogate for Y = f(x). To this end, with the massive input and output 
data obtained from TH code {(xi,Yi)}, a deep learning model should be 
trained so that it can generate the trajectories of the process parameters 
even from untrained scenarios. Indeed, the feasibility of the concept of a 
deep learning-based surrogate model was successfully demonstrated 
recently (Kim et al., 2020); in this study, a prototype of the in-situ model 
based on the two-staged conditional autoencoder (cAE) was introduced. 
The unique feature of the cAE model is that the latent space of the in-situ 
model is pre-trained via an autoencoder. In the first stage, the network 
learns to extract the important features by unsupervised learning of the 
trajectories. Then in the second stage, the in-situ model is fine-tuned 
from the pre-trained network where the latent vector from autoen
coder is added to the input scenario vector. This two-stage approach 
helps to increase training efficiency and shows more accurate prediction 
results compared to fully connected neural network (FNN) and recurrent 
neural network (RNN) architectures. However, it was observed that the 

model has lower accuracy when the trajectory fluctuates. Therefore, to 
increase model accuracy with a simplified training process, a novel ar
chitecture, namely eQRNN, is proposed in this study. 

3. Framework and methodologies 

To provide a more accurate and reliable surrogate model for TH 
code, we propose a novel in-situ model by leveraging four key elements: 
a) bi-directional LSTM, b) concatenative PE, c) quantile regression, and 
d) model ensemble. In this section, we illustrate the overall framework 
of the proposed model, and describe the operation of the key elements. 

3.1. Overall model framework 

The overall framework of the proposed model is illustrated in Fig. 4. 
First, we build a TH code database by running Multi-Dimensional 
Analysis of Reactor Safety (MARS) code. Then TH code input x (state 
variables) and output Y (process parameter) are each divided into 
training, validation, and test sets. Next, channel-wise Z-score normali
zation is performed for both x and Y in the data preprocessing stage. 
Hence, xk becomes (xk − μk)/σk, where μk and σk are the mean and 
standard deviation of xk. The dotted box in Fig. 4 illustrates the structure 
of a single QRNN model. It takes normalized x as an input and predicts 
Yτ, where τ is the predetermined target quantile. After the neural 
network receives the input vector, it expands the dimension of x along 
the time axis. Then, PE vectors pt are concatenated to xt . After applying 
PE, the converted input vectors (i.e., 

[
xT

t , pT
t
]T) are fed to the bi- 

directional LSTM layers and subsequently to the dense layers, where 
the last dense layer generates a value corresponding to the target 
quantile. In our experiment, we select the target quantile τ = {0.1,0.3,
0.5, 0.7, 0.9}, which covers predictions with a confidence interval be
tween 10% and 90%. Finally, multiple QRNN models can be trained by 
setting different random seed and weight initializations for model 
ensemble. 

In following subsections, we describe the operation of the a) bi- 
directional LSTM, b) concatenative PE, c) quantile regression, and d) 
model ensemble in detail. 

3.2. Neural networks and bi-directional LSTM 

In this section, brief explanations about existing deep learning 
models are given, including FNN, RNN, and bi-directional LSTM that 
were considered for the construction of the proposed framework. 

First of all, an FNN is a basic artificial neural network structure that is 
composed of a number of dense layers (referred to as fully connected 
layers) with many nodes. A dense layer has weights, biases, and 
nonlinear activation functions including sigmoid, tanh, and rectified 
linear unit (ReLU) that perform a nonlinear transformation on the 
weighted summation of the layer input. Therefore, each layer works as a 
vector-to-vector nonlinear function that takes the output of a previous 
layer as the input. By stacking multiple dense layers, the FNN achieves 
powerful abstraction capability. As its name states, each node in the 
upper layer is connected to every node in the lower layer; every nodes 
are treated equally. Therefore, it is structurally difficult for FNN to 
consider the concepts such as order, location, or context between nodes. 
Thus, the FNN does not efficiently utilize the spatial or temporal re
lationships that are supposed to be implicitly involved in input vectors. 
This led to the development of the convolutional neural network (CNN) 
and the RNN, which are good at dealing with image and time-series data 
by incorporating spatial and temporal relationships, respectively. 

An RNN is a class of neural network architecture that receives output 
or hidden states of the previous time-step as an input of the current time- 
step. Various RNN architectures have been developed so far, but long 
short-term memory (LSTM) (Hochreiter & Schmidhuber, 1997) is the 
most common (and still powerful) among them. The base RNN 
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architecture suffers from capturing the long-term dependency of long 
sequential data due to several technical issues such as the vanishing 
gradient problem. In LSTM, there are gates that control the flow of input 
data, and cells that work as a memory of hidden states. The gated 
connection in LSTM establishes a kind of highway that conveys gradi
ents to the distant past (Karpathy, Johnson, & Fei-Fei, 2015). This makes 
it possible to overcome the vanishing gradient problem so the network 
can learn long-term dependency. In considering problem, the output is 
long-term time-series data from multiple sensors, thus LSTM is suitable 
solution rather than FNN (general network structure) or convolutional 
neural network (which is specialized to image data). The structure of the 
original LSTM is depicted in Fig. 5. Compared to the node of an FNN, an 
LSTM consists of many cells with relevant weights, biases, and activa
tion functions. 

In dealing with sequential data (e.g., time-series data), tasks are 

typically classified into many-to-many or many-to-one problems ac
cording to the shape of the input–output pair. For example, the stepwise 
model in our case solves the many-to-many problem since it needs to 
calculate yt for all time-step t with zt. The in-situ model, however, is 
basically for the one-to-many problem, which is atypical, for which a 
simple approach is to convert it to a many-to-many problem by tiling the 
input vector along the time axis: xt = x,∀t ∈ [0,T], where T is the total 
simulation time. Therefore, the appearance of the in-situ model is Y =

f(x), and the RNN-based in-situ model learns yt = f(xt ,ht− 1), as distinct 
from the stepwise model yt = g(zt ,ht− 1). 

It should be noted that one of the key differences between the in-situ 
model and the stepwise model is whether action data is available in 
advance or not. The input vector of the in-situ model already contains 
the time of action; hence, it can be regarded as knowing or planning 
action in advance. It is therefore possible to utilize bi-directional LSTM 

Fig. 4. Overall framework of the eQRNN in-situ model.  

Fig. 5. The structure of LSTM; modified from (Olah, 2015).  
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(Schuster & Paliwal, 1997), where the information also flows backward 
in time (future to past). Bi-directional LSTM is composed of two LSTM 
layers with different directions. The forward direction layer (i.e., dark 
colored LSTMs in Fig. 4) is the same as the above RNN model yf

t = f f (xt ,

ht− 1). On the contrary, the backward direction layer (white LSTMs in 
Fig. 4, behind the forward direction layer) learns yb

t = fb(xt , ht+1). 
Finally, yt can be derived from yf

t and yb
t . 

3.3. Positional encoding 

In a seminal paper of deep learning, “Attention is all you need” 
(Vaswani et al., 2017), PE was introduced with a transformer architec
ture to capture an order-related feature in text data. Although we do not 
utilize transformer architecture here, we apply PE with LSTM to 
leverage temporal information explicitly during the training and infer
ence stages, whereas the base RNN in-situ model takes the same input 
vector for all time-steps. With PE, the time-step t is encoded to a vector, 

pt =
[
pt,1,⋯, pt,d

]T
∈ ℝd. This vector can be formulated in several ways 

(e.g., absolute PE, relative PE (Ke, He, & Liu, 2020)), and we apply si
nusoidal PE, which is generally used in many applications (Choi, Kim, & 
Choo, 2020; Mildenhall et al., 2020). Sinusoidal PE generates pt by the 
following equation. 

pi,j =

{
sin

(
t
/

10000(i/d) ), ​ ​ ​ if ​ i ​ is ​ even,
cos

(
t
/

10000(i/d) ), ​ ​ ​ if ​ i ​ is ​ odd.
(1) 

In the original work of (Vaswani et al., 2017), pt has the same 
dimension as input vector xt, and the network is trained based on their 
summation x̂t = xt + pt, i.e., additive PE. The additive PE shares the axis 
between xt and pt, and thus the order information is embedded to x̂t. 
This x̂t can be considered as an engineered feature, but also may cause 
semantic distortion in the proposed framework. For example, if xk de
notes the degree of valve opening, then adding p(⋅),k to xk directly 
changes the meaning of the value. This can be mitigated if the dimension 
is high enough to prevent information loss after the summation of xt and 
pt; for example, the dimension of xt was 512 in (Vaswani et al., 2017). 
However, in case of the proposed in-situ model, the dimensions of the 
state (16 dimensions in our case) are relatively small to cover both state 
and positional information. In this regard, we propose concatenative PE 

where the input becomes x̂t =

[
xt
pt

]

. Thus, concatenative PE explicitly 

separates the scenario-space and time–space. To support this, we show 
that the additive PE is regularized version of concatenative PE in 
Proposition 1. 

Proposition 1. For input vector xt and PE vector pt in same dimen
sion, corresponding weight matrices Wx,Wp, additive PE is constrained 
on its weights so that Wx = Wp, whereas concatenative PE is not. 

Proof. Suppose transformed input x̂t goes through typical fully con
nected layer which can be denoted as z = σ(Wx̂t) where nonlinear 
activation function σ and weights W with inherent bias term. Let z be a 
dz-dimensional vector and xt , pt be d-dimensional input and PE vectors, 
respectively. In additive PE, x̂t is [xt + pt ] and W is dz × d matrix. Then, 

W x̂t is Wxt + Wpt . On the other hand x̂t in concatenative PE is 
[

xt
pt

]

∈

R2d and W is dz × 2d matrix. By separating W into two dz × d sub-weight 

matrices (W = [Wx, Wp]), calculation of Wx̂t becomes Wx̂t =
[
Wx,

Wp
]
[

xt
pt

]

= Wxxt + Wppt. Comparing the two equations, additive PE is 

constrained on its weights W to be W = Wx = Wp. 
Because weights in concatenative PE are not constrained on the 

condition of Wx = Wp, the accuracy may increase by finding optimal 
weights for xt and pt , independently. Note that for concatenative PE, the 
dimension of PE vector dPE can differ from xt unlike additive PE, and we 

set dPE to 8, which is half of the original input dimension. 

3.4. Quantile regression with pinball loss 

For some TH code results, oscillating parts are observed. They might 
be actual physical phenomena, or artifacts generated by the code itself. 
Whichever case is true, the surrogate model should be able to accurately 
approximate the TH code result. In addition, if probabilistic information 
is able to be provided to analysts, operators, and decision-makers, it is 
helpful to know which results of the surrogate model are accepted. For 
this, instead of the typical mean squared error (MSE) loss, we utilize 
quantile regression by training the neural network with pinball loss 
(Steinwart & Christmann, 2011). The quantile model is targeted to learn 
the median and other quantiles, whereas the base in-situ model is 
trained with MSE loss to predict the mean value from output distribu
tion. For a random variable X and its cumulative distribution function 
FX(x), the τ-th quantile is F− 1

X (τ), where τ ∈ (0, 1). The quantile model 
outputs the τ-th quantile, and hence the quantile in-situ model becomes 
[Yτ1 ,Yτ2 ,⋯] = f(x) . Since there is no exact label for target quantiles, loss 
needs to be calculated based on a single sample from the under
lyingunknown distribution. Quantile regression can be achieved by 
minimizing pinball loss (Biau & Patra, 2011; Koenker & Hallock, 2001). 
For the τ-th quantile, the pinball loss is. 

Lτ(y, ŷ) = f (x) =
{

τ(y − ŷ), if y ≥ ŷ
(τ − 1)(y − ŷ), if y < ŷ (2)  

where y is the real value and ŷ is a prediction of the τ-th quantile. 
Intuitively, pinball loss is a tilted absolute error with respect to the target 
quantile. For low quantiles τ < 0.5, pinball loss incurs more penalty 
when the model over-predicts (i.e., ŷ ≥ y), and consequently, the 
network is trained to under-predict. Conversely, the network over- 
predicts for high quantiles τ > 0.5. 

3.5. Model ensemble 

We also apply model ensemble to improve the generalization per
formance. As illustrated in Fig. 4, we build five models that have the 
same structure but are trained with different random seed and weight 
initializations. Thus, we could obtain five results for the same input 
vector, and the result of the ensemble model is the average of those five 
results. Since neural networks are powerful nonlinear function estima
tors, the model can be overfitted to the training set, which leads to bad 
performance in the inference of the test set. This is called overfitting, a 
problem that model ensemble can mitigate. 

4. Case studies 

In this section, we introduce preliminary results with simple FNN 
and RNN models, and then describe the data configuration, model 
structure, and experimental results from four target process variables. 

4.1. Preliminary results with simple FNN and LSTM 

Figure 6 shows a part of the preliminary results obtained from simple 
FNN and LSTM based in-situ models. The target process parameter is the 
pressure of a pressurizer (PZR). The simple FNN model has one hidden 
layer with 100 nodes, and the simple RNN has one LSTM layer with 128 
cells and one output dense layer with a single node. Note that the FNN 
directly expands the input vector into sequential output data, while the 
LSTM model first expands the input vector along the time axis and then 
extracts the features, producing scalar values as univariate time-series 
output. As can be seen in Fig. 6, the simple FNN and RNN models pre
dicted the trajectory of the PZR pressure with relatively low accuracy. 
Although the results seem to generally follow the trend of the real tra
jectory, there exists plenty of room for accuracy improvement. 
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Specifically, these two models struggled with predicting (1) the up and 
down pattern around 500 s in Fig. 6a, and (2) the fluctuating pattern 
after 2,500 s in Fig. 6b. 

4.2. Description of TH code simulation data 

In order to systematically and effectively respond to an accident in an 
NPP, human operators working in the main control room must take a 
series of actions based on the instructions of the emergency operating 
procedures (EOPs). Accordingly, each potential scenario should include 
a sequence of such human operator actions (for convenience, the term 
required tasks will be used hereafter). This implies that, in order to train a 
deep learning model, it is essential to build a large database that con
tains TH code results with respect to diverse potential scenarios. For this 
reason, we developed a total of 104,625 potential scenarios that include 
the required tasks, as summarized in Table 1. 

The catalog of required tasks considered in the development of the 
potential scenarios was carefully selected with the support of a domain 
expert with sufficient experience in NPP operations. To this end, two 
kinds of representative initiating events (IEs) and the contents of the 
EOPs to cope with them were meticulously reviewed. Ultimately, we 
decided to focus on the main steam line break (MSLB) and steam 
generator tube rupture (SGTR) IEs with varying break sizes: 1A, 2A, and 

4A for SGTR, and 1A and 2A for MSLB. Then we set up the degree and/or 
timing of six required tasks that should be conducted for coping with the 
early stages of the IEs. These six required tasks are: (1) opening the 
charging valve, (2) turning the PZR heater on, (3) checking the safety 
injection actuation signal (SIAS), (4) manually stopping the reactor 
coolant pump (RCP), (5) opening the turbine bypass valve (TBV), and 
(6) opening the atmospheric dump valve (ADV). The degree of these 
required tasks is set to [0,100] for binary control cases (e.g., Start/Stop 
or Open/Close), and [0, 50,100] or [0,5, 10, 25,50,75,100] for contin
uous control cases (e.g., 50% opened valve). In addition, the timing of 
each required task is set to the mean, 5th, 95th, and 99th percentile 
values with an immediate response (i.e., timing is equal to 0), which 
were determined from an existing human performance database (Kim 
et al., 2019). Hence, the input vector x can be constructed based on the 
combination of degrees and timings described in Table 1. Note that the 
number of potential scenarios does not exactly match the number of full 
combinations based on the degrees and timings, because we did not 
consider inappropriate combinations resulting from unrealistic se
quences of timings. 

With respect to each potential scenario, the trajectories of four key 
process variables that can represent the safety status of NPPs were 
collected up to 3600 s at 10 s intervals (i.e., each trajectory consists of 
360 data points). These key process variables are: (1) PZR pressure 
(PZRP), (2) PZR level (PZRL), (3) reactor coolant system (RCS) sub
cooling margin (RCM), and (4) steam generator #1 pressure (SG1P) of 
which one or more tubes were ruptured. 

After finishing the collection of trajectories D (the term D will 
represent the whole dataset), we classified datasets into training, vali
dation, and test sets. We further divided test set into two subsets, namely 
Testin and Testout sets, to check the prediction performance of untrained 
scenarios having different prediction difficulty. First, Testout is 
composed of trajectory data with x5 = 3.6 (i.e., any trajectory data 
pertaining to the start of PRZ heater at 3.6 min when PRZP is lower than 
a set point). The rest of the trajectory data (D − Testout) is randomly 
divided into training, validation, and Testin according to the data split 
ratio of 7:1:2. By doing this, more neighboring scenarios of Testin are 
used for training, thus Testout becomes more difficult to predict. Finally, 
these Testin and Testout sets will be used to investigate the prediction 
accuracy of eQRNN (refer to Section 4.5) and each dataset is summa
rized in Table 2. 

4.3. Description of model structure 

In the experiment, we compared the proposed QRNN and its 
ensemble (eQRNN) to four different deep learning models. Table 3 
summarizes the network structure of each model with the layer type and 
corresponding network parameters. 

In Table 3, the values in parentheses describe different layer 

Fig. 6. Prediction examples of simple neural network models.  

Table 1 
Scenario configuration.  

Index 
(k) 

Degree 
(xk) 

Time* 
(xk) 

Description 

1 1 (1A), 2 (2A),4  
(4A) 

— Break size (A: area) 
SGTR: 1A, 2A, 4A, / MSLB: 1A, 2A 

2, 3 0, 50, 100 0, 1.77, 3.1, 
5.425, 9.3 

PZR level below the set point; 
Charging valve open 

4, 5 0, 50, 100 0, 2.06, 3.6, 
6.3, 10.8 

PZR pressure below the set point; 
PZR heater on 

6, 7 0, 1 0, 2.06, 3.6, 
6.3, 10.8 

PZR pressure below the set point; 
SIAS actuate 

8, 9 0 (No trip),1  
(Trip) 

0, 2.06, 3.6, 
6.3, 10.8 

PZR pressure below the set point; 
RCP 1A & 2A trip 

10, 11 0 (No trip),1  
(Trip) 

0, 2.06, 3.6 
6.3, 10.8 

PCS margin below the set point; 
RCP 1A & 1B & 2A & 2B trip 

12, 13 0, 5, 10, 25, 
50, 75, 100 

0, 2.629, 4.6, 
8.05, 13.8 

RCS temp above the set point; 
TBV open 

14, 15 0, 5, 10, 25, 
50, 75, 100 

0, 2.629, 4.6, 
8.05, 13.8 

RCS temp below the set point; 
ADV open 

16 0 (SGTR),1  
(MSLB) 

— Class of initiating events 

*Minute. 
SGTR: Steam Generator Tube Rupture; MSLB: Main Steam Line Break; SIAS: 
Safety Injection Actuation Signal; RCP: Reactor Coolant Pump; TBV: Turbine 
Bypass Valve; ADV: Atmospheric Dump Valve. 
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properties: i) the output shape for Input and Tile, ii) the number of 
neurons/cells for Dense and Bi-LSTM, and iii) the dropout rates for 
Dropout. The abbreviations aPE and cPE stand for additive and con
catenative PE. All models share the same hyper-parameters, as listed in 
Table 4. MSE is used as the loss function except for with the QRNN, 
which utilizes pinball loss. Weights are trained with the Adam optimizer 
with a recommended initial learning rate of 0.001 (Kingma & Ba, 2014), 
and we set the epochs to 150. During the training, learning rate decay 
and early stopping are applied by monitoring the validation loss. All 
models are built using tensorflow (Abadi et al., 2016), and hyper
parameters are modified from the API documentation. In experiments, 
we build a model for each variable (i.e., univariate output), and an 
effective way to perform multivariate quantile regression with a single 
model remains for future work. Note that the FNN and RNN model is not 
the same model used in Fig. 6, and have increased model complexity. 

To examine the advantages of the proposed model (utilizing bi- 
LSTM, concatenative PE, quantile regression, and model ensemble), 

we first fixed the base RNN structure and hyper-parameters by trial and 
error, and then compared the results by incrementally adding each 
modules. The base FNN and RNN structures (which we note provided a 
reasonable level of accuracy) were determined by trial and error, and 
thus their performance may increase through further optimization and 
tuning of the model structure and hyper-parameters (e.g., grid search, 
Bayesian optimization), which is beyond our scope of research. 

4.4. Results 

In this section, we compare the results of four target process variables 
in terms of mean absolute percentage error (MAPE) and MSE. Subscripts 
in and out indicate the result of Testin and Testout, respectively. The 
MAPE and MSE of QRNN and eQRNN are calculated based on the pre
diction of the median in order to compare with the results of the point 
forecast models: FNN, RNN, RNNaPE, and RNNcPE. Note that we alter the 
prediction error for atmospheric pressure to zero for the result of SG1P, 
because the error for a small denominator (which is less important in 
terms of the overall system) dominates the error for a high-pressure 
region of interest. 

Table 5 shows the mean and standard deviation of MAPE and MSE 
between the real values from the TH code run and the predictions from 
the diverse deep learning models. Except for eQRNN, we present the 
result having the smallest MSE among five trials per each model (FNN, 
RNNs, and QRNN). The bold and underlined values indicate the column- 
wise lowest and the second-lowest value, respectively. First, the FNN 
model shows the worst error rates among the six models due to its 
structural limitation (refer to Section 3.2). Compared to the FNN, the 
error rate of the baseline RNN model (bi-directional LSTM without PE) is 
significantly reduced. The average MAPE (average over the entire test 
set) is decreased by 62.9%, 71.4%, 61.8%, and 67.3% in the order of 
PZRP, PZRL, RCM, and SG1P, respectively; from now on, all comparison 
results are given in the same order. Although the base RNN exploits the 
same input for all time-steps, it could achieve improved accuracy thanks 
to the increased model complexity and structural advantage of LSTM. 

Applying PE to the RNN provides further performance improve
ments. Both additive and concatenative PE show lower error rates 
compared to the base RNN without PE. The MAPE of RNNaPE is 
decreased by 11.2%, 9.6%, and 7.7% on average for PZRP, RCM, and 
SG1P; for the case of RCM, the error increased by 0.1%. As we expected, 
the accuracy of the concatenative PE shows better performance than the 
additive PE. The MAPE of RNNcPE is decreased by 27.8%, 11.4%, 20.0%, 
and 6.1% compared to the base RNN model. This result implies that 
utilizing temporal information explicitly via concatenation is helpful in 
the case of low-dimensional data. 

Next, we compare the results of QRNN and eQRNN. These results 
show that the change to a quantile model yields further improvements in 
model accuracy. Moreover, both models provide the uncertain bound
aries of the prediction result. As can be seen in Table 5, eQRNN shows 
the best performance in most cases. Compared to RNNcPE, MAPE is 
reduced by 14.6%, 42.6%, 19.8%, and 8.8% for QRNN and by 20.7%, 
42.6%, 26.3%, and 18.4% for eQRNN, respectively. Also, eQRNN and 
QRNN show lower standard deviations in most cases. 

The improved performance of eQRNN is also recognized by the 
empirical cumulative distribution function (ECDF) of MAPE and MSE. 
Figs. 7 and 8 plot the ECDF of MAPE and MSE distributions over the 
entire test set. The ECDF in the upper left corner implies better accuracy 
because it has a lower mean and variance. For all cases, eQRNN out
performs the other models, followed by QRNN, RNNcPE, RNNaPE, RNN, 
and FNN in order. 

Specifically, utilization of quantile regression leads to notable per
formance improvement, which can be observed in the form of gaps be
tween the two graphs. For example, there exists a gap between the graph 
of RNNcPE and eQRNN in Fig. 7b, c, d, and Fig. 8d. This performance 
improvement can be interpreted as follows. By changing to a quantile 
model and training with pinball loss, the QRNN model obtains the 

Table 2 
Dataset configuration.  

Dataset (D) Size Description 

Training 60,637 
(58%) 

Training set for weight update from D − Testout 

Validation 7,988 (8%) Validation set for hyper-parameter selection from 
(D − Testout) 

Testin 18,000 
(17%) 

Randomly selected scenarios from D − Testout 

Testout 18,000 
(17%) 

Specific case with x5 = 3.6  

Table 3 
Model structure.  

Model Structure Description 

FNN Input(16) - Dense(64) - Dense 
(128) - Dense(256) - Dropout 
(0.2) - Dense(360) 

FNN in-situ model 

RNN Input(16) - Tile(16,360) - 
BiLSTM(256) - BiLSTM(256) - 
Dense(128) - Dense(64)s- 
Dropout(0.2) - Dense 
(1) 

Bi-directional LSTM model 

RNNaPE Input(16) - Tile(16,360) - aPE 
(16,360) - BiLSTM(256) - 
BiLSTM(256) - Dense(128)- 
Dense(64) - Dropout(0.2) - 
Dense 
(1) 

Bi-directional LSTM model with 
additive PE, dPE = 16, weighted by 
0.5 

RNNcPE Input(16) - Tile(16,360) - cPE 
(24,360) - BiLSTM(256) - 
BiLSTM(256) - Dense(128)- 
Dense(64) - Dropout(0.2) - 
Dense 
(1) 

Bi-directional LSTM model with 
concatenative PE, dPE = 8. 

QRNNcPE Input(16) - Tile(16,360) - cPE 
(24,360) - BiLSTM(256) - 
BiLSTM(256) - Dense(128)- 
Dense(64) - Dropout(0.2) - 
Dense 
(5) 

Bi-directional LSTM model with 
concatenative PE and quantile 
regression τ =

(0.1,0.3, 0.5,0.7,0.9).

eQRNNcPE Same as QRNN Ensemble of five QRNN models  

Table 4 
Hyper-parameters.  

Hyper-parameter Configuration 

Loss MSE, Pinball loss (for QRNN) 
Optimizer Adam 
Learning rate 1e-3 (with reduced LR on plateau) 
Batch size 512 
Epochs 150 (with early stopping)  
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Table 5 
Prediction error comparison.  

Model MAPEin MAPEout MSEin MSEout  

mean std mean std mean std mean std 

Target PZRP 
FNN 2.04 1.49 2.21 1.73 11.7 25.2 15 45 
RNN 0.7 0.62 0.88 0.85 3.2 9.1 4.96 17.3 
RNNaPE 0.58 0.56 0.82 1.07 2.67 10.2 6.11 42.3 
RNNcPE 0.47 0.46 0.67 0.91 1.92 7.39 5.08 47.3 
QRNNcPE 0.42 0.48 0.55 0.93 2.05 8.35 3.65 33.6 
eQRNNcPE 0.37 0.47 0.53 0.77 1.77 7.53 3.45 18.8  

Target PZRL 
FNN 2.07 1.76 2.55 3.02 1.3 6.58 3.33 17.8 
RNN 0.52 0.65 0.8 1.64 0.2 4.18 1.35 18 
RNNaPE 0.49 0.94 0.83 2.25 0.23 6.38 1.49 15.5 
RNNcPE 0.44 0.5 0.73 1.96 0.15 2.78 1.44 20.3 
QRNNcPE 0.27 0.53 0.4 0.96 0.15 3.57 0.55 10.1 
eQRNNcPE 0.24 0.47 0.43 1.29 0.14 3.6 0.65 9.34  

Target RCM 
FNN 11.9 47.79 12.4 12.4 9.7 32.6 14 76.3 
RNN 4.3 39.2 4.99 6.4 2.64 24 13.1 173.4 
RNNaPE 3.82 36.2 4.58 6.19 2.77 29.3 12.1 157.1 
RNNcPE 3.29 28 4.14 5.76 2.37 26.2 7.12 105.9 
QRNNcPE 2.71 39.4 3.25 4.83 2.5 28.9 6.13 88.8 
eQRNNcPE 2.44 32.3 3.04 4.58 2.09 26.5 6.05 67.2  

Target SG1P 
FNN 0.78 1.71 0.78 0.75 1.33 3.06 1.45 3.53 
RNN 0.25 0.25 0.26 0.34 0.17 1.86 0.28 2.57 
RNNaPE 0.22 0.29 0.24 0.36 0.17 2.31 0.29 2.62 
RNNcPE 0.23 0.3 0.25 0.35 0.18 2.3 0.28 2.31 
QRNNcPE 0.21 0.37 0.23 0.45 0.23 3.51 0.37 4.37 
eQRNNcPE 0.18 0.37 0.21 0.44 0.2 3.38 0.35 4.18  

Fig. 7. Empirical CDF of error distribution (MAPE).  
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advantage of multi-task learning (Rodrigues & Pereira, 2020). In multi- 
task learning, the model can learn key domain information that can be 
shared in performing multiple tasks, and thus generalization perfor
mance is improved. In this perspective, a quantile model performs 
multiple tasks, i.e., prediction of different quantiles. There exists a 
nonlinear relationship between two quantiles Yτ1 , Yτ2 , and they share 
key base information (input vector). Thus, training them together is a 
simplified multi-task learning problem, where the tasks are scored from 
a single label by pinball loss. 

We further compared the performance of QRNN to other models 
(including cAE model (Kim et al., 2020), and deeper FNN) in terms of 
model parameter, inference time, and error metrics. Experimental re
sults on PZRP data is given in Table 6. Model parameter is the number of 
trainable weights in neural network, and inference time is time spent on 
the prediction of all scenarios in Testin set with mini batch size of 64. As 
can be seen, RNN based models have higher model complexity, and 
requires longer inference time due to recurrent loop in LSTM network. 
But considering the time taken in the original TH code simulation (more 
than hours for 1 accident scenario), inference time of RNN in second 
order for 18,000 scenarios is negligible. Next, in order to support that 
the performance improvement in QRNN model is not simply due to 

increase in model parameters, we compared the results of deeper FNN 
(DFNN) which has similar number of model parameters as RNN by 
increasing the depth and width of base FNN. According to the results, 
DFNN shows much lower error rates compared to FNN, but the errors are 
still higher than that of RNN. Furthermore, the error of QRNN is reduced 
by almost half of DFNN, and these results imply that the multiple 
quantile regression and concatenative positional encoding are the main 
drivers of performance improvement without significant change in 
model complexity. We further performed experiments on recently 
developed cAE. cAE achieved higher accuracy than FNN, but lower than 
RNN due to structural limitation of FNN based approach. Finally, the 
proposed QRNN shows 73% and 77% lower MAPE and MSE than cAE 
(75% and 79% compared to eQRNN). 

4.5. Visualization of prediction 

In order to perform a qualitative analysis on the results visually, the 
predicted trajectories of randomly selected scenarios are given in Fig. 9. 
Here, Fig. 9a is an example of a PZRP prediction. Note that the MAPE of 
eQRNN is 1.02%, which is a lot higher than the average MAPE of Testin 
(0.37%). The predictions of the RNN-based models follow the original 
trajectory as well. However, the oscillating pattern that occurs after 
3,000 s is flattened. In these areas, QRNN and eQRNN have advantages 
since they provide quantile predictions that cover the oscillations. The 
second example, in Fig. 9b, is the result of PZRL, where all models show 
similar results. Fig. 9c is an example RCM prediction with scenario 
number 13,747 in Testout. Unlike the previous examples (Fig. 9a & b), 
each model generates a different trajectory. Specifically, the trajectories 
are different between 1,000–3,000 s, where the shape of the graph 
changes dynamically. Compared to the other process parameters, the 
results of RCM show roughly 10 times higher MAPE; the MAPEs of 
QRNN and eQRNN for this example are 3% and 2.66%. However, the 
uncertain area given by eQRNN covers the original trajectory. The final 
example of SG1P is given in Fig. 9d. In this example, only RNN, QRNN, 
and eQRNN models have a similar shape to the original graph, with 

Fig. 8. Empirical CDF of error distribution (MSE).  

Table 6 
Model Comparison on PZRP dataset.  

Model Model 
parameter 

Inference 
time 

MAPEin MAPEout MSEin MSEout 

FNN 135 k 0.2 s  2.04  2.21  11.7 15 
cAE 220 k(418 

k)* 
0.2 s  1.69  1.96  9.49 15.19 

DFNN 2,420 k 0.2 s  0.81  1.12  3.95 7.24 
RNN 2,208 k 9.1 s  0.7  0.88  3.2 4.96 
RNNaPE 2,208 k 9.2 s  0.58  0.82  2.67 6.11 
RNNcPE 2,224 k 9.3 s  0.47  0.67  1.92 5.08 
QRNNcPE 2,225 k 9.4 s  0.42  0.55  2.05 3.65 

*parameter of autoencoder. 
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MAPEs of these models of 0.62%, 0.34%, and 0.29%, respectively. 

5. Discussions and conclusion 

As briefly discussed in Section 2.1, the identification of accident 
scenarios is crucial for reducing the uncertainty of PSA results. Unfor
tunately, each accident scenario should be determined by using a precise 
TH code, for which the run time takes several hours on average. 
Accordingly, a breakthrough technology that allows us to predict the 
consequence of a potential scenario within a very short time can resolve 
this issue. For this reason, in this paper, we investigated a surrogate 
model of TH code and proposed a novel framework of an in-situ model 
based on deep learning. Notably, the eQRNN, the proposed model, 
provides the uncertainty boundaries of the prediction results. By 
leveraging bi-directional LSTM, concatenative PE, quantile regression, 
and model ensemble, the proposed eQRNN outperforms other deep 
learning models. To verify the suggested model, the results from four 
process parameters (i.e., PZR pressure, PZR level, RCS margins, and 
SG#1 pressure) were compared between models in terms of MAPE and 
MSE. Each increasingly complex model improves the prediction accu
racy; specifically, the concatenative PE and quantile model shows 
notable error reduction. Compared to the base RNN, the proposed 
eQRNN model shows 43%, 49%, 41%, and 23% lower MAPE for PZRP, 
PZRL, RCM, and SG1P, respectively: overall, 39% lower MAPE and 28% 
lower MSE. This strongly implies that a fast running in-situ model can be 
secured with an affordable range of prediction error. 

Currently, a model that generates only a univariate output has been 
developed. For the actual application of such a model, it is necessary to 
make several models according to the variables that affect the scenario 
(i.e., to monitor the variables that make diverse scenarios). This would 

affect calculation time and volume, as the number of models increases 
according to the number of variables to be monitored. Therefore, a 
multivariate model is needed to solve this problem. 

In the case of the in-situ model, the output of the model is made for 
full-length simulation. Although there is an advantage in that quick 
branching is possible in consideration of the status of components with 
the response of human operators at all times, the model always calcu
lates the full-length simulation time when either a new status of the 
components or a new response of the human operator is given. There
fore, it is necessary to slice and merge the data in order to make a new 
potential scenario. For example, when using a model based on eQRNN 
where branching should be performed considering quantiles, the num
ber of inferences will increase the same amount as the number of 
quantiles to be considered for each branching point. 

In order to overcome this limitation, a stepwise model was consid
ered. Even though the stepwise model is sensitive to error and harder to 
train than the in-situ model, it calculates the output using previous in
formation. With this virtue, it is able to reflect actions in real-time more 
easily than the in-situ model can. Moreover, the stepwise model can be 
developed for on-site trajectory generation, which can also be applied to 
the development of reinforcement-learning-based autonomous opera
tion models. Therefore, as a parallel work, a feasibility study of the 
stepwise model is ongoing. 

Nevertheless, it is evident that the in-situ model proposed in this 
study plays a significant role in reducing the uncertainty of PSA results 
by discovering unknown accident scenarios. In order to clarify this 
claim, let us consider a series of Event Headings exemplified below, which 
consist of specific conditions and the required action to be taken by 
human operators when these conditions are met. 

Fig. 9. Examples of prediction results.  
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• Event Heading 1: Adjust Valve A when the pressure of Tank B is lower 
than 50 kgf/cm2.  

• Event Heading 2: Operate Heater C unless the pressure of Tank D is 
greater than 75 kgf/cm2.  

• Event Heading 3: Start Pump E when the water level of Tank B is 
increasing.  

• Event Heading n: [… ]. 

In traditional PSA, due to the limitation of available resources in TH 
code simulations, the variability of potential scenarios is reduced by 
introducing a series of conservative assumptions. It should be empha
sized that these conservative assumptions are themselves generated 
based on the results of intensive TH code runs for a large number of 
potential scenarios. Therefore, although it seems that the sequence of 
Event Headings is simple (i.e., static sequence), it is strongly expected 
that most accident scenarios can be covered by traditional PSA because 
numerous potential scenarios of which the consequence is trivial are 
already excluded. However, it is more realistic to assume that the 
sequence of Event Headings is variable depending on the characteristics 
of the responses previously done by human operators (i.e., dynamic 
sequence). That is, in accordance with the timing and/or the degree of 
opening of Valve A in the above Event Heading 1, it is natural to assume 
that the next Event Heading could either be Event Heading 2 or Event 
Heading 3. In other words, the result of the human response included in 
Event Heading 1 can affect which Event Heading should appear next. 

If this dynamic sequence is indeed the more realistic assumption, 
then the number of simulations using a precise TH code will drastically 
increase because of the existence of hidden potential scenarios (Heo, 
Baek, Kwon, Kim, & Park, 2021)(). In this case, the use of the in-situ 
model proposed in this study should be considered for its contribu
tions in revealing the inventory of additional accident scenarios from 
these additional potential scenarios, which have not been considered in 
traditional PSA before. This study is a good starting point to accomplish 
this goal. 
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