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Abstract: Metal nanoclusters (NCs) are promising alternatives to organic dyes and quantum dots.
These NCs exhibit unique physical and chemical properties, such as fluorescence, chirality, magnetism
and catalysis, which contribute to significant advancements in biosensing, biomedical diagnostics
and therapy. Through adjustments in composition, size, chemical environments and surface ligands,
it is possible to create NCs with tunable optoelectronic and catalytic activity. This review focuses on
the integration of aptamers with metal NCs, detailing molecular detection strategies that utilise the
effect of aptamers on optical signal emission of metal NC-based biosensing systems. This review also
highlights recent advancements in biosensing and biomedical applications, as well as illustrative case
studies. To conclude, the strengths, limitations, current challenges and prospects for metal NC-based
systems were examined.
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1. Introduction

Biosensors that incorporate various nanomaterials provide numerous benefits, such as
low limits of detection (LoD), real-time analysis and the capability for multiplex
detection [1–3]. Advances in novel nanomaterials have spurred the development of diverse
sensing nanoplatforms, physiochemical methods, bioconjugation techniques and binding
ligands, leading to innovative strategies that improve detection performance [4]. These
biosensors have been developed using diverse nanomaterials, including nanoparticles
(NPs), nanorods, nanowires and quantum dots (QDs), along with carbon-based materials,
such as carbon dots (CDs), carbon nanotubes (CNTs) and graphene oxide (GOx) [5–10].

Metal nanoclusters (NCs) are promising alternatives for organic dyes and QDs, as
they exhibit special physical and chemical properties, including fluorescence, chirality,
magnetism and catalysis, which contribute to achievements in many fields, including
biosensing, biomedical diagnostics and therapy [11–13]. By adjusting their components,
size, chemical environments and surface ligands, it is possible to create diverse NCs with
unique fluorescence properties that can be tuned to different wavelengths in the visible and
near-infrared (NIR) spectra. Metal atoms can aggregate in response to reduction agents and
form strong covalent interactions with various ligands, such as amino groups, sulfhydryl
groups and phosphorus groups found in thiol compounds, dendrimers, polymers, polypep-
tides and proteins. In recent years, DNA has been explored as a template for metal NCs,
thereby increasing their utility [13].

The implementation of functional DNAs, such as aptamers, can endow metal NC-
based biosensing systems with specific recognition functions. Aptamers are short strands
of single-stranded DNA (ssDNA), single-stranded RNA (ssRNA) or synthetic nucleic acids
(XNAs) that can selectively bind to a diverse range of targets, including small molecules,
peptides, proteins and even entire cells [14–16]. They offer numerous advantages, including
high affinity, high specificity, remarkable thermostability, resistance to acidic and basic
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conditions, low immunogenicity, low toxicity, cost-effectiveness, ease of synthesis and ease
of modification [17]. These advantageous properties have contributed to an increase in their
utilisation as bio-recognition ligands in a variety of industrial, environmental and clinical
applications. Additionally, the growing use of aptamers has prompted the development
of innovative strategies and technologies for their discovery, alongside the emergence of
several companies focused on aptamer research and synthesis [14].

In recent years, several reviews provide detailed information on the principles and
characteristics of metal NC biosensors [11,18–24]. This article focuses on systems that
integrate aptamers with metal NCs (Figure 1), exploring the advantages and potential
applications of such systems. It also introduces molecular detection strategies and technolo-
gies, highlighting how the aptamer influences the optoelectronic properties of the metal
NC-based biosensing system by modulating the properties of the metal NCs. These sensing
strategies can be largely divided into the following categories: (1) the signal changes based
on aptamers bound to NCs, (2) the signal changes based on aptamers fused with DNA
templates for NC nucleation and (3) the signal changes based on aptamers hybridised with
templates for linking to NCs. The advantages and disadvantages of diverse metal NCs are
described in this review. To provide further understanding and insights, recently devel-
oped techniques in biosensing, biomedical diagnosis and therapy are introduced. Based
on these sensing strategies, an overview of representative applications of DNA-templated
metal NC systems that use aptamers is described. These applications include examples
described in this review, along with others developed for detecting various molecules.
Additionally, a critical evaluation of the strengths and drawbacks of these techniques is
beneficial for all researchers in both academia and industry involved in the development of
metal NC-based systems. Finally, we outlined current challenges and future perspectives.
The review will facilitate a more profound comprehension and insights into the prospective
applications and attributes of systems that integrate aptamers with NCs, thereby extending
the knowledge base established by existing reviews on NCs.
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2. Metal NC Aptasensor for Molecule Detection and Monitoring
2.1. Metal NC as a Sensing Material

Metal NCs are nanomaterials that are smaller than 2 nm and typically comprise up
to 150 metal atoms, a size range comparable to the Fermi wavelength of an electron [12].
In this range, the electronic structure undergoes a transition from continuous energy
bands, which are characteristic of bulk metals, to discrete energy levels that are analogous
to those observed in molecules [25,26]. This size-induced quantum effect gives rise to
distinctive optical absorption characteristics and the formation of well-defined HOMO-
LUMO gaps [27,28]. Additionally, the facile synthesis process, typically characterised by
uniform size and minimal complexity, provides a notable advantage. These NCs exhibit
a large Stokes shift and good luminescence stability. Also, the fluorescence of metal NCs
can be customised from visible to NIR light wavelengths, facilitating advancements in
biomedical applications, including biosensing, bioimaging, biomedical diagnostics and
biomedical therapy [29]. Fluorescence modulation can be achieved by utilising various
metals, including gold (Au), silver (Ag), copper (Cu) and bimetallic NCs. Employing
surface ligands is another fluorescence emission-tuning strategy.

While most metal NCs are synthesised via direct reduction, involving the conversion
of metal ions into atom particles using reactive substances, this method can often result in
issues, such as weak fluorescence, low quantum yield and susceptibility to aggregation.
The incorporation of surface ligands in metal NCs can enhance stability, nanocrystalline
nucleation rate and fluorescence by altering the size, electronic structure and optical proper-
ties of the NCs [30–40]. The robust interaction between the metal core and surface ligands
markedly affects the electronic and photophysical properties, thereby enabling highly
efficient photoluminescence. The precise arrangement of metal atoms and ligands creates
unique electronic transitions and emission pathways, which are highly sensitive to external
factors such as core size, ligand chemistry, aggregation state and surrounding environ-
ment [41–43]. These characteristics not only define their fluorescence and optoelectronic
properties but also allow their emission intensity and wavelength to be tuned, supporting
versatile applications in sensing, bioimaging and advanced optoelectronic systems [44].
Additionally, DNAs can serve as essential templates or scaffolds for metal NC synthesis
by effectively binding metal ions. The DNA bases anchor and promote the growth of the
NCs. Their nano-sized and robust geometric structure, along with their programmable
properties, which are based on length, base and conformational state, facilitate the construc-
tion of nanostructures with diverse morphologies [44]. Soluble NCs enhance biosensing
capabilities, enabling detection in real samples, while their fluorescence allows for the
development of innovative probes that surpass traditional fluorophores. Furthermore,
a tunable fluorescence property and high photostability can be achieved by varying the
bases that alter the sequence or structure of metal NCs. This customisation allows for
fluorescence adjustments, facilitating the generation of multiple colours for multifunctional
and simultaneous monitoring [45,46]. In addition, DNA-templated metal NCs exhibit
minimal effects on cell viability.

2.2. Diverse Metal NCs for the Detection of Molecules

A wide variety of NCs can be produced using metal materials beyond the conventional
Au and Ag, including Cu and bimetals. Each metal NC exhibits unique properties, such as
distinct emission spectra and catalytic activities (Table 1).

Au is a commonly used metal because of its biocompatibility and well-established
chemistry. AuNCs exhibit strong fluorescence and are used in bioimaging, sensing and
therapeutic applications. They exhibit lower toxicity than many other metals, making them
suitable for biomedical applications. Additionally, AuNCs demonstrate strong and size-
tunable fluorescence, which allows for customisation in different settings. Their reduced
susceptibility to oxidation ensures consistent performance, further contributing to their
reliability. Specifically tailored DNA-AuNCs can form stable NCs with unique fluorescence
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properties. Moreover, AuNCs serve as electrochemiluminescent (ECL) luminophores with
tunable luminescence properties [47].

Table 1. Advantages and limitations of metal NCs in biological applications a.

Metal Advantages Limitations

AuNC

• Lower toxicity than many other metals
• Strong, size-tunable fluorescence
• Less prone to oxidation, ensuring consistent

performance
• Presence of ECL luminophore with tunable

luminescence

• High cost
• High size dependence and the need for

precise control over size and shape for
fluorescence

• The need for a strict design of DNA template
owing to unique DNA sequence dependency

• Low stability at high salt concentrations

AgNC

• Strong fluorescence and photoluminescence
• Diverse fluorescence colours ranging from

blue/green to NIR
• Antimicrobial properties
• Low toxicity
• Excellent stability

• Toxicity to cells and organisms
• Higher susceptibility to oxidation and

instability compared to AuNCs, which may
affect their performance over time

• High complexity of the sequence-to-colour
rules and DNA template design

• Low stability at high salt concentrations

CuNC

• Abundance, cost-effectiveness and
availability of precursor for construction

• Rapid synthesis (several minutes)
• Long Stokes shift favourable for minimising

the interference from background signals in
biological systems.

• Susceptibility to oxidation and instability
• Limited fluorescence colours
• Relatively low stability

Bimetallic NC

• Enhanced optical, catalytic and stable
properties: synergistic properties from
combined metals

• Customisable functions achieved by varying
the composition and ratio of the metals used

• Complex synthesis
• Inter-metal interactions, which lead to

unpredictable or non-ideal properties, thus
requiring careful optimisation

a Abbreviations: NC, nanocluster; ECL, electrochemiluminescence.

AgNCs are widely accepted NCs owing to their unique properties, including strong
fluorescence and potential antimicrobial effects [48]. They have been extensively stud-
ied for their formation through the controlled reduction of metal ions on preselected
nucleic acid templates, with variable sequence combinations. Ag+ ions primarily in-
teract with C-rich sequences or similar ssDNA to form these NCs [49–51]. Alternative
structures of ssDNA, such as hairpin or dumbbell-shaped DNA with loops, mismatched
dsDNA and dsDNA with abasic sites that has neither a purine nor a pyrimidine base,
have been used as templates for synthesising AgNCs [52–55]. AgNCs exhibit a broad
emission spectrum, ranging from blue/green to NIR, allowing for in vivo deep tissue
imaging [46,56,57]. Additionally, AgNCs can enhance electrochemical signals, enabling
ultra-sensitive quantification in various applications [58]. The introduction of diverse
quenchers, such as cysteine [59], GOx [60], molybdenum carbide (Mo2C) nanotubes [61],
carbon nanoparticle oxide (CNPs) [62], tungsten disulfide (WS2) nanosheets [63] and molyb-
denum disulfide (MoS2) nanosheets [64], enables a turn-off and label-free approach with
strong anti-inference ability and high NC sensitivity when used on complex biosample
assays. Another distinct characteristic of AgNCs is their antibacterial activity [65]. The
DNA scaffold sequence used for nucleation can affect the antibacterial activity of NCs [66].
The utilisation of scaffolds, such as branched DNA, has been demonstrated to enhance the
contact area between NPs and bacteria, thereby promoting antibacterial activity [67,68].

CuNCs have demonstrated potential for developing a simple, cost-effective and label-
free fluorescence biosensing system owing to the abundance and affordability of Cu com-
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pared to other noble metals, such as Au and Ag. The presence of poly-T bases is essential
for the formation of CuNCs. These NCs can be easily synthesised in the presence of spe-
cific dsDNA or poly-T base DNA and a reducing agent (such as ascorbic acid) at room
temperature. The resulting CuNCs emit a red fluorescence with a long Stokes shift, which
is advantageous for minimizing interference from background signals in biological sys-
tems [69–73]. High fluorescence emission and photostability have been observed in DNA
templates with prolonged chains and a high number of AT-rich sequences [70]. The stability
of these templates at high salt concentrations makes them suitable for biosensing strategies
based on dsDNA formation reactions [73–76]. The CuNCs offer an additional advantage
for in vivo applications due to the existence of cellular and molecular mechanisms that
govern the uptake and excretion of Cu [61].

Bimetallic NCs comprise different metals stabilised and templated by DNA. This
combination of metals can lead to unique optical and electronic properties that are not
present in single-metal systems. Bimetallic NCs provide enhanced optical and catalytic
properties, increased stability due to the synergistic effects of the metals and customisable
functions through adjustments in metal composition and ratios. However, they also have
limitations, including susceptibility to oxidation, a restricted range of fluorescence colours
and relatively low overall stability.

2.3. Strategy for Molecule Detection Using Metal NC Aptasensors

The combination of aptamers with metal NCs provides specific recognition functions
and the enhanced stability of metal NCs, which modulate the electronic structure and steric
environment of the NCs [77–79]. The binding of target molecules to the aptamer induces
conformational changes in DNA, thereby altering the arrangement of metal atoms and sub-
sequently changing the fluorescence intensity, emission wavelength or catalytic activity. In
metal NC-based aptasensors, several systems can induce diverse optoelectronic outputs by
altering the properties of the NC-based sensing system (Figure 2). The first of these systems
involves the direct binding of the aptamer to the NC [47,63,80–96]. Metal ions are typically
nucleated by adding reducing agents or polymer scaffolds, such as polyethyleneimine
(PEI), and the surface of the resulting NCs can be functionalised with aptamers through
mechanisms, such as electrostatic attraction [95], thiolation [94] and carboxylation [80],
resulting in changes in fluorescence or catalytic activity. These aptamer-functionalised NCs
can additionally bind to a quencher via van der Waals interaction, causing fluorescence
resonance energy transfer (FRET) due to the proximity of the NCs (fluorescence donor)
and the quencher (fluorescence acceptor); this could lead to reduced fluorescence [80,94].
Recently, significant attention has been directed towards the modification of metal NCs by
incorporating cages, such as polymers, metal-organic frameworks (MOFs) and covalent-
organic frameworks (COFs), and functionalising diverse polymers. These strategies can
enhance the properties of NCs; however, they typically involve complex processes and are
associated with high costs.

The second system involves the fusion of aptamers with a DNA template for NC nucle-
ation [59,64,65,73,97–105]. This system typically involves the use of a scaffold comprising
an aptamer for target binding, an additional domain and a template for NC nucleation. The
additional domain can serve as a signal enhancer (e.g., G-rich overhang for AgNCs) [100]
or as a sequence for target-cycling strand displacement amplification [73]. The binding
interaction between the aptamer and target molecule can either maintain the fluorescence
of the NCs through sandwich hybridisation with another aptamer attached to the surface of
the material [101,102] or induce a conformational change in the scaffold, thereby resulting
in enhancements or reductions in fluorescence emission [73]. Another strategy involves the
use of a quencher, where there is competition between the target and the quencher, leading
to a fluorescence emission switch from a ‘turn-on’ to a ‘turn-off’ mode [64]. This strategy
involves altering both the specific recognition capability of the aptamer and the optical
properties of the NCs, leading to challenges in precisely controlling the optoelectronic
properties when using the integrated scaffold of aptamer and signal unit.
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The third system is based on hybridising the aptamer with a template to link to the
NC [76,106–109]. Hybridisation-induced signal switching systems require two strands: one
is a template-extending strand containing a sequence for NC formation and a sequence
partially complementary to the aptamer strand, and the other is an aptamer strand that
can serve as quencher [106]—and a signal transducer [108]. The NCs are generated by
the template containing a region complementary to the aptamer, which can be regulated
by the aptamer via hybridisation, thereby resulting in a fluorescence shift. The aptamer
strand can also be functionalised with a quencher molecule or other sensing labels to ensure
dual-mode detection [109]. In contrast to the two previously discussed systems, this third
approach involves a more intricate process. However, it offers greater flexibility in signal
control by adjusting the lengths and quantities of complementary strands.

3. Current Aptamer-Combined Metal NC for Chemical and Biomolecule Detection

In this section, we introduce a chemical and biomolecule detection system based on
various strategies. The challenges and strategies to improve the performance of colourimet-
ric sensing systems, including the related parameters (usage, analyte, linear range, LoD,
etc.), are also summarised in the Tables below.

3.1. Signal Changes by Aptamer-Functionalised NCs

Aptamers can bind directly to the surface of NCs [47,63,80–96]. After nucleation of
metal ions with the addition of reduction agents, such as NaBH4 and NaOH, the aptamer
can either electrostatically adsorb onto the surface of NCs or attach through functional
groups. This adsorption or attachment induces a change in catalytic activity or fluorescence
of the NCs. Subsequently, aptamer-target binding restores catalytic activity or fluorescence.

For instance, a CuNC-based aptasensor was developed for the detection of oxyte-
tracycline (OTC) [95]. The OTC-specific aptamer reduced CuNC catalytic activity and
Raman signals by adsorption. Upon OTC binding, the aptamer detached, restoring activity
and promoting AuNP formation, enhancing Raman signals. The system achieved LoDs
of 18.0 ng (SERS) and 25.0 ng/L (RRS), with linear ranges of 37.5–300 ng/L (SERS) and
37.5–225 ng/L (RRS).

This strategy enhanced AuNC properties by incorporating them into COFs, which
are porous, lightweight and stable [110,111]. The AuNCs loaded onto the COF bonded
weakly to the aptamer, thereby reducing the catalytic activity of the NCs [93] (Figure 3A).
Upon the introduction of the target molecule, the aptamers were released from the NC-
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loaded COF by binding with the target. This release triggered a strong catalytic response,
thereby facilitating the production of AuNPs [83,93]. The incorporation of a COF enhanced
the sensing performance (LoDs of 0.07 nmol/L for urea; 0.006 nmol/L for estradiol; and
0.004 nmol/L for ATP) and linear range of 0.07–3.33 nmol/L for urea; 0.03–3.333 nmol/L
for estradiol; 0.01–0.87 nmol/L for ATP [93] (Table 2).

Biosensors 2025, 15, x FOR PEER REVIEW  12  of  28 
 

 

Figure 3. Sensing strategy based on signal emission changes in aptamer‐linked metal NCs. (A) De‐

tection of urea, ATP, estradiol using NC‐loaded COF and aptamer. This system is dual‐mode SERS 

and RRS sensor. Reproduced with permission from [93]. Copyright 2020, Elsevier. (B) Detection of 

T‐2 toxin using PAA@Arg@ATT‐AuNCs NPs and aptamer–PDDA complex. This system used FRET 

between PAA@Arg@ATT‐AuNCs (fluorescence donor) and AuNPs (energy receptor). Reproduced 

with permission from [86]. Copyright 2020, Elsevier. (C) Detection of Salmonella typhimurium using 

AuNCs@aptamer and TMB. This system enables simultaneous binding of bacteria to both the ap‐

tamer@AuNCs and TMB, facilitating peroxidase‐like activity due to the increased proximity of these 

interactions. Reproduced with permission from [91]. Copyright 2020, Elsevier. (D) Detection of two 

different mycotoxins  (aflatoxin B1  and  zearalenone)  using  FRET  between  the AuNCs  and WS2 

quencher. Reproduced with permission from [63]. Copyright 2019, American Chemical Society. NC, 

nanocluster; ATP,  adenosine  triphosphate; COF,  covalent‐organic  framework;  PAA,  polyacrylic 

acid; ATT,  6‐aza‐2‐thiothymine;  PDDA,  poly  (diallyldimethylammonium  chloride);  TMB,  tetra‐

methylbenzidine. 

3.2. Signal Changes in NCs Produced by Aptamer‐Linked DNA Templates 

This system typically relies on the interaction between the aptamer and the target to 

initiate a structural change in the scaffold, fused form of aptamer and NC nucleation tem‐

plate,  thereby  resulting  in  enhancement  or  reduction  in  fluorescence  emission 

[59,64,65,73,97–105,112]. Using  this  strategy,  the AgNC  template was  linked with  K+ 

Figure 3. Sensing strategy based on signal emission changes in aptamer-linked metal NCs.
(A) Detection of urea, ATP, estradiol using NC-loaded COF and aptamer. This system is dual-
mode SERS and RRS sensor. Reproduced with permission from [93]. Copyright 2020, Elsevier.
(B) Detection of T-2 toxin using PAA@Arg@ATT-AuNCs NPs and aptamer–PDDA complex. This
system used FRET between PAA@Arg@ATT-AuNCs (fluorescence donor) and AuNPs (energy recep-
tor). Reproduced with permission from [86]. Copyright 2020, Elsevier. (C) Detection of Salmonella
typhimurium using AuNCs@aptamer and TMB. This system enables simultaneous binding of bac-
teria to both the aptamer@AuNCs and TMB, facilitating peroxidase-like activity due to the in-
creased proximity of these interactions. Reproduced with permission from [91]. Copyright 2020,
Elsevier. (D) Detection of two different mycotoxins (aflatoxin B1 and zearalenone) using FRET between



Biosensors 2024, 14, 625 8 of 26

the AuNCs and WS2 quencher. Reproduced with permission from [63]. Copyright 2019, American
Chemical Society. NC, nanocluster; ATP, adenosine triphosphate; COF, covalent-organic framework;
PAA, polyacrylic acid; ATT, 6-aza-2-thiothymine; PDDA, poly (diallyldimethylammonium chloride);
TMB, tetramethylbenzidine.

Table 2. Examples of metal NC-based strategies utilising signal emission changes in aptamer-linked
metal NCs a.

Metal Usage Analyte Detection
Method

Linear
Range LoD Sample Feature Reference

Au Detection Kanamycin Electrochemil
uminescence

50.00
fg/mL–50.00

ng/mL
32.90 fg/mL Milk, honey

Use of
cucurbit[7]uril@Try-

MPA-AuNC with
improved ECL

performance as the
anode signal probe.

[47]

Au Detection

Aflatoxin B1
(AFB1),

zearalenone
(ZEN)

Fluorescence 0.005–100
ng/mL

0.34 pg/mL
for AFB1;
ZEN: 0.53
pg/mL for

ZEN

Maize

Production of blue-
and red-emitting

AuNCs for
dual-colour

simultaneous
detection by

combining with
L-proline and bovine

serum albumin.
Use of FRET between
the AuNCs and WS2

quencher.

[63]

Au Detection Mycotoxin
(patulin) Fluorescence 0.01–100

ng/mL 8.5 ng/L Apple and
grape juice

Use of FRET between
aptamer@AuNCs

(acceptor) and
BSA@MnO2
nanoflakes
(quencher).

[81]

Au Detection Cocaine Electrochemistry 0.001–1.0
ng/mL

Electrochemical
impedance

spectroscopy,
1.29 pM;

differential
pulse

voltammetry,
2.22 pM

Human
serum, urine,

saliva

Use of AuNCs@Zr-
MOF-based
nanosheets.

[82]

Au Detection Estradiol SERS/RRS

0.333–5.33
nmol/L
(SERS);

0.33–4.00
nmol/L
(RRS)

0.150
nmol/L

(SERS); 0.23
nmol/L
(RRS)

Urine

Dual-mode SERS and
RRS aptasensor.

Use of AuNC-loaded
COF catalyst.

Based on the Apt
modulating AuBtPD
catalysis with AuNP

indicator in the
presence of a VB4R

molecular probe.

[83]

Au Detection AFB1 Fluorescence/
colourimetry

5–400
ng/mL for

fluorescence;
20–400

ng/mL for
colourimetry

1.91 ng/mL;
12.16 ng/mL

for
colourimetry

Wheat

Turn-on dual-mode
FRET aptasensor.

Use of
Arg/ATT-AuNCs

(donor) and AgNPs
(quencher).

[84]

Au Detection Tetracycline Colourimetry 1–16 µM 46 nM Drug, milk
Use of

peroxidase-like
AuNC.

[85]
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Table 2. Cont.

Metal Usage Analyte Detection
Method

Linear
Range LoD Sample Feature Reference

Au Detection Mycotoxin
(T-2) Fluorescence 0.001−100

ng/mL 0.57 pg/mL Maize

Use of the
green-emitting

AuNCs synthesised
by employing rigid

host–guest
assemblages between
ATT and Arg around
the AuNCs. Use of

FRET between
PAA@Arg@ATT-

AuNCs (fluorescence
donor) and AuNPs
(energy receptor).

[86]

Au Detection
Staphylococcal
enterotoxin B

(SEB)
Colourimetry 1–

700 ng/mL
1.0 × 10−12

g/mL
Corn, rice,

flour

Use of
peroxidase-like
AuNC-chitosan

composite
membrane.

[87]

Au Detection Kanamycin Fluorescence 0.04 nM–7.0
nM 0.032 nM Milk Use of BSA-attached

AuNC. [88]

Au Detection Vancomycin Fluorescence 0.01–100
µg/mL 2.79 ng/mL Serum,

rabbit

Dual-emission
biosensor.

Use of blue-emitting
aggregation-induced
emission luminogens

and
aptamer-modified

red-emitting
AuNCs–aptamer.

[89]

Au Detection Adenosine Electrochemistry 0.1 nM–1
mM 0.1 nM Mouse

Real-time target
monitoring in vivo.

Use of rGOx-AuNC-
modified electrode

surface.

[90]

Au Detection Salmonella
typhimurium Colourimetry 101–106

CFU/mL
1 CFU/mL Eggshell, egg

white

Enabling
simultaneous

binding of bacteria to
both the

aptamer@AuNCs
and TMB, facilitating

peroxidase-like
activity due to the

increased proximity
of these interactions.

[91]

Au Detection Pesticide iso-
carbophos SERS/RRS

1.0 ×
10−3–2.5 ×

10−2 nmol/L

4.5 × 10−5

nmol/L
Farmland

water

Use of MXene-loaded
AuNC catalyst.

Dual-mode
nanocatalytic

indicator reaction
with aptamer

reaction.

[92]

Au Detection
Urea,

estradiol,
ATP

SERS/RRS

0.07–3.33
nmol/L for

urea;
0.03–3.333

nmol/L for
estradiol;
0.01–0.87

nmol/L for
ATP

0.07 nmol/L
for urea;

0.006
nmol/L for

estradiol;
0.004

nmol/L for
ATP

Urine

Dual-mode SERS and
RRS aptasensor.

Use of an
AuNC-doped COF

catalyst.

[93]
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Table 2. Cont.

Metal Usage Analyte Detection
Method

Linear
Range LoD Sample Feature Reference

Cu Detection Oxytetracycline SERS, RRS

SERS,
37.5–300

ng/L; RRS,
37.5–225

ng/L

SERS, 18.0
ng/L; RRS,
25.0 ng/L

Water

CuNC synthesis
under a reduction

solution of L-cysteine
and NaOH.

Use of CuNC catalyst
for an AuNP

generation reaction.

[95]

Au+Cu
bimetal Detection Hg2+ Fluorescence 0.1–9.0 µM 4.92 nM Porphyra

Use of
aptamer-modified

AuCu bimetallic NCs,
which remained well

dispersed in the
solution without

Hg2+ but aggregated
upon Hg2+ addition

to form a T–Hg–T
structure, resulting in
altered fluorescence

intensities due to
FRET and visible

changes in
fluorescent colour.

[96]

Au+Cu
bimetal Detection DON Fluorescence 5–100

ng/mL 1.87 ng/mL Maize flour

FRET-based
aptasensor using

AuCu bimetallic NCs
(donor) and MoS2

nanosheets
(quencher).

Attachment of NC
with a thiol-modified

aptamer.

[94]

Ag+Cu
bimetal Detection Salmonella

typhimurium Fluorescence 102–107

CFU/mL
3.8 CFU/mL

Milk, orange
juice,

chicken, egg
white

NC formation by
adding PEI as the
polymer template.

FRET-based
aptasensor using
aptamer-attached

PEI-AgCu bimetallic
NCs (donor) and
polydopamine
nanospheres
(quencher).

Combination with a
cryonase-based

signal amplification
method, which splits
PEI-AgCu from the
aptamer; the release
target can repeatedly

bind to another
aptamer, thereby

emitting fluorescence.
Cryonase-assisted
target cycle signal

amplification.

[80]

a Abbreviations: LoD, limit of detection; NC, nanocluster; SERS, surface-enhanced Raman scattering; RRS,
resonance Rayleigh scattering; MPA, mercaptopropionic acid; PAA, polyacrylic acid; COF, covalent-organic
framework; FRET, fluorescence resonance energy transfer; ATT, 6-aza-2-thiothymine; PEI, polyethylenimine; GOx,
graphene oxide; rGOx, reduced GO; BSA, bovine serum albumin.

Additionally, a system utilising MXeneTi3C2 nanosheet-loaded AuNCs was developed,
leveraging their excellent catalytic properties for the detection of the pesticide isocarbophos.
This approach combined a dual-mode nanocatalytic indicator reaction with an aptamer re-
action [92]. The incorporation of AuNCs onto MXeneTi3C2 nanosheets, a two-dimensional
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(2D) material composed of carbides, carbonitrides and nitrides, led to an increase in surface
electrons and active sites. This enhancement resulted in improved catalysis of AuNCs for
AuNP production. This synergistic effect resulted in strong SERS/RRS signals, exhibiting
an LoD of 4.5 × 10−5 nmol/L with a linear range of 1.0 × 10−3–2.5 × 10−2 nmol/L (Table 2).

AuNCs with enhanced properties were synthesised by creating rigid host–guest
complexes with 6-aza-2-thiothymine and L-arginine around the AuNCs [86] (Figure 3B).
The addition of poly (diallyldimethylammonium chloride) (PDDA), a positively charged,
water-soluble cationic polymer, induced aggregation of the AuNPs by neutralising the
charge and disrupting the citrate protective layer. In this method, PAA@Arg@ATT-AuNCs
served as a signalling probe, a T-2 aptamer as the recognition element and AuNPs as a
quencher. In the absence of T-2 toxins, the aptamer and PDDA form a duplex, resulting in
the quenching of the fluorescence of the AuNCs. However, in the presence of T-2 toxins, the
aptamer strongly binds to the toxins, causing the free PDDA to facilitate AuNP aggregation.
This aggregation causes a loss of quenching capability and restores fluorescence in the
AuNCs (Table 2).

NCs can also catalyse the oxidation of tetramethylbenzidine (TMB) by H2O2 and
have been used for the colourimetric detection of bacteria. Thiol-modified aptamers were
covalently attached to AuNCs and used to detect Salmonella typhimurium [91] (Figure 3C). In
the presence of bacteria, they could simultaneously bind to both the aptamer@AuNCs and
TMB. This proximity facilitated a strong interaction, leading to increased peroxidase-like
activity towards TMB. Such enhanced activity is indicative of the sensitivity and specificity
of the system, which contributed to a detection limit of 1 CFU/mL and a linear detection
range of 101 to 106 CFU/mL (Table 2).

Aptamer-functionalised NCs bind weakly to a quencher via van der Waals interactions,
enabling FRET and reducing fluorescence. This property was used to develop an AuNC-
based aptasensor for detecting aflatoxin B1 and zearalenone (ZEN) [63] (Figure 3D). Au ions
were mixed with L-proline and bovine serum albumin to produce blue- and red-emitting
AuNCs that did not exhibit overlapping spectra when excited by a single wavelength. These
AuNCs were then attached to WS2 nanosheets, resulting in NC fluorescence quenching.
When exposed to mycotoxins, the binding preference of the aptamer prompted the release
of NCs from the nanosheets, restoring the fluorescence (Table 2).

Additionally, a living bacterial cell-detecting NC biosensor was developed [80]. A
AuCu bimetallic NC was produced by incorporating a polyetherimide template and func-
tionalising it with a carboxylated aptamer. The resulting NCs can weakly interact with
polydopamine nanospheres, each of which acts as an electron donor and acceptor, generat-
ing FRET. The aptamer bound to the target, leading to the detachment of the polydopamine
nanosphere quenchers, thus restoring the fluorescence of the NCs. Subsequently, endonu-
clease (cryonase) was introduced to digest the aptamer, resulting in the release of the target
and the emission of PEI-AgCu. The released target could then rebind to another aptamer,
generating target cycle signal amplification. The sensor design enables the detection of
Salmonella typhimurium down to a detection limit of 3.8 CFU/mL with a linear detection
range of 102–107 CFU/mL (Table 2).

3.2. Signal Changes in NCs Produced by Aptamer-Linked DNA Templates

This system typically relies on the interaction between the aptamer and the target to initiate
a structural change in the scaffold, fused form of aptamer and NC nucleation template, thereby
resulting in enhancement or reduction in fluorescence emission [59,64,65,73,97–105,112]. Using
this strategy, the AgNC template was linked with K+ aptamer to produce fluorescence-
emitting AgNCs, enabling the measurement of vitreous K+ concentration for postmortem
interval estimation [104]. Structural changes in the G-rich aptamer sequence resulted in
fluorescence changes by influencing the C-rich AgNC motif, leading to reduced emission.
This method allowed for the fast and accurate detection of vitreous K+ concentration,
thereby facilitating the estimation of the postmortem interval with an LoD of 0.06 nM and
a linear range of 0.1 nM to 1 mM (Table 3).
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Table 3. Examples of metal NC-based strategies utilising signal changes in aptamer-linked NCs a.

Metal Usage Analyte Detection
Method Linear Range LoD Sample Feature Reference

Ag Detection/
imaging

Mucin1
(MUC1) Fluorescence 0.1–100 nM 0.05 nM MCF-7 cell

Use of scaffold
consisting of C-rich

template and
aptamer with G-rich
sequence at the end.

[112]

Ag Detection Potassium
ion (K+) Fluorescence 0.1 nM–1 mM 0.06 nM Vitreous

humour

Use of a guanine
quartet potassium
aptamer sequence
and a C12 AgNC

sequence. Structural
changes in the G-rich

aptamer sequence,
driving fluorescence
changes by simply
affecting the C-rich

AgNC motif.

[104]

Ag
Detection/

antimicrobial
activity

Pseudomonas
aeruginosa Fluorescence ND ND

Galleria
mellonella

larvae

Use of a scaffold to
form both the

aptamer and the
NC-generating

region.
Antimicrobial
activity testing

in vitro and in an
in vivo animal

model.

[65]

Ag Detection Tetracycline
(TET) Fluorescence 20 ng/mL–10

g/mL
11.46

ng/mL Milk

Use of aptamer
sequence of TET rich

in cytosine and
capable of forming a

G-quadruplex
structure, which also
serves as a template

for AgNC nucleation.

[97]

Ag Detection
Staphylococcal
enterotoxin

A (SEA)
Fluorescence 0.5–1000

ng/mL
0.3393
ng/mL Milk

Fluorescence
quenching by

binding to ssDNA
aptamer/AgNC

using polypyrrole
NPs (PPyNPs) and a

quencher.
Use of the

competitive binding
interaction between
SEA, PyNPs and the

aptamer.

[98]

Ag Detection Pb2+ Fluorescence 5–50 nM 3.0 nM Lake water,
tap water

Use of a scaffold with
a G-quadruplex

aptamer specific for
Pb2+ and AgNC

templates at both
ends.

Use of enhanced
fluorescence

properties by two
dark-coloured
AgNCs nearby

[99]



Biosensors 2024, 14, 625 13 of 26

Table 3. Cont.

Metal Usage Analyte Detection
Method Linear Range LoD Sample Feature Reference

Ag Detection
T-2 toxin

(Fusarium
mycotoxin)

Fluorescence 0.005–500
ng/mL

0.93
pg/mL

Maize,
wheat

Use of a template
containing an

aptamer and an NC
scaffold.

Use of FRET between
MoS2 nanosheets

(fluorescence
acceptor) and the
aptamer-AgNCs
(energy donor).

[64]

Ag Detection ZEN Fluorescence 0.01–250
ng/mL

2 × 10−3

ng/mL
Maize,
wheat

Turn-on FRET
aptasensor. Use of a
scaffold consisting of
an AgNC template,
an aptamer and a

G-rich domain.
Use of FRET between
the aptamer/AgNCs
and porous Fe3O4/C.

Fe3O4/C acting on
quenching of

fluorescence and the
easy separation.

G-rich domain for
fluorescence

enhancement.
Thirty-day stability.

[100]

Ag Detection Staphylococcus
aureus Electrochemistry 101–106

CFU/mL
1.0

CFU/mL
Tap water,
river water

Detection of
Staphylococcus aureus

using an
aptamer-based
sandwich assay.

[101]

Ag Detection Organic
mercury Fluorescence 0.05–2.0 µM 5.0 nM Water, fish

muscle

Use of scaffold
consisting of an

AgNC template and
an organic

mercury-recognizing
T-rich sequence.

[105]

Cu Detection ATP Fluorescence 0.01–10 nM 5 pM None

Use of a scaffold
consisting of a
hairpin stem

containing an AT-rich
sequence for the

formation of a CuNC
and an aptamer for

ATP binding.
Combination of

dsDNA-templated
CuNCs synthesis

with the
target-cycling strand

displacement
amplification for

signal amplification.

[73]
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Table 3. Cont.

Metal Usage Analyte Detection
Method Linear Range LoD Sample Feature Reference

Au+Ag
bimetal Detection

MUC1,
carcinoem-

bryonic
antigen,
cancer

antigen 125

Fluorescence

1.33–200
ng/mL for
MUC1; 6.7

ng/mL–13.3
ug/mL for car-
cinoembryonic

antigen; 2
ng/mL–6.7
ug/mL for

cancer antigen
125

0.18
ng/mL for

MUC1;
3.18

ng/mL for
carcinoem-

bryonic
antigen;

1.26
ng/mL for

cancer
antigen

125

Human
serum

Use of a scaffold
consisting of the

same NC nucleation
sequence and

different aptamer
sequences, exhibiting

different emission
wavelengths for the

detection of three
molecules.

FRET-based
aptasensor using

AuAg bimetallic NCs
(donor) and GOx

nanosheets
(quencher).

[59]

Ag+Cu
bimetal Detection Kanamycin Fluorescence 80 nM–10 µM 13.3 nM Tap water,

milk

Combination of two
split kanamycin

aptamers, adding
Cu2+ and Ag+ for a

dark reaction,
followed by the
reducing agent
NaBH4 to form

AgCu bimetallic NPs,
which produced a
weak fluorescent
signal that was

significantly
enhanced in the

presence of
kanamycin due to the

affinity of the
aptamers for each

other.

[103]

Ag+Pt
bimetal Detection Thrombin Colourimetry 1–50 nM 2.6 nM Human

thrombin

Use of co-synthesised
bimetallic NCs

produced in a DNA
template. Use of

good peroxidase-like
catalytic activity of Pt
NC deposited by the
galvanic replacement

reaction between
Ag(0) and Pt(II) on
the surface of the

AgNCs.

[102]

a Abbreviations: LoD, limit of detection; NC, nanocluster; FRET, fluorescence resonance energy transfer; GOx,
graphene oxide; ND, not determined.

Additionally, an AgNC-based Pb2+ detecting system was developed [99] (Figure 4A).
The DNA scaffold was designed to incorporate a Pb2+ aptamer in the middle and serve as
a template for NC formation at both ends. This system adopted two distinct characteristics:
one involves the formation of a Pb2+ binding-induced G-quadruplex [113], while the other
involves enhanced fluorescence by two darkish AgNCs located nearby [114]. In the absence
of the target molecule, the DNA scaffold remains linear, and AgNC formation occurs at
both ends of the scaffold, resulting in diminished fluorescence intensity. Exposure to the
target induces a transition of scaffold to a G-quadruplex, bringing the two darkened AgNCs
bound to both ends of the scaffold in close proximity and resulting in strong fluorescence
emission. This system demonstrated an LoD of 3 nM and a linear range of 5 to 50 nM
(Table 3).
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Figure 4. Sensing strategy based on signal changes in metal NC produced by aptamer-linked DNA
template. (A) Detection of Pb2+ using a scaffold of the AgNC formation template fused with aptamer
to form G-quadruplex structure in the presence of target. Reproduced with permission from [99].
Copyright 2018, Elsevier. (B) Detection of kanamycin using the scaffolds consisting of two split
aptamer and Cu/Ag bimetal NC formation templates. Reproduced with permission from [103].
Copyright 2022, Elsevier. (C) Detection of T-2 toxin using a scaffold containing an aptamer, a T-
linker and an AgNC template. This system also used FRET between MoS2 nanosheets (fluorescence
acceptor) and the aptamer–AgNCs (fluorescence donor). Reproduced with permission from [64].
Copyright 2018, Elsevier. (D) Detection of ZEN using a scaffold consisting of an AgNC template, an
aptamer and a G-rich domain. This system uses of FRET between the aptamer–AgNCs and porous
Fe3O4/C acting on quenching of fluorescence and the easy separation. Reproduced with permission
from [100]. Copyright 2021, Elsevier. (E) Detection of three different tumour biomarkers (mucin
1, carcinoembryonic antigen and cancer antigen 125), using a scaffold consisting of the same NC
nucleation sequence and different aptamer sequences exhibiting different emission wavelengths for
the detection of three molecules. This system used FRET between Ag/Au bimetallic NCs (donor) and
GOx nanosheets (quencher). Reproduced with permission from [59]. Copyright 2018, Elsevier. (F)
Detection of MUC1 using a scaffold consisting of C-rich template and aptamer with G-rich sequence
at the end. Reproduced with permission from [112]. Copyright 2019, Elsevier. NC, nanocluster;
CA125, cancer antigen 125; CEA, carcinoembryonic antigen; MUC1, mucin 1; APT, aptamer.
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To amplify the fluorescence intensity of the sensing system, two split aptamers were
used and applied to detect kanamycin [103] (Figure 4B). Cu2+ and Ag+ ions were introduced
to initiate a dark reduction. Subsequently, the reducing agent NaBH4 was added, resulting
in the formation of Cu/AgNCs, along with a poor fluorescent signal. However, in the
presence of kanamycin, the interaction between split aptamers was facilitated, owing to
their inherent affinity for the target. This interaction caused a significant enhancement of
the fluorescent signal of NCs (Table 3).

This strategy uses a scaffold integrated with the aptamer to modify both its affinity
for the target and the optical properties of the NCs. To address limitations, aptamers
with high affinity for NCs were used. A tetracycline-detecting AgNC aptasensor was
developed, where the tetracycline-specific aptamer, rich in cytosine and capable of forming
a G-quadruplex, also serves as a template for AgNC nucleation [97]. Upon target binding,
the aptamer undergoes a structural transformation into a hairpin, causing aggregation of
the fluorescent AgNCs, which increases size and reduces fluorescence (Table 3).

Another strategy involves the use of a quencher, where the fluorescence emission can
be switched between ‘turn-on’ and ‘turn-off’ modes through the competition between the
targets and quenchers. NCs have been combined with nanomaterials, such as GOx [60],
Mo2C nanotubes [61], CNPs [62], WS2 nanosheets [63] and MoS2 nanosheets [56], which
act as a fluorescence acceptor. The coupling of these materials induces fluorescence reso-
nance FRET. Using this mechanism, a system for detecting T-2 toxin was developed [64]
(Figure 4C). The DNA template was designed by linking sequences for AgNC nucleation to
a T-2 toxin-specific aptamer, with the addition of a T5 spacer to account for steric hindrance.
Upon the deposition of the AgNCs on the MoS2 sheet, the aptamer was adsorbed on the
MoS2 surface through van der Waals force. This interaction resulted in FRET facilitated by
the sp2 hybrid crystal domain, ultimately resulting in fluorescence quenching. The presence
of T-2 toxin in the sample strongly causes competitive binding with aptamer, leading to
AgNC separation from the MoS2 sheet and subsequent fluorescence recovery in the NCs.
The aptamer binds specifically to the T-2 toxin on the Mo2S sheet. The significant quenching
effect of MoS2 contributed to an LoD of 0.93 pg/mL and a linear range of 0.005–500 ng/mL
(Table 3).

A scaffold containing a G-rich domain was developed for a ‘turn-on’ NC-based ap-
tasensor for fluorescence enhancement [100] (Figure 4D). The scaffold was specifically
designed to include an AgNC template, an aptamer and a G-rich domain. This sensor used
FRET between the aptamer–AgNCs and a porous Fe3O4/carbon material, which served to
quench the fluorescence and facilitate easy separation of the components. Upon binding
the aptamer–AgNCs to the target, the complex was released from the Fe3O4/C material.
The conformational change of the aptamer results in the NCs being closer to the G-rich
domain of the scaffold, leading to enhanced fluorescence. This system could detect ZEN
up to 2 × 10−3 ng/mL, with a dynamic range of 0.01 ng/mL to 250 ng/mL (Table 3).

Furthermore, the aptamer sequences linked to the NC template can change the emitted
wavelength of NCs, allowing for the detection of multiple target molecules by altering the
aptamer sequence while retaining the NC template. Leveraging this property, an Ag/Au
bimetallic NC-based biosensor was developed for the detection of three tumour biomarkers,
mucin 1 (MUC1), carcinoembryonic antigen and cancer antigen 125 [59] (Figure 4E; Table 3).

Although stability at high salt concentration is suitable for the dsDNA formation
reaction-mediated biosensing strategy [74,75], the low efficiency of synthesis of dsDNA
reduces CuNC production yield, thereby resulting in weak fluorescence. The sensitivity of
a biosensing system can be improved by incorporating a signal amplification reaction [115].
For example, the synthesis of dsDNA-templated CuNCs was combined with the target-
cycling strand displacement amplification for the detection of adenosine triphosphate
(ATP) [73]. The scaffold was designed with an AT-rich hairpin stem for CuNC formation
and an aptamer for ATP binding. In the absence of ATP, no binding occurs, and DNA
polymerase does not extend the AT-rich region. Upon ATP binding, the scaffold undergoes
a conformational change, enabling polymerase to extend the AT-rich region, releasing ATP
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from the aptamer and binding it to another scaffold. This target recycling amplifies the
scaffold and boosts CuNP production and blue fluorescence. This system exhibited an LoD
of 5 pM with a linear range of 0.01 to 10 nM (Table 3).

The NC aptasensor was used for in vivo imaging and in vitro detection [112]
(Figure 4F). To detect the tumour marker, MUC1, an AgNC scaffold was designed with a
C-rich template and an aptamer with a G-rich sequence at the end, enhancing the fluores-
cence of the DNA–AgNCs [116]. Upon binding to the target, the aptamer detached from
the florescence-emitting AgNC surface, resulting in a decrease in the fluorescence of the
AgNCs (Table 3).

3.3. Signal Changes in NCs Induced by Aptamer–DNA Template Hybridisation

The hybridisation-induced signal-switching system consists of two strands: the first
strand serves as a template-extending strand and contains a sequence essential for the
formation of NCs and a partially complementary sequence to the aptamer. The second
strand comprises the aptamer, which functions as both a signal transducer and a quencher.
NCs are generated from the template in the region complementary to the aptamer, with
their process being controlled by the aptamers through hybridisation; this results in a shift
in fluorescence.

A pathogenic bacteria-detecting NC aptasensor was developed using this strategy [107]
(Figure 5A). The DNA template included a nucleation region for AgNC and a region par-
tially complementary to the aptamer. The aptamer-linked G-rich sequence formed a duplex
with the template, promoting AgNC nucleation at the G-rich region and enhancing fluores-
cence. Electrospinning with polylactic acid improved AgNC’s surface area, biodegradability
and biocompatibility, boosting their antibacterial activity. In the presence of target bacteria,
the aptamers captured the bacteria, causing conformational changes and detachment from
the duplex, which reduced fluorescence. The aptamer then bound to the bacteria, leading
to their elimination upon contact with the AgNC. This AgNC exhibited a linear relation
range of 107 to 1011 CFU/mL with fluorescence intensity (Table 4).

Since the affinity of the aptamer against the target determines the sensitivity and
specificity of the sensing system, an in silico molecular docking program-based strategy
was also employed [76] (Figure 5B). The aptamer design for ZEN involved predicting
the key binding sites via the program. In a one-pot reaction, a biotinylated aptamer was
attached to streptavidin-coated magnetic beads, and the aptamer formed a duplex with an
added oligo that was complementary to the aptamer. Upon exposure to ZEN, the oligos
detached from the aptamer and underwent modification to extend poly-T tails at 3′-end
through a reaction assisted by terminal deoxynucleotidyl transferase. Subsequently, CuNCs
were formed at the T-rich region after adding a reducing agent owing to the high affinity
of Cu ions for T bases; this generated red fluorescence. The sensor exhibited an LoD of
0.1 ng/mL with a linear range of 10−1 ng/mL to 103 ng/mL (Table 4).

Aptamers can serve as both recognition and quenching reagents, eliminating the
need for additional quenchers. Leveraging this property, an ochratoxin A (OTA)-detecting
AgNC aptasensor was developed [106] (Figure 5C). Red-emitting AgNCs were formed
by mixing with a scaffold consisting of a C-rich template, a linker region and a region
partially complementary to the OTA-specific aptamer. Different sequences in the hybridis-
ation region can change the fluorescence of AgNCs, even when using the same template
for nucleation [49,117]. The hybridisation sequences responsible for either emitting or
quenching fluorescence were identified through screening. In the absence of the target, the
scaffold was hybridised with the aptamer, which acted as a quencher, thereby decreasing
the fluorescence. Conversely, in the presence of the target in the sample, they attached to
the aptamer, resulting in red-emitting AgNCs showing no change. This method contributed
to an LoD of 1.3 nM with a linear range of 10 to 125 nM, requiring no labelling, additional
quenchers or amplification processes (Table 4).
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Figure 5. Sensing strategy based on signal changes in metal NCs induced by aptamer–DNA template
hybridisation. (A) Detection of two different bacterial cells (Staphylococcus aureus and Escherichia coli)
using AgNC bound with hybrid DNA of NC scaffold and bacteria-specific aptamer. This system
used the antibacterial effect of AgNC and enhanced AgNC fluorescence via electrospinning to PLA,
forming nanofilms. Reproduced with permission from [107]. Copyright 2021, American Chemical
Society. (B) Detection of ZEN using dual-signal amplification mechanism based on TdT amplification
and CuNC fluorescence enhancement. Reproduced with permission from [76]. Copyright 2024,
Elsevier. (C) Detection of ochratoxin A using aptamer serving as both the recognition and quenching
reagent. This system used scaffold sequences screened for emitting or quenching fluorescence.
Reproduced with permission from [106]. Copyright 2023, Elsevier. NC, nanocluster; PLA, polylactic
acid; ZEN, zearalenone; SMB, streptavidin-coated magnetic bead; TdT, terminal deoxynucleotidyl
transferase; OTA, ochratoxin A.
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Table 4. Examples of metal NC-based strategies utilising signal changes induced by aptamer–DNA
template hybridisation a.

Metal Usage Analyte Detection
Method

Linear
Range LoD Sample Feature Reference

Au Detection Deoxynivalenol Fluorescence/
SERS

0.1–100
ng/mL

Fluorescence,
0.08 ng/mL;
SERS, 0.06

ng/ml

Wheat flour

Dual-mode aptasensor.
Selection of

complementary
DNA-modified Au

NCs as a fluorescence
probe.

Use of TAMRA as a
Raman label. Use of

aptamer-modified Ag
NPs/MPDA as the
SERS substrate and

fluorescence quencher.

[109]

Ag Detection Ochratoxin
A (OTA) Fluorescence 10–125 nM 1.3 nM Maize,

wheat

Turn-on FRET
aptasensor.

Use of aptamer serving
as both the recognition
and quenching reagent.

Screening of scaffold
sequences for emitting

or quenching
fluorescence.

Detection time of 45
min.

[106]

Ag
Detection/

antimicrobial
activity

Staphylococcus
aureus,

Escherichia
coli

Fluorescence
1 × 107–1 ×

1011

CFU/mL
ND Milk

Use of AgNC bound
with hybrid DNA of

NC scaffold and
bacteria-specific

aptamer.
Use of the antibacterial

effect of AgNC.
Enhanced AgNC
fluorescence via

electrospinning to PLA,
forming nanofilms.

[107]

Ag Detection Adenosine Fluorescence 0–200 µM 2.7 µM Human
serum

Use of aptamer kissing
module system using

loop–loop interactions.
Binding of adenosine to
aptamer to form a loop
structure, binding via
kissing interaction to
an oligo with AgNC

sequence and
fluorescence expression
due to the proximity of
a G-rich overhang on

the AgNC side through
the binding of a

complementary stem.
Hybridisation-induced

signal-switching
system.

[108]

Cu Detection ZEN Fluorescence 10−1–103

ng/mL
0.1 ng/mL Water

Dual-signal
amplification

mechanism based on
TdT amplification and

CuNC fluorescence
enhancement

[76]

a Abbreviations: LoD, limit of detection; NC, nanocluster; SERS, surface-enhanced Raman scattering; FRET,
fluorescence resonance energy transfer; PLA, polylactic acid; TdT, terminal deoxynucleotidyl transferase; ND, not
determined.
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4. Conclusions and Future Perspectives

Aptamer-coupled metal NC-based sensing systems offer advantageous properties,
including programmability, biocompatibility and molecular recognition. This review sum-
marises recent advancements in metal NC-based aptasensor for the detection and/or
imaging of molecules and chemicals, with a focus on the role of aptamers in modulating
the optical signal emission of metal NC-based sensing system. Many strategies have been
suggested to enhance the performance of NC-based aptasensors, with ongoing efforts
directed towards developing highly sensitive, specific, multiplexed, fast and cost-effective
assays. These strategies have been discussed in this review. These examples confirm that
optoelectronic sensing systems are a rapidly developing technology with advantages, such
as facile synthesis, label-free detection, low cost and simple operation.

Despite these advantages, there is still a need to improve the sensing performance
of NC-based systems to enhance their capability. A major challenge in this field is the
precise regulation of NC properties, such as the colour, brightness and enhancement ratio.
The programmability of DNA templates for NC nucleation offers a way to modulate their
properties by altering the base sequence and length. However, the intricate relationship
between the DNA sequence and the resulting NC colour presents a hurdle, complicating
the design of DNA templates and limiting the widespread applicability of NCs in diverse.
Additionally, achieving precise synthesis with well-defined atomic structures remains
challenging, as the mechanisms linking NC formation, structure and properties are not fully
understood. While phenomena like aggregation-induced emission (AIE) improve quantum
yields, their complexity requires further investigation. Stability issues during storage
and transport also restrict the practical applications of NCs, and research on advanced
nanocomposites still remains. In practical application, the complexity of substrates and
preprocessing requirements confines applications to simpler matrices like water [118,119].
Scalability poses another challenge due to reliance on expensive noble metals (e.g., Au,
Ag and Pt), high production costs and limited exploration of polymetallic systems. These
constraints underscore the need for cost-effective, stable and broadly applicable NC systems
to advance their diagnostic and sensing capabilities for real-world applications.

To address these limitations, the development of screening platforms and prediction
programs may provide valuable tools for optimising NC properties and expanding their
usability in diverse fields. For example, the programmable colour of NCs can be achieved
using an activatable fluorescent probe, NanoCluster Beacon (NCB), which involves hybridi-
sation with a scaffold, [50,120,121]. NCBs offer a range of activation colours originating
from a dark state (not via FRET), resulting in fluorescence enhancement ratios ranging
from 1500- to 2400-fold [122,123]. A recent study reported the use of a next-generation
sequencing chip screening platform for the selection of NCBs, identifying a critical zone
within the activator (positions 7–12) that stabilises bright AgNC chromophores. This was
achieved through a high-throughput screening of over 40,000 activators [124]. Furthermore,
the screening results were analysed and used to design bright and multi-colour NCBs
by employing machine learning algorithms. The sequence-based models may present
challenges in predicting AgNC-DNA properties, limiting their utility for imaging and
sensing applications that require control over multiple properties, such as emission colour,
brightness, chemical stability and sensitivity to analytes.

A pertinent challenge in the advancement of machine learning-enabled design meth-
ods for emerging material systems is the lack of fundamental knowledge. This limitation
has spurred the development of a multi-objective model for AgNC-DNA design using
a regularised VAE that automates feature extraction and effectively handles imbalanced
data without requiring domain expertise [125]. This model successfully generated DNA
sequences for bright green and rare NIR AgNC-DNAs, enhancing their relative abundance
by 3.7 and 4.9 times, respectively, while improving emission brightness compared to the
training data. The model, supported by Shapley value analysis, reveals critical insights
into the significance of nucleobase patterns in shaping AgNC-DNA properties. These
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models can be adapted for various sequence-based biomolecules, including protein and
peptide materials.

The use of machine learning in template design holds significant potential, not only
for nanocluster (NC) templates but also for the development of aptamers. Traditionally,
aptamer development has relied on the SELEX (Systematic Evolution of Ligands by Expo-
nential Enrichment) method, which is time-consuming, has low success rates and produces
a limited range of aptamer candidates [126]. In contrast, integrating machine learning
with evolving computational technologies offers a promising solution to overcome these
limitations and significantly enhance the aptamer design and optimisation process [127].
One of the key advantages of machine learning in aptamer development is its ability to
simultaneously predict multiple properties of aptamers. For instance, machine learning
can be used to design aptamers based on affinity and specificity or to improve existing
aptamer sequences by enhancing properties such as nuclease stability and dissociation
kinetics [128,129]. Furthermore, artificial intelligence, including machine learning and deep
learning algorithms, has already been widely applied in the research and development
of new drugs and target molecules, demonstrating its potential to revolutionize aptamer
development as well.

In addition to template diversity, the use of FRET has enhanced the properties of
NCs. However, the constraints associated with a limited number of FRET pairs and
increased costs have propelled the development of quencher-free systems. A recent study
introduced a non-FRET reporter, known as the Subak reporter, designed for altering AgNC
colours [130]. The Subak reporter exhibits a nuclease-based fragmentation-induced colour-
switching property that uses the altered base-cluster interacting footprint and the changed
size/shape of the fragmented AgNC. It can provide a low-cost, non-FRET probe with
ratiometric sensing capability and facilitate biosensing performance when combined with
RNA-cleaving DNAzymes and RNA-targeting Cas effectors.

In parallel, biosensors coupled with aptamers have been increasingly developed to
exploit the unique physical and chemical properties, along with the excellent biocompati-
bility, of MXene—a material composed of metal and carbon. MXene-based aptasensors are
gaining traction as versatile devices for various applications, including cancer biomarker
detection, food safety assessment and environmental monitoring. Notably, MXene’s high
electrical conductivity and large surface area offer an innovative platform for biologi-
cal molecule recognition, paving the way for next-generation diagnostic and analytical
tools [92,131]. Therefore, combining MXene with metal NCs holds the potential to further
enhance the properties of NC-based systems.

With ongoing advances in this field, we believe that metal NC-based aptasensing
systems will emerge as a promising option for monitoring and detecting diverse molecules
in food, water and environmental sources during production processes.
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