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Abstract

Despite significant strides in big data technology, extracting information from unstructured
clinical data remains a formidable challenge. This study investigated the utility of large lan-
guage models (LLMs) for extracting clinical data from unstructured radiological reports with-
out additional training. In this retrospective study, 1800 radiologic reports, 600 from each of
the three university hospitals, were collected, with seven pulmonary outcomes defined.
Three pulmonology-trained specialists discerned the presence or absence of diseases.
Data extraction from the reports was executed using Google Gemini Pro 1.0, OpenAl’s
GPT-3.5, and GPT-4. The gold standard was predicated on agreement between at least two
pulmonologists. This study evaluated the performance of the three LLMs in diagnosing
seven pulmonary diseases (active tuberculosis, emphysema, interstitial lung disease, lung
cancer, pleural effusion, pneumonia, and pulmonary edema) utilizing chest radiography and
computed tomography scans. All models exhibited high accuracy (0.85—-1.00) for most con-
ditions. GPT-4 consistently outperformed its counterparts, demonstrating a sensitivity of
0.71-1.00; specificity of 0.89-1.00; and accuracy of 0.89 and 0.99 across both modalities,
thus underscoring its superior capability in interpreting radiological reports. Notably, the
accuracy of pleural effusion and emphysema on chest radiographs and pulmonary edema
on chest computed tomography scans reached 0.99. The proficiency of LLMs, particularly
GPT-4, in accurately classifying unstructured radiological data hints at their potential as
alternatives to the traditional manual chart reviews conducted by clinicians.

Introduction

Recent advancements in big data technology have prompted many centers to develop their
own datasets for specific diseases or establish clinical data warehouses, facilitating the extrac-
tion of patients clinical data [1]. The advancements in large language models (LLMs) have
transcended patient classification and data structuring, extending into diverse medical fields,
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including education, medical counselling, and clinical practice. These AI models have demon-
strated their potential in enhancing medical education by aiding students in preparing for the
USMLE exam [2] and solving NEJM quizzes [3]. Furthermore, ChatGPT has been used to
reduce the communication gap between patients and healthcare professionals, as well as facili-
tating patient triage before using medical facilities [4]. In clinical settings, LLMs help health-
care professionals understand medical reports [5,6], assist in diagnosing patient conditions
[7], and further contribute to clinical decision-making processes [8,9].

Despite the expansion of data size, a notable gap exists in methods for efficiently locating
major patient concerns, such as treatment progress and patient-reported symptoms. This gap
has resulted in a reliance on indirect methodologies, such as International Classification of
Diseases codes or medication usage data, to investigate disease manifestations. In cases where
data analysis is not feasible, it becomes essential to manually review the medical records of all
patients within the cohort. To address this challenge, the proposed methods leverage unstruc-
tured medical records and apply artificial intelligence to extract crucial research variables,
complications, and disease groups [10-13]. Our team previously conducted studies attempting
to derive clinical data from X-ray and positron emission tomography scans [14,15]. However,
these efforts were hindered by the need for new data each time a new model was trained, and
the annotation of new data required additional loading, making it challenging. Consequently,
the model failed to effectively replace clinicians’ reviews of medical reports.

The advanced models ChatGPT and GPT-4 have been employed across various fields, and
their Application Programming Interfaces are now publicly accessible, enabling the use of nat-
ural language processing models at a low cost ($0.002 per 1K token) [16]. In non-medical
fields, these models have shown higher accuracy and inter-observer agreement than human
curation [17]. Efforts are also being made to use GPT-4 for data labelling in the medical field,
including pulmonary diseases [18,19]. However, the models have only been validated in situa-
tions with detailed radiology reports similar to those found in Anglophone countries without
evaluating the characteristics of data written by Koreans, which tend to be shorter compared
to those from predominantly English-speaking regions. Therefore, it is crucial to verify
whether the performance of these models is maintained in reports written in countries where
English is not the native language or in reports where English and Korean are mixed; however,
such verification is currently lacking.

Therefore, this study aimed to investigate the usefulness and accuracy of LLMs for extract-
ing clinical data from unstructured radiological reports without additional training.

Materials and methods
Data collection

Radiological reports for chest computed tomography (CT) and chest radiography were gath-
ered from 300 inpatients in the pulmonology departments of Ewha Womans University Mok-
dong Hospital (EUMC), Ulsan University Hospital (UUH), and Chung-Ang University
Gwangmyeong Hospital (CAUGH) between March 2022 and February 2023 (Fig 1). The data
were accessed on January 12, 2024, at EUMC, on January 17, 2024, at UUH, and on February
11, 2024, at CAUGH. Reports were included consecutively until the total number of X-ray and
CT scans reached 300, irrespective of specific disease occurrences.

This study received approval from the Institutional Review Boards of Ewha Womans Uni-
versity Mokdong Hospital (approval number: 2023-07-002), Ulsan University Hospital
(approval number: 2023-12-011), and Chung-Ang University Gwangmyeong Hospital
(approval number: 2312-127-143) and was conducted in accordance with the ethical standards
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Hospital 1: CAUGH
Eligible studies:
Chest X-rays (n=7512)
Chest CT scans (n=773)

Hospital 2: EUMC
Eligible studies:
Chest X-rays (n=931)
Chest CT scans (n=325)

Hospital 3: UUH
Eligible studies:
Chest X-rays (n=1424)
Chest CT scans (n=1424)

Exclusion:
Insufficient reports for interpretation
(X-ray, n=3187 / CT, n=0)
Reports after reaching the 300-report quota
(X-ray, n=4025 / CT, n=473)

Exclusion:
Insufficient reports for interpretation
(X-ray, n=287 / CT, n=23)
Reports after reaching the 300-report quota
(X-ray, n=344 / CT, n=2)

Exclusion:
Insufficient reports for interpretation
(X-ray, n=44 / CT, n=12)
Reports after reaching the 300-report quota
(X-ray, n=1080 / CT, n=1112)

900 chest X-ray readings and 900 chest CT scan readings from three hospitals,
interpreted by three pulmonologists.
¥

The gold standard was defined as an agreement among at least two pulmonologists.

| )

Gemini Pro 1.0 GPT-3.5 GPT-4.0

} } }

Comparison of the interpretations of three large language models with the gold standard.

Fig 1. Flowchart of the study.
https://doi.org/10.1371/journal.pone.0314136.9001

outlined in the Declaration of Helsinki. The necessity for written informed consent was waived
due to the retrospective nature of the study.

Inclusion and exclusion criteria

During the study period, the first radiographic or CT scans of inpatients admitted to the pul-
monology department were selected. Reports lacking sufficient or suitable content for inter-
pretation were omitted to ensure the quality and relevance of our dataset, as such reports
could lead to an overestimation of model performance by representing overly simplistic tasks
that do not reflect the complexity of real-world clinical scenarios. These comprised reports

”, “no significant interval changes”, “no
abnormalities”, “negative chest findings”, “within normal limits”, “simple postoperative sta-

tus”, and “unremarkable findings”.

including “no active lung lesions”, “hypoinflated lung

Outcome definition and labelling

The following outcomes were defined: pneumonia, interstitial lung disease (ILD), active pul-
monary tuberculosis (TB), pulmonary edema, pleural effusion, lung cancer, and emphysema.
On CT scans, interstitial lung abnormalities were identified as ILD, and lung abscesses were
classified as pneumonia. The complete resolution and improvement were recorded as absent,
whereas interval improvement and decreases were recorded as present. On chest radiographs,
pulmonary congestion was assessed for edema, and interstitial pneumonia was categorized as
ILD. Three pulmonology specialists, GC, MGC, and J-YH, each with over a decade of experi-
ence as practicing physicians including more than 5 years each of clinical experience in pulmo-
nology, independently reviewed the reports and labeled the presence or absence of seven
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diseases. All three hold assistant professorships at university hospitals with clinical and
research expertise. GC’s clinical and research areas include tuberculosis (mycobacterial dis-
ease), lung cancer, and interventional pulmonology; MGC specializes in lung cancer and inter-
ventional pulmonology; and J-YH’s areas of expertise are lung cancer and interstitial lung
disease. The gold standard was established as an agreement among at least two labelers.

Model selection

The latest models available were used in this study, including Google’s Gemini Pro 1.0 and
OpenAT's GPT-3.5 and GPT-4, specifically the gpt-3.5-turbo-1106 and gpt-4-1106-preview
versions. Data were extracted using these models, with the prompts listed in S1 Table.

Statistical analysis

The reports were analyzed using Gemini Pro 1.0, GPT-3.5, and GPT-4, maintaining a consis-
tent temperature of 0.3 across all models. The performance of these models in accurately inter-
preting reports, compared to the gold standard, was assessed in terms of accuracy, sensitivity,
and specificity. For each of the seven diseases and each model (Gemini Pro 1.0, GPT-3.5, and
GPT-4), we calculated sensitivity, specificity, and accuracy by comparing the model’s predic-
tions against the gold standard established by agreement between pulmonologists. These met-
rics were computed separately for each disease category, allowing for a detailed assessment of
model performance across different clinical entities. This approach enabled us to evaluate how
well each model identified both the presence and absence of specific diseases in the radiologic
reports, providing a comprehensive view of their diagnostic capabilities.

Additionally, the accuracy of each label was evaluated against the gold standard using these
metrics, stratified by disease and hospital, to determine the accuracy and appropriateness of
human annotation. Interobserver agreement among the labelers was assessed by calculating
the Fleiss kappa value for each disease. The output of each model was evaluated for adherence
to the specified JSON format, which included the correct structure and presence of all seven
disease fields. Errors in JSON formatting were recorded and analyzed to assess the models’
ability to consistently produce structured output.

Results

Incidence of pulmonary conditions in this study

Table 1 presents the distribution of various pulmonary conditions found in the radiography
and CT reports from three hospitals (CAUGH, UUH, and EUMC). Pneumonia emerged as

Table 1. Incidence rates of pulmonary conditions by hospital and imaging modality.

Hospital X-ray CT

CAUGH UUH EUMC CAUGH UUH EUMC

Pneumonia 48.00 57.67 61.67 39.67 53.33 41.00
ILD 7.33 6.00 5.33 13.00 14.00 6.33
Active TB 2.33 1.67 2.00 7.00 5.33 5.33
Pulmonary edema 6.00 7.67 14.67 1.67 8.33 7.67
Pleural effusion 23.33 23.33 40.00 27.00 37.00 34.67
Lung cancer 13.33 10.67 3.67 42.00 21.33 20.00
Emphysema 5.67 23.00 5.67 27.00 21.33 20.33

CT, computed tomography; CAUGH, Chung-Ang University Gwangmyeong Hospital; UUH, Ulsan University Hospital; EUMC, Ewha Womans University Mokdong
Hospital; ILD, interstitial lung disesase; TB, tuberculosis.

https://doi.org/10.1371/journal.pone.0314136.t001
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the most prevalent condition (39.67-61.67%) across hospitals and imaging modalities. Follow-
ing closely, pleural effusion ranked as the second most prevalent condition (23.33-40.00%).
Notably, the incidence of lung cancer exhibited a higher frequency in CT reports (20.00-
42.00%), compared with X-ray reports (3.67-13.33%). Moreover, the prevalence of patients
with ILD, active TB, pulmonary edema, and emphysema variations across hospitals and imag-
ing modalities.

Performance of AI models in radiologic report analysis

Table 2 presents an overview of how the three AI models (Gemini Pro 1.0, GPT-3.5, and GPT-
4) performed in analyzing X-ray and CT reports. Across various scenarios, all models exhib-
ited remarkable accuracy, sensitivity, and specificity. Notably, GPT-4 emerged as a top per-
former, achieving a sensitivity range of 0.71 to 1.00 in chest X-rays and 0.90 to 1.00 in CT
scans, alongside a specificity of 0.89-1.00 and an accuracy of 0.89-0.99 across both modalities.
This underscores its superior capability in interpreting radiological reports. Gemini Pro 1.0
and GPT-3.5 also showed strong performance, with almost all metrics surpassing 0.80.

However, Fig 2 shows that the accuracy of the models varied based on the type of disease
and the hospital for both CT and X-ray reports. Specifically, for ILD in CT reports, Gemini
Pro 1.0 and GPT-4 exhibited higher sensitivity in detecting the condition but slightly lower
specificity and accuracy compared to GPT-3.5. Conversely, regarding pulmonary edema in CT
reports, GPT-3.5 showed notably inferior performance across all hospitals compared to the
other models.

Regarding X-ray reports (as shown in Fig 3), the models’ performance varied across hospi-
tals and diseases. At UUMC hospital, all models exhibited decreased performance in detecting
pneumonia, ILD, and pulmonary edema compared to other hospitals. Particularly, for active
TB, GPT-3.5 demonstrated significantly lower sensitivity than the other models at UUMC hos-
pital. It is also crucial to note that all models had a sensitivity of 0 for detecting pulmonary
edema in X-ray reports from UUMC Hospital.

Table 2. Performance metrics of large language models in diagnosing pulmonary conditions from radiologic reports.

Report | Condition Gemini Pro 1.0 GPT 3.5 GPT 4.0
Sensitivity | Specificity | Accuracy |Sensitivity | Specificity |Accuracy |Sensitivity | Specificity | Accuracy
X-ray | Pneumonia 0.85 0.96 0.90 0.75 0.98 0.85 0.87 0.94 0.90
Interstitial lung disease 0.93 0.90 0.91 0.96 0.89 0.90 0.96 0.89 0.89
Active tuberculosis 0.83 0.97 0.96 0.78 0.96 0.95 0.94 0.95 0.95
Pulmonary edema 0.68 1.00 0.97 0.64 1.00 0.96 0.71 1.00 0.97
Pleural effusion 0.98 0.97 0.97 0.96 0.97 0.97 1.00 0.99 0.99
Lung cancer 0.81 0.96 0.95 0.82 0.97 0.96 0.95 0.96 0.96
Emphysema 0.98 1.00 1.00 1.00 0.99 1.00 1.00 0.99 0.99
CT Pneumonia 0.91 0.88 0.89 0.84 0.93 0.89 0.90 0.91 0.91
Interstitial lung disease 0.90 0.94 0.94 0.87 0.94 0.93 0.94 0.88 0.89
Active tuberculosis 0.92 0.94 0.94 0.74 0.93 0.92 0.96 0.95 0.95
Pulmonary edema 0.92 0.99 0.99 0.89 1.00 0.99 0.94 1.00 0.99
Pleural effusion 0.97 0.94 0.95 0.97 0.93 0.94 0.98 0.96 0.96
Lung cancer 0.94 0.89 0.90 0.88 0.91 0.90 0.97 0.88 0.90
Emphysema 1.00 0.97 0.98 0.99 0.97 0.97 1.00 0.96 0.97
CT, computed tomography.
https://doi.org/10.1371/journal.pone.0314136.t002
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Fig 2. Comparative performance of the models in diagnosing pulmonary conditions using chest X-ray reports across hospitals.

https://doi.org/10.1371/journal.pone.0314136.9002

Interobserver agreement among pulmonologists

The interobserver agreement among the human labelers varied across diseases and hospitals,
both in X-ray and CT reports. Fleiss’s kappa values ranged from 0.384 to 0.941 for chest X-rays
and from 0.556 to 0.870 for CT (Figs 4 and 5 and S2 Table). This suggests that experienced
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Fig 3. Comparative performance of the models in diagnosing pulmonary conditions using chest CT reports across hospitals.
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was notably low for ILD at CAUGH, implying differences in the interpretation of ILD findings
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all hospitals, indicating potential disparities in how the labelers interpreted and extracted
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information related to active TB from CT reports. Regarding X-ray reports (Fig 5), interob-
server agreement varied significantly for ILD, active TB, and pulmonary edema across hospi-
tals and labelers, highlighting potential differences in how labelers analyzed and
comprehended X-ray reports under these circumstances.

Error rates in JSON format generation by AI models

Table 3 presents the error rates for the models used in generating JSON format accurately.
GPT-4 had no errors on the first attempt, whereas Gemini Pro 1.0 and GPT-3.5 had error
rates of 6.8% and 4.7%, respectively. Subsequent evaluations focused solely on erroneous cases.
By the third attempt, Gemini Pro 1.0 reduced its error rates to 1.1%, and GPT-3.5 decreased to
3.2%, considering only the initially erroneous cases.

Discussion

This study introduces an innovative approach utilizing LLMs, including GPT-4, to extract
clinical data from unstructured radiologic reports and categorize the presence of major respi-
ratory diseases, thus organizing the data effectively. In comparison to the gold standard results
manually categorized by three pulmonologists, GPT-4 exhibited accuracy of 0.89-0.99, indi-
cating exceptional consistency across most respiratory conditions. Notably, the accuracy of
pleural effusion and emphysema on chest radiographs and pulmonary edema on chest CT
scans reached 0.99.

Since the development of GPT-4, two studies have utilized this model to analyze unstruc-
tured information in respiratory diseases. Lisa et al. used GPT-4 to perform a binary classifica-
tion of key findings from unstructured interpretations of chest CTs and magnetic resonance
imaging (MRIs) [19]. They successfully converted these findings into structured data, achiev-
ing high F1 scores (a measure combining recall and precision) for venous catheters, tracheal
tubes, and thoracic drains. Matthias et al. classified the oncological phenotypes of patients
based on free-text descriptions in lung cancer CT scans using GPT-4 [18]. This study involved
424 patients with lung cancer and extracted data on tumor size, location, metastatic lesions,
and disease assessment using LLMs and comparing these results with manual classifications by
four radiologists. GPT-4 demonstrated excellent performance, with accuracies between 90.0
and 100.0%. However, these studies were limited to structuring simple findings described in
free text rather than disease impressions. Similarly, our study utilized the latest LLM to achieve
results comparable to manual human categorization, bolstering the utility of LLMs and
extending their use not only to radiological findings but also to classify the presence of major
respiratory diseases.

Despite the overall excellent performance, the lowest accuracy was observed in classifying
pneumonia and ILD from X-rays and ILD and lung cancer from CT scans. Diagnosing these
diseases requires clinical correlation, and they can exhibit various radiological findings [20-
22]. Moreover, clinical experience and other factors can influence the diagnosis, suggesting
that the accuracy of LLM models may be lower when classifying these diseases.

Table 3. Error rates of the model for generating appropriate JSON format.

Model First attempt Second attempt Third attempt
Gemini Pro 1.0 62/900 (6.8%) 12/900 (1.3%) 10/900 (1.1%)
GPT 3.5 43/900 (4.7%) 33/900 (3.6%) 29/900 (3.2%)
GPT-4 0/900 (0%)

https://doi.org/10.1371/journal.pone.0314136.t003
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For ILD, the specificity was relatively low (0.89 in X-ray and 0.88 in chest CT). ILD can be
classified into many different types depending on the cause, clinical presentation, and histolog-
ical findings. The imaging spectrum is highly variable, including honeycombing, reticular
opacity, traction bronchiectasis, fibrosis, ground-glass opacity, consolidation, nodules, and
cystic lesions [20]. However, similar imaging findings, such as fibrosis, ground-glass opacity,
and consolidation, can also appear in cases of infection, drug reactions, or radiation therapy.
Thus, comprehensive assessment of the clinical context is essential when confirming ILD. Sim-
ilarly, pneumonia cannot be diagnosed based solely on imaging findings and must be accom-
panied by clinical signs and symptoms [21]. This highlights that LLMs are not yet fully capable
of considering clinical correlations, which may explain the reduced accuracy of the LLM mod-
els in these conditions.

We analyzed cases where GPT-4 categorized them as ILD, although pulmonologists had
diagnosed them otherwise. The most common case, accounting for 53.7% of these instances,
occurred when GPT-4 classified any findings of fibrosis on chest CT, regardless of the cause
(e.g., radiotherapy, COVID, tuberculosis), as ILD, whereas pulmonologists did not. Addition-
ally, due to the challenge of diagnosing ILD solely on one finding, pulmonologists did not clas-
sify cases of interlobular septal thickening, which could also indicate pulmonary edema or
lymphangitic metastasis, as ILD. Conversely, GPT-4 classified them as ILD (22.1%). Further-
more, there was low sensitivity in classifying pulmonary edema from chest radiographs. While
pulmonologists identified all instances of interstitial opacity with or without pleural effusion,
such as pulmonary edema, GPT-4 did not. Notably, a previous study reviewed 50 chest radiol-
ogy reports, where four radiologists formed impressions from the radiology reports, compared
to impressions generated by GPT-4 [23]. The evaluation revealed that impressions created by
radiologists scored significantly higher in coherence, factual consistency, comprehensiveness,
and medical harmfulness than those created by GPT-4, highlighting the limitations of Al in
tasks that require clinical experience. Similarly, our research suggests that Al has limitations in
classifying diseases that require comprehensive consideration during diagnosis.

On the other hand, in some cases, the LLM appeared to correlate diagnostic criteria with
the context of the radiologic report and avoided making judgments on items with clinical
uncertainty, that is, items in the report lacking definitive evidence for diagnosis. For example,
upon reviewing the decisions made by GPT-4, it did not classify “developing and increasing in
size of heterogeneously enhancing nodules in the right lower lobe” as lung cancer on a CT
scan of a patient with breast cancer. In a case where the report mentioned the possibility of
chronic obstructive pulmonary disease—a condition where emphysema may appear in radio-
logic findings but is not essential for diagnosis [24]—in a patient with chronic bronchitis,
GPT-4 did not classify the finding as emphysema. Furthermore, the LLM interpreted medical
abbreviations within the context of the entire radiologic report, making inferences regardless
of whether abbreviations or full terms were used. For instance, GPT-4 correctly recognized all
instances of “TB” as “tuberculosis” in the reports. We did not perform any specific preprocess-
ing to standardize acronym usage, as the models demonstrated the ability to handle this varia-
tion naturally. These capabilities are part of the models’ strength in processing natural
language as it appears in real-world medical reports, contributing to its effectiveness in our
study.

In addition, our study found that interobserver agreement was lowest for active pulmo-
nary TB, likely due to the difficulty in determining disease activity solely from radiological
findings [25]. This complexity is further compounded by the pivotal role of microbiological
test results in confirming diagnoses, leading to differing interpretations among observers.
For instance, discrepancies arose when some observers identified the presence of a cavitary
nodule in the upper lobe on radiographs as indicative of active TB, while others did not
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consider this as conclusive evidence. Utilizing AT for classifying diseases that require per-
sonal clinical experience and subjective judgment could provide more consistent results
compared to human evaluators. However, thorough validation is crucial, particularly in
cases involving complex medical decision-making. Furthermore, differences in observer
agreement were observed across various centers, with classifications by pulmonologists at
these centers often closely aligning with the gold standard. This implies that observers’ famil-
iarity with and adaptation to the radiologic reading practices of their respective centers may
have influenced these findings.

Although all AT models demonstrated strong agreement with human annotators in terms of
performance, notable discrepancies were observed in their stability when generating JSON for-
mats. GPT-4 showcased exceptional stability, flawlessly producing error-free JSON formats on
its first attempt. Error-free JSON formats refer to outputs that strictly adhered to the specified
structure, including all seven disease fields with appropriate “yes” or “no” values, without any
syntactical errors or missing information. Conversely, Gemini Pro 1.0 and GPT-3.5 exhibited
error rates of 6.8% and 4.7%, respectively. These errors ranged from improper JSON format-
ting or providing answers solely for specific diseases like pneumonia, resulting in parsing chal-
lenges. While error rates decreased with subsequent attempts, the initial stability of GPT-4
highlights its superiority in both performance and reliability, making it the optimal model for
clinical data extraction and structuring despite its higher cost. Our findings align with previous
studies indicating superior performance with GPT-4 compared to earlier models [26,27].
Additionally, we present a comparison of error rates in JSON format generation across each
model.

However, this study has some limitations. Firstly, it relied on labeler classification as the
gold standard, which may introduce bias as human decisions can diverge from actual patient
diagnoses. Nonetheless, the study aimed to ascertain whether AI could effectively replace
human classification and to what extent it aligns with human decisions, enabling us to derive
meaningful insights. A second limitation is that the pulmonologists made their classifications
solely on free text, without direct access to the images. Although this approach was tailored to
current Al technology, future advancements may necessitate investigations into whether Al
can directly classify patients through image analysis. Moreover, our research utilized radiologic
reports written by Korean radiologists, which may limit its generalizability to regions with dif-
ferent reporting styles and medical practices [28]. Future studies could benefit from validating
these findings using datasets from other countries and linguistic backgrounds to assess the
models’ performance across diverse contexts. Lastly, the models’ performance in this study
may have been slightly compromised due to the lack of recent advancements in prompt design
techniques. The potential impact of prompt design approaches such as chain of thought, reflec-
tion, and few-shot in-context learning, which have shown promise in improving model perfor-
mance, was not evaluated in this study. Consequently, further research is required to validate
these prompt design techniques and enhance the accuracy and reliability of Al-assisted classifi-
cation in medical contexts.

In conclusion, this study demonstrated the capability of LLMs, particularly GPT-4, to effi-
ciently extract clinical data from unstructured radiologic reports without the need for addi-
tional training in respiratory research. The capability is accompanied by high accuracy,
sensitivity, and specificity. These results suggest the potential of automating data extraction
processes to improve clinical data repositories and facilitate large-scale medical studies. The
proficiency of LLMs, particularly GPT-4, in accurately classifying unstructured radiological
data hints at their potential as alternatives to traditional manual chart reviews conducted by
clinicians. However, the variability in performance observed across diseases and healthcare
facilities, as well as disparities in human labelling, highlights the need for further research,
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establishment of standardized guidelines, and comprehensive training to ensure the robustness
of models and consistent interpretation of data.
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