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A B S T R A C T   

Repetitive tasks in construction reduce workers’ attentiveness of hazards on sites. This decline in attentiveness 
can be influenced by their situation awareness level. However, research on the relationship between attentive-
ness and situation awareness is scarce in the construction safety domain. This study employs eye-tracking 
techniques to investigate how visual attention changes due to variations in workers’ situation awareness 
levels. A virtual reality-based experiment was conducted to evaluate the situation awareness level of individual 
workers and examine its relationship with attentiveness towards different hazards using the situation awareness 
global assessment technique and linear regression analysis. The experimental findings reveal that the overall 
trend of allocating attention toward hazards declined over time. Furthermore, the attentiveness of workers varied 
depending on their situation awareness levels and the type of hazardous condition. Throughout the experiment, 
the group with a low situation awareness failed to sustain their vigilance toward hazards as effectively as the 
group with a high situation awareness. The outcomes of this study will help construction safety trainers un-
derstand variations in workers’ vigilance behavior over time and, thus mitigate the risk of accidents owing to 
inattentiveness at job sites.   

1. Introduction and background 

The construction industry experiences high rates of fatality injuries, 
with struck-by hazards being the leading cause. Despite efforts to miti-
gate accidents, the fatality rate remained consistent, emphasizing the 
urgency for improvement. Around 20,600 non-fatal struck-by injuries 
were recorded in the US, accounting for one-quarter of the industry’s 
total non-fatal injuries in construction (Bureau of Labour Statistics, 
2022). Previous research has focused on implementing various real-time 
monitoring systems, computer vision-based techniques, and remote 
monitoring to maintain a safe distance between workers and equipment 
(Khan et al., 2023; Kim et al., 2019; Tran et al., 2023, 2022). Addi-
tionally, personalized safety training and assessing safe behavior have 
been used to reduce risk habituation and to improve hazard identifica-
tion skills (Ahn, 2021; Grégoire et al., 2022; Hussain et al., 2020). 
However, many struck-by accidents still occur due to workers and op-
erators not paying attention, failing to recognize hazards, or not being 
careful enough to avoid risks (Hasanzadeh et al., 2018; Wang et al., 
2019). Most of the construction accidents can be prevented if workers 
are fully aware of the situation and show attentiveness toward hazards 

(Görsch et al., 2020). 
Attentiveness and situation awareness (SA) are interlinked factors 

that can prevent accidents due to unpredictable hazards (Endsley, 
2017a) (Endsley, 2017a; Wickens et al., 2021). Measuring the awareness 
level and variation in workers’ attention through direct observation is 
labor-intensive, time-consuming, which is practically impossible to 
collect in hazardous work conditions. Virtual reality (VR) technologies 
offer immersive training experiences that enable workers to practice 
safety protocols in a controlled environment, allowing them to perform 
activities under various hazardous situations without the risk of acci-
dents (Choi et al., 2023; Pedro et al., 2023). For instant, Rokooei et al., 
(2023) mainly focuses on the design and development of a VR module 
for safety training in the roofing sector. Similarly, Li, (2018) discusses 
the popularity of VR and its real-life applications in safety training in the 
construction industry. Other studies have adopted VR as a comple-
mentary approach to improve workers’ hazard identification skills and 
personalized learning experiences through virtual tours (Pedro et al., 
2019; Pham et al., 2018; Roofigari-Esfahan et al., 2022). However, there 
has been limited exploration of VR as a behavioral intervention tool in 
construction safety research, particularly in the context of real-time data 
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collection based on workers’ actions within virtual settings. 
In recent years, few studies in the context of exploring workers’ 

attention in virtual construction environments have been performed to 
explore the research issue; however, these studies were limited to a 
single construct (e.g., attention) (Ahn, 2021; Grégoire et al., 2022). 
Furthermore, the design methods employed did not examine how 
workers’ visual actions altered when performing repetitive tasks. Wolf 
et al., (2022) mentioned that very little research in the construction 
safety domain has focused on examining and analyzing inherent data 
collected through workers’ visual actions in virtual environments. 
Notably, these studies did not specifically delve into the crucial link 
between workers’ attentiveness and their level of situation awareness. 
With this background, the primary objective of this research was to 
investigate how visual attention over time is altered by changes in 
workers’ level of situation awareness. To achieve this objective, a VR- 
based eye-tracking technique was utilized, allowing for precise mea-
surement of workers’ visual attention. The study presented different 
types of struck-by hazards in the VR environment to assess workers’ 
awareness of the situation. Additionally, workers were engaged in re-
petitive simulated tasks while being exposed to random hazards, 
enabling the measurement of attentiveness over time. 

The rest of the paper is organized as follows. First, an extensive 
literature review is provided to determine the roles of attentiveness and 
situation awareness in the construction safety domain. Section 3 outlines 
and describes in detail the methods for virtual content development, 
experimental procedure, and data collection. The acquired data is 
analyzed in Section 4. Subsequently, the results, discussion, and con-
clusions are presented, and the theoretical and practical implications of 
the findings are discussed in Section 5. 

2. Literature review 

2.1. Role of attentiveness and SA in hazard recognition 

Many studies have incorporated attentiveness and situation aware-
ness as key constructs when identifying workers’ abilities in hazardous 
situations. For instance, struck-by accidents in construction refer to in-
cidents in which a worker is caught in or between a moving object or 
piece of equipment. Such accidents can be severe or even fatal and can 
occur when workers pay insufficient attention to their surroundings or 
are unaware of potential hazards in their surrounding environment 
(Ahn, 2021; Grégoire et al., 2022; Kim et al., 2021). Based on the causes 
of accidents involving being struck by objects, hazardous objects are 
classified into four categories: falling, flying, swinging, and rolling 
(OSHA, 2011). To delve further into the research issue, this section will 
focus on the various perspectives of attentiveness and situation aware-
ness and describe workers’ safe/unsafe behavior against risks associated 
with such struck-by objects. A relationship model extended from the 
literature is also presented to define the influencing factors that can vary 
the SA level and attentiveness in dynamic situations at construction 
workplaces. 

Several studies have attempted to explore the relationship between 
attention and situation awareness in various disciplines. For instance, in 
the aviation sector, novel studies have been conducted to identify the 
effects of attention on pilots’ situation awareness to react against 
adverse environmental conditions, including turbulence and crosswind 
(Cak et al., 2020). In the transportation sector (Henning et al., 2022; 
Karjanto et al., 2018), researchers have observed drivers’ perceptions 
and attitudes during fully automated driving in alleviating motion 
sickness when engaging in non-driving tasks. Also, in the healthcare 
sector, studies have been performed to evaluate healthcare providers’ 
clinical performances in emergency cases against infection control and 
equipment malfunction (Walshe et al., 2021). Other studies have pre-
sented different applications of situation awareness during military 
operations, including battlefields, military bases, and critical infra-
structure (Munir et al., 2022). According to a recent study that reviewed 

80 articles, including 20 studies from the construction industry, the 
combination of situation awareness and visual attention research has 
been the least explored area in the construction sector (Martinez-Mar-
quez et al., 2021). This multi-dynamic model of workers’ behavior to 
develop attentiveness toward struck-by hazards and maintain situation 
awareness opens doors to new ways of measuring awareness and 
determining workers at risk. 

The attention-SA model (Endsley, 2017a; Jones and Endsley, 1996), 
developed by Endsley and Jones, explains how attention and situation 
awareness interact in dynamic environments. The model proposes that 
attention and situation awareness are separate but interdependent 
cognitive processes and play a critical role in enabling individuals to 
perform tasks effectively in complex and dynamic environments. Ac-
cording to the model, attention is a limited resource that can be chan-
neled to focus on a specific task or aspect of the environment (Rueda 
et al., 2023). At the same time, situation awareness is a more general 
cognitive process that involves understanding the context in which a 
task is performed, including anticipating future events. Therefore, 
attention must be allotted to various sensory considerations to maintain 
a high situation awareness (Wickens et al., 2021). According to the 
Endsley model (Endsley, 2017a), balance in attention deployment is the 
core tenet of situation awareness in hazardous environments. 

Endsley’s model categorizes situation awareness into three levels: 
perception, comprehension, and projection (Endsley, 2017a, 1995a). 
Based on these levels, the decision-making loop, starting from workers’ 
goals and objectives, is elaborated in Fig. 1 as an extended version of the 
Endsley’s model. It shows how attentiveness and situation awareness 
interact in dynamic environments and how both can be developed and 
sustained over time. In this framework, attentiveness plays a critical role 
in the perception stage, enabling workers to obtain feedforward infor-
mation about potential hazards from the environment through their 
senses and filter out distractions (Endsley and Rodgers, 1996). In the 
comprehension stage, workers process and interpret the information 
they perceive from the former stage and use their current SA levels to 
anticipate future events (Munir et al., 2022). They make decisions to 
perform actions in the projection stage. These actions lead toward re-
sults that can be used as feedback for maintaining future goals and ob-
jectives (Endsley, 1995b). Thus, the cycle continues in this way, 
whereby the workers’ situation awareness and attentiveness are devel-
oped and maintained (Endsley, 2017a). 

According to (Endsley, 2015), the three levels of situation awareness 
are ascending levels, not linear stages, and the occurrence of projection, 
comprehension, and perception in the model does not imply a strict 
linear progression. For example, a worker can possess SA level 2 and 3 
even if they lack complete or accurate SA level 1. In such cases, workers 
can use their higher levels of situation awareness to guide their search 
for and acquisition of SA level 1 (Endsley, 2004). In other words, 
experienced workers may accurately project future events even if they 
do not fully understand or perceive the current situation. Similarly, 
workers may have a high level of comprehension of a hazardous situa-
tion but a low level of projection due to lack of knowledge or uncer-
tainty. Furthermore, the cycle of situation awareness development may 
influence due to several personal and external factors, such as task de-
mands, abilities, current activities, complexity of the environment, 
changes, and quality of information. Depending on these factors, the 
levels of situation awareness can vary independently, leading to 
different levels of situation awareness. Experienced or trained workers 
may have an advantage in maintaining SA due to their practical 
knowledge, but they may still be prone to inattentiveness if faced with 
repetitive tasks or high workloads. 

Although a few studies have discussed attention as a function of 
workers’ situation awareness in the construction domain, empirical 
evidence to test this hypothesis has not been concluded due to the 
absence of a reliable method for measuring attention. Among these 
studies, a seminal one by (Hasanzadeh et al., 2018) utilized eye-tracking 
mobile devices to present a real construction site-based experiment 
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under tripping hazards. In another study, eye movement, measured 
through visual scanning, directly measured human attentional behavior 
(Li et al., 2022). However, these techniques are not practically feasible 
under high-impact hazards, such as struck-by, as they pose safety limi-
tations for subjects. Fortunately, advancements in VR technologies have 
led to the development of new head-mounted displays with eye-tracking 
features. Thus, eye-tracking technology when used in combination with 
VR can provide a continuous measure of attentiveness and, thus, provide 
a better way of assessing situation awareness metrics sequentially. A 
detailed discussion about the various means of evaluating situation 
awareness and using VR for measuring workers’ attentiveness under the 
auspices of literature has been presented in the next section. 

2.2. Measuring situation awareness and attentiveness 

The accurate measurement of situation awareness levels in specific 
contexts is challenging. Choi et al., (2020) divided the methods in the 
literature for situation awareness assessment into three categories: sit-
uation awareness investigation based on past accident scenarios; the 
direct system of performance-based measures, and the use of simulated 
environments via direct experimental techniques (Endsley, 2017a; Jones 
and Endsley, 1996). Post-accident and performance measurement 
techniques can be either self-rating or observer-rating under real-world 
contexts. The limitations of these measurement methods stem from 
various factors, such as subjectivity and the potential inability to capture 
comprehensive situation awareness (Choi et al., 2020; Endsley, 2017a). 
While variables and conditions can be controlled when measuring sit-
uation awareness in a simulated environment, the opportunity to un-
dertake testing in a safe and low risk setting, the ability to repeat 
measurements, and the potential for realizing cost-effectiveness may not 
be possible or practical in a real-world setting. 

In cognitive science, situation awareness is typically assessed using 
either subjective or objective measures. Subjective measures can offer 
insights into workers’ individual experiences of situation awareness. 
However, these measures have been identified to be quite sensitive to 
many potential factors, such as self-perception and memory biases. On 
the other hand, objective measures involve collecting data on a person’s 
behavior or performance in a real-world or simulated environment to 
acquire an objective assessment of their situation awareness. Salmon 
et al., (2006) suggested that the available situation awareness mea-
surement techniques are inadequate for performing assessments in dy-
namic environments. However, a combination of different techniques i. 
e., multiple-measure approaches, can prove effective in comprehen-
sively understanding workers’ situation awareness. 

The situation awareness global assessment technique (SAGAT), a 
systematic knowledge assessment technique also known as the freeze- 

probe technique, has been widely adopted in various application do-
mains for accurately measuring situation awareness in simulated envi-
ronments (Choi et al., 2020; Coolen et al., 2019; Zhang et al., 2020). In 
this technique, the simulation is paused at predetermined points and 
resumed as the experiment progresses. During an evaluation, workers 
are asked to complete the questionnaire and identify what their per-
spectives are based on their knowledge of the situation at each frozen 
moment (Endsley, 1995a, 1988). SAGAT is a valuable tool that can be 
adopted to measure construction workers’ situation awareness in a 
controlled environment with struck-by risks, as it offers the following 
main advantages over post-trail and subjective measures: 1) covers all 
situation awareness assessment levels; 2) information can be objectively 
evaluated; and 3) worker’s situation awareness immediately after 
experiencing a situation can be measured (Choi et al., 2020; Endsley, 
1988; Salmon et al., 2006). SAGAT is a global measure to acquire 
workers’ knowledge about situations, as it includes different levels for 
situation awareness measurement defined by Endsley’s model of SA 
evaluation. Each level, with its definition and example, is presented in 
Table 1. 

Since attentiveness is crucial to perceive the situation of the sur-
rounding environment, visual attention plays a vital role in avoiding 
jobsite struck-by incidents in dynamic work environments (Ahn, 2021; 
Grégoire et al., 2022). To ensure a safe and timely response to potential 
hazards, workers must pay visual attention to perceived risks posed by 
hazards (Jeelani et al., 2018). The promising feature of VR is it creates 
simulated job sites that replicate real-world environments. This allows 
workers to practice and develop their skills in safe and controlled 

Fig. 1. Role of attentiveness in situation awareness (an extended model from Endsley’s theory) (Endsley, 1995a).  

Table 1 
Summary of Situation Awareness (SA) levels extracted through Endsley’s theory.  

SA Levels Definitions Examples 

Level 1 SA: 
Perception 

To perceive the status, 
attributes, and dynamics of 
relevant elements in the 
environment. 

A worker must be familiar 
with the struck-by hazard, 
its name, type, impact, and 
frequency. 

Level 2 SA: 
Comprehension 

To build a holistic picture of 
the situation based on 
knowledge and 
comprehending the 
significance of objects and 
events. 

A worker must comprehend 
the situation by the 
location, direction, and 
time of the struck-by object. 

Level 3 SA: 
Projection 

To project the future course of 
actions of the elements in the 
environment, at least in the 
near term. 

By their own motion and 
the relative movement of 
nearby objects, a worker 
can decide whether that 
object is likely to strike in 
the given manner.  

R. Hussain et al.                                                                                                                                                                                                                                

https://www.powerthesaurus.org/under_the_auspices_of/synonyms
https://www.powerthesaurus.org/under_the_auspices_of/synonyms


Safety Science 175 (2024) 106526

4

settings. Researchers have widely accepted eye-tracking measurement 
methods using VR technology to assess workers’ attentiveness in various 
domains, including construction (Fathy et al., 2023; Jeelani et al., 2018; 
Kim et al., 2022; Martinez-Marquez et al., 2021). 

One of the novel approaches through which visual attention (eye- 
tracking data) can be evaluated is identifying attentional deficits to 
automate workers’ personalized safety training (Jeelani et al., 2018). 
For instance, through the virtual simulation of accidents using VR, (Kim 
et al., 2022) assessed workers’ eye movements by measuring where and 
for how long they were looking (fixation duration) at electric hazards. 
(Ahn, 2021) used fixation count to identify an attentiveness deficit in 
workers consistently ignoring road machinery at a road construction 
site, highlighting the potential risks associated with this hazard. Previ-
ous efforts to enhance construction hazard awareness have utilized eye- 
tracking technology, mainly for qualitative analyses such as studying 
visual paths or search strategies using heat maps or gaze plots (Zhu et al., 
2022). However, there has been limited exploration of the quantitative 
aspect of eye-tracking, particularly in terms of extracting trends over 
time of being attentive toward specific situations by relative information 
of eye fixation. This study utilizes a VR-based inherent eye-tracking 
technique to evaluate the variation in workers’ attentional behavior 
towards hazards in different struck-by situations. 

When performing repetitive tasks in dynamic and complex envi-
ronments, workers may struggle to maintain a constant level of SA due 
to “attention tunneling.” This phenomenon causes them to focus too 
much on their task, resulting in decreased hazard scanning behavior 
around them (Bedny and Meister, 2010). Situation awareness as 
described by (Endsley, 1995a) is a not a simple construct but covers 
various variables involved in the workers’ behavior, with particular 
attention to its cognitive elements. However, this ability of being 
attentive may vary depending on the type of task involved and hazard 
type. Workers may rely heavily on habitual responses, which can limit 
their awareness of relevant factors (Grégoire et al., 2022). In instances of 
unexpected events, workers must actively seek out and integrate new 
information for an accurate understanding of the situation (Endsley, 
2017a). Similarly, in high-risk or complex operations, workers must 
anticipate future events and make proactive decisions based on incom-
plete or ambiguous information. Therefore, workers may face unique 
challenges in each hazard condition. By measuring Endsley’s levels of SA 
(perception, comprehension, and projection) in different hazard condi-
tions, a comprehensive understanding of how individuals and groups 
adapt to different types of challenges can be achieved. 

It is crucial to note that attentiveness, a key aspect of situational 
awareness, assists workers in detecting and recognizing potential dan-
gers (Liang et al., 2021), thereby enabling them to take necessary actions 
to prevent accidents. Therefore, measuring workers’ awareness about 
situation combined with studying their visual attention provides an 
opportunity to identify workers at risk for struck-by accidents. Inter-
estingly, despite its importance, no study has yet measured the influence 
of SA level on workers’ attentiveness under hazardous conditions or how 
workers’ attention varies at different SA levels. (Hasanzadeh et al., 
2018) investigated how SA affects tripping-hazard detection at an actual 
construction site. However, it is not possible to perform experiments to 
simulate struck-by hazards and analyze SA due to the associated safety 
risks. Additionally, in the aforementioned study, the subjective measure 
of SA, was used and limited to self-report measures, which can be 
influenced by biases and inaccuracies, thus failing to provide a 
comprehensive picture of an individual’s situation awareness. 

These gaps motivated an investigation of interplay between attention 
and situation awareness, with the following research question: “Do 
construction workers with distinct SA levels deploy attention over time 
differently when exposed to different types of struck-by hazards?”. This 
research delves deeper through a series of following targeted steps. The 
study begins by examining how SA levels vary with the type of struck-by 
hazard encountered, aiming to observe changes in critical SA levels for 
individuals in diverse hazardous scenarios. To further elucidate the 

temporal dynamics of attention, the study analyzes whether overall 
attention declines over time for all participants, regardless of their SA 
level. To explore these questions, we test the following two primary 
hypotheses: 

H1: There is no significant difference in attention allocation over 
time between workers with high and low SA when performing re-
petitive tasks. 
H2: Within the high SA group, there is no significant difference in 
attention allocation over time between participants exhibiting high 
levels of perception, comprehension, and projection. 

Results from these tests uncover the correlation between visual 
attention and workers’ SA levels, investigating whether improvement in 
distinct SA levels may influence attentiveness under various hazardous 
environments. Consequently, the theoretical findings of this study assess 
whether these enhancements can translate into sustained attention 
allocation over time. It is anticipated that these insights would aid 
construction practitioners to determine which construction workers are 
at greater risk and to develop effective techniques for increasing their 
attentiveness toward recognizing hazards, driving workers’ SA, and 
decreasing the probability of human error. 

3. Research methods 

The objectives of this research were achieved through the following 
steps (Fig. 2). 1) A VR-based hazardous environment with the simulated 
scenario of the repetitive task was designed by incorporating the expo-
sure of different struck-by hazards in an outdoor building construction 
work area. 2) The experiment was conducted in two modules to measure 
the participants’ SA level and attentiveness over time. Both modules 
were reviewed by three construction safety managers and two professors 
from the construction engineering department. To replicate a close-to- 
real environment, the suggested modifications were introduced in the 
design and then validated again to proceed with the final experiment. 3) 
Data on the participants’ situation awareness was collected during the 
experiment as they proceeded with the simulation using SAGAT in the 
first module. Next, the workers’ attentiveness was measured in the 
second module by documenting their head/eye movement within the 
virtual environment while they performed a repetitive task. 4) The 
collected data was analyzed to discuss the results in detail. 

The following sections explain the participant selection, develop-
ment process, experimental procedures, data collection, and analysis. 

3.1. Participant Selection 

Thirty-four students (twenty-six males and eight females) were 
recruited from the construction and architecture departments of Chung- 
Ang university to participate in the formal experiment. In this study, 
achieving an adequate sample size was pivotal for robust data analysis. 
The determination of an optimal sample size involves various consid-
erations, including the strength of relationships between variables, ef-
fect size, and data variability (Chander, 2017). Considering these 
variables alongside the high frequency of data collection, a sample size 
of 34 participants was established, ensuring a substantial number of 
observations. Additionally, a power analysis using G*Power version 
3.1.9.4 (Kang, 2021) was conducted. This analysis affirmed the ade-
quacy of our sample size for detecting a medium effect size at a signif-
icance level of α = 0.05, further reinforcing the statistical robustness of 
our study. 

The selection criteria for recruitment were the individuals’ interest 
and knowledge of construction engineering. Students with a minimum 
of three years of construction education were allowed to participate in 
the experiment. Furthermore, to ensure familiarity with construction 
safety hazards and their interests, all the subjects were required to fill 
out a simple form for identifying hazards at construction job sites. All 
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participants provided written informed consent before participating in 
this study. None of the participants had any prior experience in the 
construction industry. However, all had previous experience with VR 
technology in different domains. As this study measured the partici-
pants’ cognitive abilities and how they maintained SA during simula-
tion, it was essential to familiarize them with the devices used in the 
experiment. Therefore, a small introductory session was added before 
the formal experiment to acquaint the participants with the HMD and 
the virtual environment. The detail description of demographics is 
shown in Table 2. The VR experimental laboratory setting, and the user’s 
point-of-view perspective are shown in Fig. 4(a) and (b). A step-by-step 
procedure for both the experiment modules is presented in the following 
sub-sections. 

3.2. Virtual simulated environment and Scenario development 

A virtual experimental setting with multi-physical simulated objects 
was developed based on the struck-by accident reports extracted from 
OSHA’s database for Fatality and Catastrophe Investigation Summaries 
(OSHA, n.d.) and the instructor guide of Construction Focus Four: 
Struck-by Hazards issued by the OSHA Directorate of Training and Ed-
ucation (OSHA, 2011). A total of 233 struck-by-accidents were identi-
fied in the last ten years using the advanced search option and the term 
“struck-by accident” as the keyword. The identified cases were analyzed 
based on the struck-by object type, as classified in the instructor guide 

(e.g., flying, swinging, rolling, and falling) to further examine the impact 
and frequency of the accidents. The study of these accident cases 
revealed the same finding as that of the Data Bulletin of the Center for 
Construction Research and Training (Brown et al., 2022)), which is that 
rolling objects (struck-by vehicles) contribute to a major proportion of 
fatal injuries among all the categories while both swinging and flying 
objects contribute to major injuries with a high occurrence rate. 

Based on the analysis of accident cases associated with hazard type, 
the task of shifting the material from the origin to the assigned stock area 
was designed to proceed with the first module of the virtual experiment. 
Three simulated models (Fig. 3) for potential hazards associated with 
heavy construction equipment (1-excavator, 2-crane) and motor vehicle 
(3-truck) were added along the path of material shifting. Each model 
possessed different characteristics of struck-by hazards; for instance, the 
excavator as a swinging object, the crane as flying, and the truck as a 
rolling struck-by hazard. To enable the participants to work in an 
immersive setting, the operating sounds of the struck-by objects and 
different noises associated with the construction site were carefully 
simulated with different amplitudes and frequencies, similar to an actual 
work-site environment. The purpose of allocating hazards at various 
spots on the path was to investigate changes in workers’ SA, as it can 
vary at different points and times during the simulation. The construc-
tion site layout and the path to be followed for material delivery in the 
first module are shown in Fig. 3. 

In the next step, an outdoor construction area (close to the track) for 
the rolling object was selected to perform the task for module 2. This 
task was designed based on two of the accident cases from the OSHA 
accident database (OSHA, n.d.) as follows:  

• “An employee was walking through the yard. A semi-truck hit the 
employee. The employee was killed.” (OSHA, 2022a)  

• “An employee was walking outdoors between two warehouses when a 
coworker stuck the employee with a rolling object. The employee was 
pronounced dead.” (OSHA, 2022b) 

Furthermore, to perceive the risk of workplace hazards, selective 
attention was required to ensure an appropriate response to a hazard 
(Jeelani et al., 2018), meaning that workers must pay visual attention to 
hazards to avoid accidents. Therefore, a random and continuous 
moment of rolling hazard, as a virtual model, was simulated on the track 
to document the participants’ visual actions. Additionally, to engage the 
workers in the construction activity, the same task as that performed in 
module 1 of shifting material, was included for a short span of distance 
by crossing the track, as illustrated in Fig. 4. This way, a program to 
document the time and location of to-and-fro movements of the truck 

Fig. 2. Research method and experimental procedure.  

Table 2 
Demographic characteristics of the participants.  

Demographic Factors Number (n ¼ 34) Percentage (%) 

Gender 
Male 26 76 % 
Female 8 24 % 
Age (Mean ¼ 23.4 Years) 
20 – 24 15 44 % 
25 – 29 12 35 % 
30 – 34 5 15 % 
> 35 2 6 % 
Education Level 
Undergraduate 29 85 % 
Graduate 5 15 % 
Construction Education (Mean ¼ 4.6 Years) 
3 – 5 29 85 % 
5 – 10 3 9 % 
>10 2 6 % 
Familiarity with VR Technology (Scale 1–10) 
5 – 7 18 53 % 
8 – 10 16 47 %  
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with respect to the workers’ motions was incorporated into the simu-
lation without interfering with the workers’ task. 

For developing the virtual construction site to effectively trigger 
workers’ SA and attentiveness toward hazards, Unity 3D game engine 
(Version 2020.3) with C# - based scripting API was used. The virtual 
environment comprised different visual scenes and haptic feedback in 
terms of the participants’ motions and sound effects. The environment 
was explicitly built to show the active outdoor building construction site 
with various tasks being performed simultaneously. Different material 
stocks and scattered tools were included at different locations on the 
ground to make it more real. All the 3D objects included in this exper-
iment were either developed using 3D Studio Max (Version 2020) or 

acquired through commercially available models at the Unity Asset 
Store. To set up an experimental setting that would allow the collection 
of users’ eye-tracking data and movements, Oculus Rift 2 was used as a 
VR head-mounted display (HMD) with the peak frequency of 45 Hz. A 
brief procedure for conducting the experiment and data collection is 
presented in the following section. 

3.3. Experimental procedure and data collection 

A pilot test was conducted involving laboratory members to validate 
the experimental design. Following this, the main study was structured 
into two distinct modules, details of which are outlined in the 

Fig. 3. (a) VR laboratory experimental settings and (b) user’s point-of-view perspective showing struck-by hazards.  

Fig. 4. Virtual construction site layout.  
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subsequent sections. 

Module 1: Situation Awareness 

The situation awareness global assessment technique (SAGAT), 
developed and validated by Endsley (Endsley, 2017b), was adopted for 
this module to assess the real-time SA of the participants. SAGAT is 
based on freeze-on-line probe techniques in which a simulated envi-
ronment, employing a system of interest, is paused at a pre-defined 
number of times. At each pause, participants are asked different ques-
tions about the situation. In this context, the SA levels defined in Fig. 1 
were utilized for assessing the participants’ SA. Level 1 SA, called 
perception, pertains to whether the workers perceived any hazard in 
proximity. Comprehension, as level 2 SA, relates to whether the workers 
comprehended situations in which potential hazards when moved posed 
a threat, and the projection in level 3 SA relates to the workers’ antici-
pation of whether there was any chance of being struck by a hazard. 

The participants were asked to complete a material shifting activity 
in a VR environment, in an outdoor construction area along a pre- 
defined path, as shown in Fig. 5. The simulation was designed to 
pause automatically upon the participants’ arrival at the designated area 
during the task, referred to as “freeze moments”. The total task duration 
was approximately 09 min, with each freeze moment lasting around 
125 s. Three freeze moments were introduced just when the participants 
reached the targeted hazard. At each moment, the participants had to 
remove the HMD to fill out the questionnaire. The series of questions 
was based on the principles of a systematic information requirement 
assessment technique called goal-directed task analysis (GDTA), which 
is a cognitive task analysis technique used to identify major goals and 
decisions that drive performance in hazardous situations (Nasser-Dine 
et al., 2021; Sharma et al., 2019). This technique was used to determine 
the best way to support the decision-making process of a particular role 
and assess an individual’s SA in relation to the module’s goal and the 
potential challenges that may arise during the simulation session. 

During each freeze moment, participants were presented with an 
average of 18 to 20 questions. The questionnaire was divided into three 
sections, each corresponding to a different level of situational awareness 

(SA) at the hazard location. Participants were required to complete all 
three sections, which focused on SA Level 1 - Perception, SA Level 2 - 
Interpretation/Comprehension, and SA Level 3 - Projection. 

In the first section of each hazard scenario, participants were asked 
about their immediate surroundings, including their position in relation 
to the hazard, the task they were performing, visibility of the hazard, 
impact of hazard movement, and the presence of other workers. The 
second level focused on workers’ understanding of the hazard, assessing 
their awareness of its proximity, movement, potential hazards, impact 
on tasks, recognition of operator signals, adherence to safety guidelines, 
and awareness of safety equipment usage. The third level explored 
workers’ ability to anticipate future actions, evaluating their capacity to 
predict the hazard’s future location and movement, anticipate potential 
hazards, plan for contingencies, adjust tasks considering the hazard’s 
movement, foresee the operator’s next moves, and identify potential 
hazards related to the hazard’s activity. To ensure that the questions 
were not redundant or repetitive, multiple variants were considered and 
presented in a randomized order for each situation. Fig. 5 displays a 
table showcasing the SAGAT questionnaire, highlighting the different 
SA levels and their respective objectives. Detailed questions used in the 
experiment can be found in Appendix A. 

To evaluate participant performance, two different approaches were 
considered. First, the sum of scores gained in each section for all freeze 
moments was calculated. This provided an insight into how well par-
ticipants performed in the context of specific SA levels across different 
situations. Second, the overall score obtained in all three sections for all 
freeze moments was combined to provide an overview of participants’ 
overall SA performance in the whole experiment. By using both aspects, 
a more comprehensive understanding of participant performance in SA 
was obtained. The analysis of the SAGAT scores correlating with all 
three dimensions of SA levels at each hazard is presented in the Data 
Analysis and Results section in detail. 

Module 2: Attentiveness 

In this module, the participants were asked to perform the repetitive 
task of shifting material from the stock area to the construction site. The 

Fig. 5. Example of SAGAT questionnaire with freeze moments and task duration breakdown.  
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path length and location for this activity differed from the previous 
module. Workers tend to direct their attentional resources to the activity 
of shifting material and pay less attention toward construction hazards 
(Grégoire et al., 2022) while performing such assigned tasks. Therefore, 
the material shifting path was designed to cross a track twice per cycle, 
exposing the participants to the random movement of a truck (Fig. 6). 
Whenever a participant crossed the track, if they looked at the truck to 
check the proximity or distance from their own position, the system 
counted the number of sights and recorded the relative distance and 
time at each sight. Fig. 6 illustrates how the repetitive task was per-
formed and the hazard exposure at the same time, highlighting the 
possible impact of repetitive tasks on hazard awareness. 

To achieve this goal, the Unity ray-cast method was employed to 
capture data accurately during the simulations. This method operates by 
inputting an invisible ray and returning information about the collider it 
hits, including the distance between origin of ray and the collider. The 
ray-cast method facilitated the experiment by shooting a virtual ray 
from the participant’s gaze direction in the 3D space and detecting if it 
hit the truck or not. At the same time, the programmed function in the 
Unity script enabled the system to document the collision time and 
location in terms of coordinates for both the participant and the truck. 
The distance between the participant and the object was calculated 
based on these locations. This data was auto-formatted in an individual 
comma-separated values file with columns of different fields for each 
participant. The combined file was further utilized to analyze the trend 
of visual attention toward the potential hazard over time for the overall 
population. 

The developed system also simulated consequences when a partici-
pant was struck by the truck. The experiment was then discontinued 
instantly, and a new scene highlighting the end of the task was shown. 
To avoid potential bias, data from the participants who experienced an 
accident during their attempt was not included for further analysis. This 
decision was based on evidence from (Grégoire et al., 2022), who 
demonstrated that a prior accident could impact a participant’s atten-
tion level. No additional opportunities were provided to these partici-
pants in the subsequent sessions. The detailed analysis of the combined 
effects of the total population in the experiment and its correlation with 
distinct SA groups is presented in the next section. 

4. Data analysis and results 

4.1. Level of SA at different struck-by hazards 

To assess participants’ abilities in maintaining situation awareness 
across various hazardous scenarios, data collected during Module 1 
through the SAGAT was thoroughly examined. Initially, the accurate 
SAGAT scores for each level of situation awareness - Perception (SA1), 
Comprehension (SA2), and Projection (SA3) - were recorded and indi-
vidually presented for each hazardous location, encompassing Swinging 
Object (Hazard 1), Falling Object (Hazard 2), and Rolling Object (Haz-
ard 3). This breakdown of SAGAT scores at specific hazard locations 
offers valuable insights into the participants’ proficiency in perceiving, 
comprehending, and projecting their awareness within various hazard-
ous environments. Subsequently, a comprehensive summary was 
compiled, amalgamating the results of each SA level across all hazardous 
locations. This aggregated analysis across all hazard locations allows for 
a broader perspective on participants’ overall situation awareness 
competencies. 

The graph in Fig. 7 breakdown of SAGAT scores of each level at 
specific hazard. Perception level (SA1) shows that the mean score for the 
flying hazard was higher compared to the other two hazards, indicating 
that the participants better perceived the situation when facing the 
crane. The high score for the swinging hazard when measuring the 
comprehension level (SA2) suggests a better understanding of the situ-
ation among the participants compared to the other hazards. The pro-
jection level (SA3) had the highest mean score, demonstrating that the 
participants were better at predicting the outcome of the rolling hazard 
compared to the other hazards. When comparing the mean scores across 
the three SA levels, the graph indicates that the scores generally 
improved with an increase in the SA level. 

In Fig. 8, the box-and-whisker plot visually captures the participants’ 
performance across different Situation Awareness (SA) levels, providing 
valuable insights into their evolving abilities. Each Situation Awareness 
level (SA1, SA2, and SA3) represents distinct stages of participants’ 
perceptual, comprehension, and projection skills. Upon meticulous 
analysis of the provided data, a clear and encouraging trend emerges. 
The median score for SA3 (0.67) stands notably higher than that of SA1 
(0.33) and SA2 (0.50). This substantial difference highlights partici-
pants’ notable difference in projection abilities, emphasizing their ca-
pacity to anticipate and plan for future situations effectively as 
compared to perception and comprehension. In other words, the box for 

Fig. 6. Concept of repetitive task when exposed to a hazard for module 2.  
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SA3 is located higher up on the plot than the boxes for SA1 and SA2, 
suggesting that the participants’ performance improved over time. 
Another interesting observation is the shift in the minimum score line, 
which suggests that even the lowest-scoring participants improved their 
abilities to some extent. This improvement in scores indicates that the 
participants become more familiar with the activity and develop a better 
understanding of how to identify, understand, and predict situations. 

Analysis of Variance (ANOVA) is a statistical method used to 
compare means among multiple groups. It assesses whether there are 
any statistically significant differences between the means of three or 
more independent groups. ANOVA analyzes the variance within 
different groups to determine if the differences among group means are 
more than what would be expected by chance. In the context of our 
study, ANOVA is particularly useful as it allows us to compare the means 
of SAGAT scores across various hazardous situations. Specifically, a one- 

way ANOVA is utilized when there is one categorical independent var-
iable with at least three levels and one dependent variable (Abu Aisheh 
et al., 2022; Gillard, 2020). Therefore, One-way ANOVA was adopted to 
test for significant differences in mean SAGAT scores between the 
various struck-by hazard conditions encountered during the experiment. 
IBM SPSS Statistics program version 26 was used to perform statistical 
tests, as its reliability has been credited by researchers (Čaplová and 
Švábová, 2020). The results of the one-way ANOVA (Table 3) indicate a 
significant difference in the mean values of the subject’s SA levels across 
the three struck-by-hazard groups, meaning that the subjects’ SA levels 
did not remain consistent in all situations. The significance level for all 
three levels was below the probability value (0.05), indicating that there 
was a statistically significant difference in the mean values between the 
groups. Additionally, the F-value for each SA level indicates the rela-
tionship between the within-group and between-group variance. The F- 
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Fig. 7. Percentage of correct answers to queries at each hazardous situation.  

Fig. 8. Combined results at the situation awareness level.  
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critical value, calculated using an alpha level of 0.05 with the given 
degrees of freedom, was 3.14. The F-value being higher than the F- 
critical value led to the rejection of the null hypothesis for all groups. 

For multiple comparisons of data differences among the groups for 
each SA level, Tukey’s honestly significant difference post-hoc test was 
conducted using the results from the ANOVA test. This method allows 
the comparison of various pairs of mean values to identify the significant 
differences within and between the groups (Shafique and Rafiq, 2019). 
To identify which specific pairs of groups were significantly different 
from each other, the output from the post-hoc test is illustrated in 
Table 4. 

A detailed examination of the data indicates that based on the sub-
jects’ perceptions about the situation (SA level 1), there was a statisti-
cally significant mean difference of 0.217 (p = 0.001 < 0.05) between 
the swinging and flying hazard groups. This suggests that the partici-
pants perceived the situation well enough when they were exposed to 
the swinging hazard compared to when they were exposed to the flying 
hazard. Similarly, for SA level 2, the p-value (p = 0.003 < 0.05) between 
groups experiencing the swinging and rolling hazards implies that the 
participants were more conscious at the location of the excavator 
compared to their level of awareness of the truck. Moreover, to predict 
the future events from the situation, SA level 3, with the mean difference 
of 0.168 (p = 0.007 < 0.05) between the swinging and rolling hazards, 

indicates that the participants projected the situation more accurately 
when exposed to the excavator compared to the truck. On the other 
hand, there was no statistically significant difference in the mean values 
of the dependent variable between the rolling and flying hazards for all 
three SA levels (p > 0.05). This implies that the type of hazard did not 
significantly affect the participants’ SA when it came to both the rolling 
and flying struck-by hazard groups. 

4.2. Attentiveness during repetitive tasks 

Regression analysis was employed in two stages to investigate the 
deployment of attention over time. First, the overall trend was deter-
mined using the bivariate linear regression. This model suggested the 
best-fit regression line for the relative distance at which the subject 
looked at the object within the span of exposure time. Second, to test the 
primary hypothesis, that the subjects’ SA level during the first module 
altered their attentiveness in the second module, multivariate regression 
models were adopted. Initially, the raw data were preprocessed by 
normalizing the range of distances for all the participants to eliminate 
any individual differences using the following equation: 

x normalized = (x − min(x))/(max(x) − min(x))

where x is the distance between the participant and the object, at 
which participants check the proximity of object from their own posi-
tion, min(x) is the minimum value, and max(x) is the maximum value of 
the distance. The normalized value x_normalized lies in the range be-
tween 0 and 1. Next, the exposure time when the participant looked at 
the object was used as the second variable for data processing. The 
fixation duration was marked as 200 ms (Kim et al., 2022), and only 
those readings when the participants gazed at the object for more than 
200 ms were incorporated into the data to gather precise results. For the 
first stage, the regression model was constructed as follows: 

ŷij = β0 + β1Tij + εij  

where ŷij is the predicted value for the jth observation of the normalized 
distance (dependent variable) of the ith participant, β0 is the intercept or 
first value when time = 0, β1 is the slope of the regression line showing 
the change in ŷij for each increment in time unit, Tij is the value of the 
independent variable (time) for participant i at observation j, and εij is 
the error representing the difference between the observed and pre-
dicted values. 

The standard libraries of Python programming language were 

Table 3 
One-Way ANOVA.   

Sum of 
Squares 

DF Mean 
Square 

F Sig. 

SA level 
1 

Between 
groups  

.825 2  .412  7.085  .001  

Within 
groups  

5.762 99  .058    

Total  6.586 101    
SA level 

2 
Between 
groups  

.740 2  .370  5.937  .004 

Within 
groups  

6.167 99  .062   

Total  6.907 101    
SA level 

3 
Between 
groups  

510 2  .255  5.155  .007 

Within 
groups  

4.896 99  .049   

Total  5.406 101    

*Sig = Significant Difference, DF = Degree of freedom. 

Table 4 
Multiple Comparisons- Tukey Honestly Significant Difference.  

Multiple Comparisons- Tukey Honestly Significant Difference 
Dependent variable (i) Hazard type (j) Hazard type Mean difference (i-j) Std. error Sig. % confidence interval 

Lower bound Upper bound 

SA level 1 A B -.13647 .05851 .056 -.2757 .0028 
C .08147 .05851 .349 -.0578 .2207 

B A .13647 .05851 .056 -.0028 .2757 
C .21794* .05851 .001 .0787 .3572 

C A -.08147 .05851 .349 -.2207 .0578 
B -.21794* .05851 .001 -.3572 -.0787 

SA level 2 A B .14412* .06053 .050 .0001 .2882 
C .20265* .06053 .003 .0586 .3467 

B A -.14412* .06053 .050 -.2882 -.0001 
C .05853 .06053 .599 -.0855 .2026 

C A -.20265* .06053 .003 -.3467 -.0586 
B -.05853 .06053 .599 -.2026 .0855 

SA level 3 A B -.04971 .05394 .628 -.1780 .0786 
C -.16853* .05394 .007 -.2969 -.0402 

B A .04971 .05394 .628 -.0786 .1780 
C -.11882 .05394 .076 -.2472 .0095 

C A .16853* .05394 .007 .0402 .2969 
B .11882 .05394 .076 -.0095 .2472 

A = Rolling Hazard, B = Flying Hazard, C = Swinging Hazard. 
* . The mean difference is significant at the 0.05 level. 
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utilized to perform regression analysis based on the equations and to 
visualize the outcomes. The trend of being attentive toward hazard over 
time for all participants was analyzed as shown in Fig. 9, and the results 
indicate that the models were significant for the first stage with R-square 
(R2) = 0.096, mean squared error (MSE) = 0.06, and p < 0.001. It’s 
worth noting that, in the context of our study, the R2 value of 0.096, 
though seemingly modest, can be meaningful. As highlighted by (Sapra, 
2014) and (HU, 2018), a model with a R2 value closer to one may not 
always reflect a true relationship, emphasizing the importance of 
interpreting R2 values with caution. The value of β1 was below zero 
(negative), which suggests that the trend of the participants’ attention 
toward hazardous objects declined during the short span of the experi-
ment. This result indicates that the tendency to check the proximity of 
the hazard was high at the start of the experiment. However, the gaze 
count relative to the distance was found to be low at the end of the 
session, which means that the participants showed a decrease in their 
state of vigilance with the passage of time. 

In order to examine the potential impact of participants’ SAGAT 
scores on their level of attentiveness, we implemented a categorization 
approach for the total participants. This involved segregating partici-
pants into two distinct groups (low and high) based on whether their 
SAGAT score fell below or above the average. The decision to categorize 
participants using a mean split is supported by established academic 
research. For instance, Jiang et al. (2021) in their evaluation of pilots’ 
situation awareness, categorized pilots into high and low situation 
awareness groups based on subjective score division to facilitate the 
analysis. Similarly, (Hasanzadeh et al., 2018) employed this technique 
to examine the relationship between workers’ visual activities and sit-
uation awareness, to delineate their sample into comparable groups. 
Furthermore, Grégoire et al. (2022) utilized a similar division to intro-
duce an independent variable in their virtual reality-based experiments, 
differentiating participants based on their experience of virtual acci-
dents. This categorization was deemed essential for our analysis of 
attentiveness levels in relation to their comprehension, as assessed in 
module 1. Consequently, the SAGAT score was introduced as a cate-
gorical variable (Si) and dummy coded as 0 for low situation awareness 
and 1 for high situation awareness, using the following multivariate 
regression equation: 

ŷi = β0 + β1Ti + β2Si + β3TiSi + εi  

where ŷi is the estimated value of the normalized distance at time Ti for 
participant i, β0 is the intercept, and the coefficients β1 and β2 represent 
changes in the expected value of ŷ for a unit increase in Ti and Si, 
respectively. β3 is the coefficient for the interaction of TiSi in comparison 
with the high SA group (S = 1) and low SA group (S = 0). From the 
results of the regression analysis, hypothesis H1 was rejected, indicating 
that the model was significant between the high (R2 = 0.075, MSE =

0.06, β0 = 0.41, and p < 0.001) and low (R2 = 0.12, MSE = 0.06, β0 =

0.45, and p < 0.001) SA groups, although the trend of the line for both 
groups was declining. However, the high SA group maintained the level 
of attentiveness over a prolonged period of time, while the performance 
of the low SA group continuously decreased during the experiment. The 
graph comparing the trends of both groups is shown in Fig. 10. 

To compare workers’ attention in accordance with the SA levels 
defined in Endsley’s theory (Table 1), as measured by the SAGAT, the 
variable Si was dummy coded with level 1 representing perception 
(SA1), level 2 representing comprehension (SA2), and level 3 repre-
senting projection (SA3). Within each SA level, participants were further 
categorized based on their scores in module 1. This decision of splitting 
the population by their subsequent SA levels and module 1 performance 
is aligned with the approach used by (Choi et al., 2020). Regression lines 
were established for each case using the following equation: 

ŷi = β0 + β1Ti + β2SA1i + β3SA2i + β4SA3i + εi  

Here, ŷi the normalized distance at a specific time Ti. The term β0 de-
notes the intercept of the regression equation, representing the value of 
ŷi when all predictor variables are zero. β1 represents the coefficient 
associated with the continuous variable Ti, indicating the change in ŷi 
for a unit change in time. Additionally, β2, β3 and β4 are coefficients 
corresponding to the binary variables SA1i, SA2i, and SA3i respectively. 
These coefficients signify the change in ŷi when the corresponding cat-
egorical variable changes from 0 to 1, assuming all other variables 
remain constant. 

The graph comparing the trends of these three distinct levels is 
shown in Fig. 11. The variations in regression lines for the distinct SA 
level were not aligned with the research hypothesis H2, which posits 
that there is no significant difference in attention allocation over time 
between participants exhibiting high levels of perception, comprehen-
sion, and projection. Overall, each group exhibited the same declining 
trend of inspecting the hazard distance throughout the experiment. 
However, a sharp decline in the regression line of the SA1 group was 
observed, indicating that although the group perceived the hazards 
accurately, they became acclimatized to it over time. In contrast, the 
intercept value for the group that scored high in SA2 and SA3 was 
similar (β0 = 0.41), meaning that both groups paid similar attention 
toward hazards at the start, with the SA3 group showing more attentive 
behavior at the end. The SA2 group showed a slight decline compared to 
SA1, which reveals that the participants who fully comprehended their 
immediate environment were more conscious of the hazards than those 
who only perceived the situation. Overall, the SA3 group, with a high 
ability to project the situation, performed well compared to the other 
groups. 

Fig. 9. Trend of being attentive toward hazard over time for all participants.  Fig. 10. Comparing trends between high/low SA groups.  
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5. Discussion 

This study aimed to explore the relationship between workers’ sit-
uation awareness (SA), attentiveness, and the impact of struck-by haz-
ardous situations on their levels of attentiveness. The findings showed 
that workers’ attentiveness varied depending on their SA levels and the 
type of hazardous condition they were exposed to. This analysis shows 
that workers with high SA levels were more attentive to hazards, while 
workers with low SA levels were at risk when performing repetitive 
activities under struck-by hazards. Although good hazard perception is 
typically considered an important indicator of attentiveness, the study 
found that this was not always the case due to the repetitive nature of the 
task being performed. This attention narrowing phenomenon, which can 
result in a reduction of SA, has been documented in various aspects of 
construction tasks (Choi et al., 2020). The workers who accurately 
predicted situations were able to use their maximum attentional re-
sources towards specific hazards. The analysis results emphasize the 
importance of considering specific workers’ SA levels to maximize 
attention towards hazards. Understanding the relationship between SA 
and attentiveness can provide valuable insights into improving safety in 
different struck-by hazardous situations. 

Measuring SA by Endsley’s theory in levels and comparing the levels 
of SA across different hazards can provide valuable insights for the 
development of targeted interventions to improve safety. Specifically, 
by measuring SA at different hazards, it is possible to identify the spe-
cific SA level that is most important for individual workers in different 
hazardous situations. The results of the experiment indicate that the 
type of struck-by hazard can impact a worker’s SA. For instance, the 
multiple comparison in this study indicates that the hazards involving 
falling objects require greater perception skills, while hazards involving 
swinging objects may require more advanced SA level 3-Projection. 
Thus, by comparing SA levels across different hazards, it is possible to 
identify the hazards that pose the greatest risk to worker safety in a 
particular environment. This information can be used to prioritize safety 
interventions and allocate resources more effectively. 

Consequently, this approach will help to identify areas where addi-
tional training may be needed to improve specific SA levels after eval-
uating workers’ abilities in the specific context of hazardous situations. 
For instance, the findings recommend that workers with good SA for 
levels 1 and 2 should engage in special training sessions for level, as they 
showed less attentiveness compared to the SA 3 group. Although 
perception (SA 1) of a situation is essential, a wrong interpretation of the 
current situation (SA 2) or projection (SA3) of a situation can result in a 
serious accident if the worker does not pay full attention to the situation. 
This information can ultimately help practitioners enhance safety, effi-
ciency, and effectiveness in a variety of contexts by identifying targeted 

interventions that can be developed to enhance worker safety in specific 
hazardous situations. 

This research has the potential to drive progress and improve out-
comes in both academic and practical domains. Academically, it offers a 
novel addition to the body of construction knowledge by providing 
valuable insights into the relationship between SA and attentiveness, 
which has not been widely explored. The combination of contextual data 
and physical actions with the incorporation of advance tools provides a 
unique data analysis practice for researchers (Wolf et al., 2022). For 
instance, the use of a questionnaire (context-based) and eye-tracking 
(physical patterns) data using VR tools supports the current study to 
acquire its research objectives. These methods can be applied in future 
studies related to cognitive ergonomics, helping us better understand 
the root causes of construction accidents. 

From a practical perspective, the insights gained from this study can 
be applied to improve the safety of workers in the construction industry. 
Gaining a holistic understanding of the comprehensive link between SA 
and different constructs (e.g., attentiveness) can help safety practi-
tioners classify workers who are at high risk. It can also enable them to 
develop targeted safety interventions for at-risk workers, thus helping 
mitigate the risk of accidents at job sites and enhance overall safety in 
the construction industry. The presented experiment modules can offer 
direct aid for workers to overcome the limitations of their attention span 
and maintain their vigilance toward hazards. For example, the rehearsal 
of selecting safe training methods and utilizing maximum attentional 
resources to perform an activity can make workers more vigilant toward 
hazards (Grégoire et al., 2022). Moreover, occupational health and 
safety organizations can use the visions of current research to design 
training scenarios and develop robust tools and techniques to address 
noteworthy issues associated with workers’ behavior. 

There are a few limitations associated with this study, which can be 
addressed by future research. The Unity engine’s ray-cast method was 
employed to trigger objects for the experiments. This might have 
resulted in reduced precision and accuracy compared to a dedicated eye- 
tracking system. This limitation can be addressed through further in- 
depth programming and development in C-sharp to accurately inter-
pret and track participants’ gaze direction. Furthermore, it should be 
noted that the eye-tracking system adopted in this research only 
measured the participants’ visual attention by monitoring the move-
ment of their foveal (central) vision. Consequently, behaviors involving 
the examination of exposed hazards using peripheral vision were not 
captured in this study. Regression techniques can be used for both trend 
and prediction analysis (Fox, 2015). The Results of this study were used 
for computing only the trends of inspecting the hazard distance over 
time, which was the primary objective of this analysis. As (Sapra, 2014), 
mentioned in their study that the R-squared value near zero does not 
indicate that variables are not related. It only means that the linear 
relationship between the two variables is modest. Therefore, inferring 
the relationship between a significant independent variable and the 
dependent variable is still possible. In contrast, predictive analysis needs 
goodness-to-fit models with a high value of coefficient of determination 
(close to 1). Despite the low R-squared value in the regression model, the 
results suggest a significant proportion of variance (p < 0.001) in the 
dependent variable (normalized distance) is explained by the predictor 
variable (time) (HU, 2018; Kutner et al., 2005). Attentiveness was 
computed based on the number of observations to inspect the distance 
from the hazard. As a result, the R-square and adjusted R-square values 
are equivalent in this context. Other relevant variables that may influ-
ence the targeted construct can be added in future studies to generate 
more accurate regression models for predictions. 

An alternative way of approaching the issue of reduced attentiveness 
and SA under varying hazardous conditions is to explore additional 
safety interventions aimed at reducing the safety risks that result from 
diminished attention and SA. One potential intervention is the use of 
automation and monitoring technologies to supplement worker safety 
performance. For example, (Anjum et al., 2022; Khan et al., 2022a) 

Fig. 11. Comparing trends among groups who secured a high score in each 
SA Level. 
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utilized automated computer vision-based techniques to prevent falls 
from heights. In the context of enhancing workers’ attentiveness and 
situation awareness, different alert systems and intrusion areas could be 
introduced at each hazardous object and location (Khan et al., 2022b). 
However, real-time monitoring via live cameras may require more 
precision and technological measures that are not easily accessible in all 
hazardous situations. A further investigation would be needed to 
determine cost-effective and easy-to-use solutions that help workers to 
maintain their attentiveness and SA in dynamic hazardous situations at 
construction jobsites. 

6. Conclusion 

Construction workers’ repetitive tasks can decrease attentiveness 
towards potential hazards, and their level of situation awareness (SA) 
can also affect this decline as SA involves perceiving, comprehending, 
and projecting future events in the environment. Despite its crucial 
significance in construction safety, the relationship between SA and 
attentiveness is often understudied. This research offers novel insights 
into the relationship between SA and attentiveness in the construction 
industry, using a unique combination of contextual data and physical 
actions. To achieve the research objectives, VR based eye-tracking 
technology with a blend of objective and subjective evaluation 
methods were utilized. It was discovered that as workers progressed in 
performing their tasks, their capacity to identify, understand, and pre-
dict hazardous situations improved. Workers with higher SA levels 
tended to exhibit greater attention toward hazards over prolonged pe-
riods while performing repetitive tasks when randomly exposed to 
struck-by hazards. The findings also indicate that a good identification 
of hazards does not necessarily equate to a high level of attentiveness. SA 
levels can play a significant role in shaping attentiveness and, thus, 
significantly enhance workers’ safety behavior, resulting in reduced 
risks of struck-by accidents. 

Future studies can deal with further perspectives of this study by 
utilizing dedicated eye-tracking systems for precise measurement of 
visual attention and incorporating additional variables into regression 
models to improve predictive ability. Additionally, researchers can 
further utilize deep computer programs to enable more accurate inter-
pretation and tracking of participants’ gaze direction, contributing to a 
more comprehensive understanding of eye movements during hazard 
inspection. Nonetheless, the study contributes to the body of construc-
tion knowledge and provides data analysis practices that can be used in 
future studies related to cognitive ergonomics. Furthermore, the study’s 
insights can be applied to improve the safety of workers in the con-
struction industry by identifying at-risk workers, developing targeted 
safety interventions, and enhancing overall safety outcomes. 

The outcomes of this study open a vast realm of possibilities for 
further research in this area. For instance, the proposed approach can be 
extended to other high-risk construction trades to assess workers’ safety 

behavior and determine different angles through which SA can be 
analyzed, including its relationship with other variables. For example, 
scaffolders are constantly exposed to fall hazards when undertaking 
repetitive tasks. The impact of individual differences, such as prior 
experience, age, gender, site conditions, and cognitive abilities, on 
workers’ attentional behavior at the workplace can be examined. 
Moreover, the integration of physiological responses with physical re-
sponses in VR environments presents a promising avenue for advanced 
research, which could provide a comprehensive understanding of 
workers’ attentional behavior in high-risk construction environments 
and inform the development of effective safety management strategies. 
Furthermore, it would be beneficial to investigate the long-term effects 
of training and exposure to hazards on workers’ SA and attentiveness to 
hazards in construction environments. These future research avenues 
could greatly enhance the understanding of the relationship between SA 
and attention in construction work and apprise the development of 
effective safety management strategies. 
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Appendix A  

Hazard 1: Excavator 
Scenario   

Level 1: Perception   
1.1 Where are you currently located in relation to the excavator? a. In front of excavator***b. Behind excavator***c. To the right of 

excavator***d. To the left of excavator 
1.2 Can you see the excavator from your current location? a. Digging a trench.***b. Laying pipes.***c. lifting a load.***d. Other 
1.3 What task the excavator is currently doing? a. Yes***b. No 
1.4 Is the excavator’s movement impacting your task? a. Yes***b. No***c. Not sure 
1.5 What is the excavator’s current activity? a. Digging***b. Moving dirt.***c. Lifting a load.***d. Other 
1.6 Are there any other workers in the vicinity of the excavator? a. Yes***b. No***c. Not sure 
Level 2: Comprehension   
1.1 Are you aware of the excavator’s proximity to your task area? a. Yes***b. No***c. Not sure 
1.2 Are you aware of the excavator’s movement and direction? a. Yes***b. No***c. Not sure 

(continued on next page) 
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(continued ) 

Hazard 1: Excavator 
Scenario   

1.3 Are you aware of any potential hazards related to the excavator’s proximity? a. Yes***b. No***c. Not sure 
1.4 Have you assessed the impact of the excavator’s movement on your task? a. Yes***b. No***c. Not sure 
1.5 Are you aware of the excavator operator’s signals or communication? a. Yes***b. No***c. Not sure 
1.6 Are you aware of any posted safety guidelines related to the excavator? a. Yes***b. No***c. Not sure 
1.7 Are you aware of any safety equipment or devices that are being used in 

relation to the excavator? 
a. Yes***b. No***c. Not sure 

Level 3: Projection   
1.1 Are you able to predict the excavator’s future location and movement? a. Yes***b. No***c. Not sure 
1.2 Are you able to anticipate any potential hazards related to the excavator’s 

proximity? 
a. Yes***b. No***c. Not sure 

1.3 Have you planned for contingencies related to the excavator’s movement? a. Yes***b. No***c. Not sure 
1.4 Are you able to predict the excavator operator’s next move? a. Yes***b. No***c. Not sure 
1.5 Have you identified any potential hazards related to the excavator’s activity? a. Yes***b. No***c. Not sure 
1.6 Can you tackle the potential hazards with the excavator? a. Yes***b. No***c. Not sure 
Hazard 2: Crane 

Scenario   
Level 1: Perception   
1.1 Where are you currently located in relation to the crane? a. In front of crane***b. Behind crane***c. To the right of crane***d. To 

the left of crane 
1.2 What task are you currently completing? a. Lifting a load***b. Building a wall***c. Welding***d. Other (please 

specify) 
1.3 Can you see the crane from your current location? a. Yes***b. No 
1.4 Is the crane’s movement impacting your task? a. Yes***b. No***c. Not sure 
1.5 What is the crane’s current activity? a. Lifting a load***b. Moving horizontally***c. Lowering a load***d. 

Other (please specify) 
1.6 Are there any other workers in the vicinity of the crane? a. Yes***b. No***c. Not sure 
Level 2: Comprehension   
1.1 Have you identified the crane’s proximity to your task area? a. Yes***b. No***c. Not sure***d. N/A 
1.2 How close is the crane to your task area? a. Within 5 feet***b. Within 10 feet***c. More than 10 feet***d. Not sure 
1.3 Have you determined the crane’s movement and direction? a. Yes***b. No***c. Not sure***d. N/A 
1.4 Have you recognized any potential hazards related to the crane’s proximity? a. Yes***b. No***c. Not sure***d. N/A 
1.5 Have you evaluated the impact of the crane’s movement on your task? a. Yes***b. No***c. Not sure***d. N/A 
1.6 Have you been informed of the crane operator’s signals or communication? a. Yes***b. No***c. Not sure***d. N/A 
1.7 Have you been familiarized with any posted safety guidelines related to the 

crane? 
a. Yes***b. No***c. Not sure***d. N/A 

1.8 Have you been briefed about any safety equipment or devices that are being 
used in relation to the crane? 

a. Yes***b. No***c. Not sure***d. N/A 

Level 3: Projection   
1.1 How confident are you in predicting the crane’s future location and 

movement? 
a. Very confident***b. Somewhat confident***c. Not confident***d. Not 
sure 

1.2 How familiar are you with any potential hazards related to the crane’s 
proximity? 

a. Very familiar***b. Somewhat familiar***c. Not familiar***d. Not sure 

1.3 Have you taken any steps to plan for contingencies related to the crane’s 
movement? 

a. Yes, I have taken steps.***b. No, I haven’t taken steps.***c. Not sure 

1.4 How able are you to adjust your task to accommodate the crane’s 
movement? 

a. Very able***b. Somewhat able***c. Not able***d. Not sure 

1.5 How confident are you in predicting the crane operator’s next move? a. Very confident***b. Somewhat confident***c. Not confident***d. Not 
sure 

1.6 How familiar are you with any potential hazards related to the crane’s 
activity? 

a. Very familiar***b. Somewhat familiar***c. Not familiar***d. Not sure 

1.7 Can you tackle the potential hazards with the crane? a. Yes***b. No***c. Not sure***d. N/A 
Hazard 3: Truck 

Scenario   
Level 1: Perception   
1.1 What is the current location of the truck in relation to your Location? a. In front of truck***b. Behind truck***c. To the right of truck***d. To 

the left of truck 
1.2 What is the truck’s current activity? a. Loading***b. Moving***c. Unloading***d. Other (please specify) 
1.3 Are there any other workers in the vicinity of the truck? a. Yes***b. No***c. Not sure 
1.4 Are there any blind spots on the truck that could impact your task? a. Yes***b. No***c. Not sure 
1.5 Are there any warning lights or signals on the truck that you should be aware 

of? 
a. Yes***b. No***c. Not sure 

1.6 Are there other potential hazards in surrounding related to truck movement? a. Yes***b. No***c. Not sure 
1.7 Is the truck’s load properly secured? a. Yes***b. No***c. Not sure 
Level 2: Comprehension   
1.1 How close is the truck to your task area? a. Within 5 feet***b. Within 10 feet***c. More than 10 feet***d. Not sure 
1.2 How familiar are you with the truck’s movement and direction? a. Very familiar***b. Somewhat familiar***c. Not familiar***d. Not sure 
1.3 Have you recognized any potential hazards related to the truck’s proximity? a. Yes***b. No***c. Not sure 
1.4 Have you been informed of the truck driver’s signals? a. Yes***b. No***c. Not sure 
1.5 How familiar are you with any posted safety guidelines related to the truck a. Very familiar***b. Somewhat familiar***c. Not familiar***d. Not sure 
1.6 How familiar are you with any safety equipment or devices that are being 

used in relation to the truck? 
a. Very familiar***b. Somewhat familiar***c. Not familiar***d. Not sure 

1.7 Are you aware of the truck’s maximum speed and weight capacity? a. Yes***b. No***c. Not sure 
1.8 Are you aware of the truck’s braking distance and turn radius? a. Yes***b. No***c. Not sure 
1.9 Are you aware of any specific safety procedures related to the truck, such as 

loading and unloading procedures? 
a. Yes***b. No***c. Not sure 

(continued on next page) 
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(continued ) 

Hazard 1: Excavator 
Scenario   

1.10 Are you aware of the emergency situations while crossing the track? a. Yes***b. No***c. Not sure  
Level 3: Projection  

1.1 Are you able to predict the truck’s future location and movement? a. Yes***b. No***c. Not sure 
1.2 Are you able to anticipate any potential hazards related to the truck’s 

proximity? 
a. Yes***b. No***c. Not sure 

1.3 Have you planned for contingencies related to the truck’s movement? a. Yes***b. No***c. Not sure 
1.4 Are you able to adjust your task to accommodate the truck’s movement? a. Yes***b. No***c. Not sure 
1.5 Are you able to predict the truck driver’s next move? a. Yes***b. No***c. Not sure 
1.6 Are you able to anticipate any potential hazards related to the truck’s load? a. Yes***b. No***c. Not sure 
1.7 Have you planned for contingencies related to the truck’s load shifting or 

falling? 
a. Yes***b. No***c. Not sure 

1.8 Are you able to identify the truck’s blind spots and adjust your task 
accordingly? 

a. Yes***b. No***c. Not sure 

1.9 Are you able to anticipate the truck driver’s next move based on their signals 
and communication? 

a. Yes***b. No  
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Čaplová, Z., Švábová, P., 2020. IBM SPSS statistics, in: Statistics and Probability in 
Forensic Anthropology. Elsevier, pp. 343–352. Doi: 10.1016/B978-0-12-815764- 
0.00027-7. 

Chander, N.g., 2017. Sample size estimation. The Journal of Indian Prosthodontic 
Society 17, 217. https://doi.org/10.4103/jips.jips_169_17. 

Choi, M., Ahn, S., Seo, J.O., 2020. VR-based investigation of forklift operator situation 
awareness for preventing collision accidents. Accid Anal Prev 136, 105404. https:// 
doi.org/10.1016/j.aap.2019.105404. 

Choi, H., Chae, J., Kang, Y., 2023. Job training and safety education for modular 
construction using virtual reality. Korean Journal of Construction Engineering and 
Managemen 24, 63–72. https://doi.org/10.6106/KJCEM.2023.24.5.063. 

Coolen, E., Draaisma, J., Loeffen, J., 2019. Measuring situation awareness and team 
effectiveness in pediatric acute care by using the situation global assessment 
technique. Eur J Pediatr 178, 837–850. https://doi.org/10.1007/s00431-019- 
03358-z. 

Endsley, M.R., 1995a. Measurement of situation awareness in dynamic systems. Hum 
Factors 37, 65–84. https://doi.org/10.1518/001872095779049499. 

Endsley, M.R., 1995b. A taxonomy of situation awareness errors. Human Factors in 
Aviation Operations 287–292. 

Endsley, M.R., 2015. Situation Awareness misconceptions and misunderstandings. 
J Cogn Eng Decis Mak 9, 4–32. https://doi.org/10.1177/1555343415572631. 

Endsley, M.R., 2017. Toward a theory of situation awareness in dynamic systems. 
Situational Awareness 37, 9–41. https://doi.org/10.4324/9781315092898-13. 

Endsley, M.R., Rodgers, M.D., 1996. Attention distribution and situation Awareness in air 
traffic control. Proceedings of the Human Factors and Ergonomics Society Annual 
Meeting 40, 82–85. https://doi.org/10.1177/154193129604000216. 

Endsley, M.R., 1988. Situation Awareness Global Assessment Technique (Sagat)., in: 
IEEE Proceedings of the National Aerospace and Electronics Conference. pp. 
789–795. Doi: 10.1109/naecon.1988.195097. 

Endsley, M.R., 2004. Situation awareness: Progress and directions, in: S. Banbury, & S.T. 
(Eds.) (Ed.), A Cognitive Approach to Situation Awareness: Theory, Measurement 
and Application. Ashgate Publishing, Aldershot, UK, pp. 317–341. 

Endsley, M.R., 2017b. Direct measurement of situation awareness: Validity and use of 
SAGAT, in: Situational Awareness. Routledge, pp. 129–155. Doi: 10.4324/ 
9781315087924-9. 

Fathy, F., Mansour, Y., Sabry, H., Refat, M., Wagdy, A., 2023. Virtual reality and machine 
learning for predicting visual attention in a daylit exhibition space: a proof of 
concept. Ain Shams Eng. J. 102098 https://doi.org/10.1016/j.asej.2022.102098. 

Fox, J., 2015. Applied regression analysis and generalized linear models. SAGE Publ. 

Gillard, J., 2020. One-way analysis of variance (ANOVA). In: A First Course in Statistical 
Inference. Springer International Publishing, Cham, pp. 91–101. https://doi.org/ 
10.1007/978-3-030-39561-2_6. 
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