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Abstract: We examined how controlling variables in a pre-metallization Ar sputter-etching process
for in situ contact-hole cleaning affects the contact-hole profile, etching rate, and substrate damage.
By adjusting process parameters, we confirmed that increasing plasma power lowered the DC bias
but enhanced the etching rate of SiO2, while increasing RF power raised both, with RF power having
a more pronounced effect. Higher Ar flow rate reduced etching uniformity and slightly lowered the
DC bias. There was no significant difference in the amount of etching between the oxide film types,
but the nitride/oxide selectivity ratio was about 1:2. Physical damage during Ar sputter-etching was
closely linked to DC bias. finally, Finally, etching of the Si and CoSi2 sublayers was performed on the
device contact hole model. At this time, Si losses of up to about 31.7 Å/s occurred, and the etch speed
was strongly affected by the DC bias. By optimizing the RF power and plasma power, we achieved a
Si/CoSi2 etch selectivity ratio of about 1:2.

Keywords: Ar sputtering; plasma treatment; pre-metallization cleaning; plasma induce damage;
contact hole cleaning

1. Introduction

After the contact patterning process, etching residues often remain at the bottom of
the contact holes. While most of these residues are removed through a post-etching process,
the presence of a native oxide layer can persist regardless of the treatment [1–3]. If the
oxide layer is not removed before the subsequent metallization process, it can lead to
increased contact resistance and inhibit the formation of silicides with metals such as Ti
and Ni [4,5], particularly if the size of the contact holes decreases. Therefore, removing
the oxide layer before the contact metallization process is essential. The native oxide layer
present at the bottom of the contact holes consists of a mixture of silicon oxide (SiO2) and
sub-stoichiometric SiOx (X < 2), the removal of which is known to be challenging [6,7].

Traditionally, wet-cleaning methods using hydrogen fluoride (HF)-based solutions are
employed to remove the native oxide layer [8,9]. However, if the diameter of contact holes
decreases (leading to an increased aspect ratio), several challenges associated with wet
processing emerge. For example, line deformation can occur due to unbalanced capillary
forces caused by simultaneous exposure to liquid and gas interfaces during wet process-
ing [10,11], and the etchant may not be able to easily reach the bottom of the hole, resulting
in reduced etching efficiency [12]. Moreover, it is anticipated that modifications to the
overall wet-cleaning process will become necessary as device miniaturization progresses.
In that context, plasma treatment such as Ar sputtering is an alternative pre-metal cleaning
process [13–19]. It plays a crucial role in ensuring that the substrate is thoroughly cleaned
before the formation of silicide, which is vital for improving the performance of Schot-
tky barriers and overall device yield [20–22]. This technique not only enhances process
efficiency but also allows for in situ cleaning integration [23,24].
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In this study, we investigated Ar sputtering etching methods and focused on eval-
uating the fundamental process by observing the effects of controlling the basic process
parameters for Ar sputter-etching. This involved assessing physical damage caused by the
plasma charge, quantifying differences in the etching rate across various sub-materials, and
examining changes in contact-hole profiles following the cleaning process.

2. Materials and Methods

As depicted in Figure 1, the RF system in the Ar sputter-etching chamber consists
of an upper inductor coil (400 kHz; coil RF supply) and an RF supply connected to the
susceptor (cathode-powered supply; 13.56 MHz). The system was designed to generate a
bias on the susceptor, attracting Ar ions formed by the RF coil with high bias energy. This
configuration facilitates the effective removal of a native oxide layer.
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Figure 1. A schematic of the Ar sputter-etching chamber.

First, the fundamental parameters for the Ar sputter-etching process, including RF
power, plasma power, and pressure (Ar flow rate), were adjusted and the DC self-bias
was measured. The etching rate and uniformity of the thermal oxide were then observed.
Following this, a comprehensive evaluation was conducted, plasma damage monitoring
(PDM) was used to assess the plasma charge damage on the Si surface, and physical
damage was evaluated through Therma-Wave (TW) signal measurements. For this, we
utilized a DOT MASK (well type: interlayer dielectric (ILD) high-temperature low-pressure
dielectric (HLD) 1000 Å) lot and measurements were taken while varying the plasma power
(200, 300, or 500 W) under 200 W RF power.

The samples used in the experiment had an ILD structure of nitride 500 Å/
borophosphosilicate glass (BPSG) (annealed at 900 ◦C) 3500 Å/plasma-enhanced tetraethy-
lorthosilicate (PETEOS) 4000 Å with a target hole size of 0.24 µm on a cobalt silicide (CoSi2)
substrate. The samples were subjected to ion implantation processes comprising N+ (As,
30 keV, 5 × 1015) and P+ (BF2+, 30 keV, 1.5 × 1015). During the Ar sputter-etching process,
the target etching amount was set based on 200Å of thermal oxide, and the process time
was adjusted for each experimental condition to achieve the same target etching amount.

In the case of the oxide layer, the etching characteristics of HLD, Plasma-Enhanced
tetraethylorthosilicate (PETEOS), and high-density plasma (HDP) oxide were compared
to BPSG. A Co-salicide protection mask was also applied to form a structure with salicide
and non-salicide regions. Lastly, the contact-hole profile was observed under each set of
process conditions to evaluate the degree of re-deposition and tapering changes resulting
from the Ar sputter-etching process.
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3. Results and Discussion
3.1. Chamber System Testing

The electromagnetic field generated by the inductively coupled plasma (ICP) coil plays
a role in ionizing the Ar atoms. Consequently, as the power applied to the coil (hereafter
referred to as the plasma power) is increased, the number of Ar ions in the plasma also
increases [25]. During the Ar sputter-etching process, Ar ions must have energy exceeding
the binding energy of oxide atoms. This enables them to move to the oxide surface and
break the bonding structure [26]. To achieve this, the Ar ions ionized by the ICP RF coil
must collide with the wafer surface at high velocity with sufficient energy.

After plasma is formed, ions are naturally attracted to the susceptor due to the potential
difference without needing an additional potential difference to be created externally.
However, in the case of Ar sputter-etching, if the process relies solely on this effect, etching
may not occur due to the ion energy being lower than the threshold energy. Even if etching
occurs, the etching rate of the oxide may be too low, making it difficult to achieve effective
etching at the bottom of the holes in the pattern.

As shown in Figure 1, a bias on the susceptor attracts Ar ions generated by the RF
coil, imparting high bias energy for effective native oxide layer removal. The etching of the
native oxide can be enhanced by increasing the RF bias power applied to the susceptor, as
previously described. However, as the plasma power applied to the upper coil increases,
the number of ionized Ar atoms increases, even under identical DC self-bias conditions on
the wafer. This effect can significantly enhance the etching rate of the native oxide layer.
Therefore, one cannot consider the DC bias as the sole etching rate variable. Instead, RF
power, plasma power, and the process pressure influenced by the Ar flow rate can also be
determining factors for both the DC bias and the etching rate. From this perspective, Table 1
provides the trends in DC self-bias and changes in the thermal oxide etching rate when
adjusting the values of these process variables. In earlier studies, the sputtering threshold
ion energy for SiO2 has been experimentally shown to be between 25 and 40 eV [27–29]. Ion
energy within the chamber is proportional to the combined plasma potential in the plasma
region and DC self-bias [30]. In our experiments, the minimum DC self-bias of −45 V
indicates that ion energy can exceed 45 eV, allowing etching to proceed smoothly beyond
the threshold. The etching amount was measured based on a processing time of 30 s.

Figure 2 presents the relationships between the DC bias according to RF power, plasma
power, and Ar flow rate and the etching amount according to RF power and plasma power
during the pre-metallization cleaning process of the thermal oxide layer. Figure 2b,c show
the effects of plasma power on DC bias and etching amount, respectively, under RF power
conditions of 200, 300, or 400 W. These results indicate that the DC self-bias decreased as
the plasma power was increased regardless of the RF power. As previously explained,
the decrease in DC self-bias occurs because more Ar atoms are ionized as the RF power
applied to the upper coil is increased. This phenomenon results from the increase in RF
power applied to the chamber sidewalls (as shown in Figure 1), which amplifies the RF
power to the upper coil. This enhancement increases the horizontal attraction of ionized
Ar toward the coil compared to the wafer surface, while reducing the vertical attraction
aligned with the DC self-bias. Consequently, the Ar ions are insufficiently drawn toward
the wafer and are instead directed toward the RF coil, explaining the observed reduction
in DC self-bias. On the other hand, the etching rate increased as the plasma power was
increased despite the decrease in DC self-bias. This can be explained by the higher the
plasma power, the greater the number of Ar ions (the primary etching species). Therefore,
the etching rate of the oxide layer during the pre-metallization sputter-etching process is
not solely determined by DC bias but is also influenced by plasma power conditions.
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Table 1. Etching performance for various process parameter values.

Plasma Power (W) * RF Power (W) † Ar Flow Rate
(sccm) Pressure (mtorr) DC Bias (V) Etching Amount

(Å)/Uniformity (%)

300 500 10 0.68 −404 366.21/1.83
200 400 10 0.68 −460 224.88/2.89
300 400 10 0.68 −332 306.29/1.82
400 400 10 0.68 −247 238.79/1.36
500 400 10 0.68 −190 406.23/0.86
200 300 10 0.68 −362 182.55/3.10
300 300 10 0.68 −258 245.31/2.01
400 300 10 0.68 −182 308.92/0.85
500 300 10 0.68 −134 340.90/0.85
200 200 10 0.68 −257 134.00/3.28
300 200 10 0.68 −170 190.19/1.78
400 200 10 0.68 −111 217.28/1.48
500 200 10 0.68 −75 230.48/0.68
500 150 10 0.68 −45 168.90/0.00
300 300 5 0.35 −244 -
300 300 10 0.68 −255 -
300 300 20 1.36 −282 -
300 300 30 2.05 −313 220.57/7.56
300 300 35 2.35 −322 -
500 300 30 2.05 −146 300.00/4.06
300 400 30 2.06 −398 272.20/6.52
300 200 5 0.31 −158 185.97/1.55
300 200 20 1.36 −183 169.79/4.32
300 200 30 2.03 −204 154.76/7.52

* RF 2nd at 400 kHz; † bias generated by the susceptor at 13.56 MHz.
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The effect of RF power (bias power) on DC bias and etching rate is shown in
Figures 2d and 2e, respectively. Notably, increasing the RF power significantly increased
both the DC self-bias and the etching rate. Similar to the interpretation of the plasma power
trend, increasing the RF power resulted in a higher DC bias formed on the susceptor under
the same plasma power conditions (with the same number of Ar ions) by increasing the
kinetic energy of the Ar ions. It can also be observed that the RF power has a direct linear
relationship with both phenomena whereas the plasma power does not. Therefore, it can
be inferred that RF power has a greater impact on the Ar sputter-etching process than
plasma power.

We also noted that changing the RF power had minimal impact on etching uniformity
while increasing plasma power improved it. This effect is likely due to the expansion of
the RF sheath area as the plasma power was increased, which is similar to increasing the
plasma power and reducing the DC bias. As shown in Figure 2a, an increase in Ar flow rate
(process pressure) reduces the DC bias by raising chamber pressure, which shortens the
mean free path of electrons. The reduction in mean free path decreases electron collisions
with the substrate, leading to a lower DC self-bias [31]. However, the increased Ar flow
rate negatively impacts etching uniformity. Thus, increasing the Ar flow rate adversely
affected the chamber conditions and reduced the ionization efficiency of Ar.

Changes in the DC self-bias and the etching rate of thermal oxide while simultaneously
varying the RF and plasma power are depicted in Figure 3. As the RF power was increased
and the plasma power was decreased, the DC bias on the susceptor increased. Increasing
both the RF power and plasma power resulted in a higher etching amount of the oxide layer.
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3.2. Etching of Various Oxide Layer Types

Figure 4a shows the etching rates for HLD, PETEOS, HDP oxide, Borophosphosilicate
(BPSG), PECVD (Plasma-enhanced chemical vapor deposition) nitride films under the
conditions used in the pre-metallization cleaning process employing Ar sputter-etching
for current logic devices (plasma power of 275 W, RF power of 400 W, DC bias of −358 V,
an Ar flow rate of 10 sccm, and a process pressure of 0.68 mtorr). The results indicate that
there was no significant difference in the etching rate depending on the type of oxide film.
However, a 50% reduction in the etching rate was observed for the nitride film. Although
not shown in the figure, the etching uniformity for most films was approximately 2%, with
negligible variation between them, except for the nitride film, which exhibited a slightly
lower uniformity of 1.53% compared to the oxide films. Figure 4b presents the etching
rate results for each film with the plasma power fixed at 500 W and the RF power varied
as 300, 200, or 150 W, resulting in corresponding changes in DC bias of −140, −80, and
−45 V, respectively. Within this ion energy range (DC bias), the etching rate decreased
linearly, and the slopes were nearly identical across the different conditions. At a plasma
power of 500 W, the etching rate followed the trend of thermal oxide > HDP oxide, PETEOS,



Micromachines 2024, 15, 1409 6 of 13

BPSG > HLD. It was also noted that the nitride film exhibited a relatively low etching yield
in the sputter-etching process.
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3.3. Damage Analysis

When Ar ions (atomic mass ~40 Da) are accelerated by bias and collide with the
substrate, they break the oxide bonds and remove the native oxide layer. However, at the
same time, the momentum of the ions is converted into impulse energy, which can damage
and cause defects in the wafer surface by etching the substrate and changing the lattice
due to the implantation of Ar ions [32]. This effect can pose a particular issue not only
for the ILD but also for device areas exposed during the contact process. Moreover, the
non-uniform distribution of Ar ions during cleaning can result in plasma charge damage.
Specifically, we investigated the effects of changes in the lattice structure along with plasma
charge damage.

Figure 5 shows TW signals generated under various process conditions. TW is gen-
erally used to evaluate the effects of ion implantation according to the dose and applied
energy by measuring changes in the thermal vibration amplitude of crystalline solids
caused by impurities or lattice perturbations. In this study, the degree of crystal lattice
defects caused by Ar sputter damage (where the level of damage is relatively low) was
measured through the adjustment of sensitivity. Measurements were taken while varying
the RF power (200, 300, or 400 W) and keeping the plasma power constant at 300 W. Lastly,
the effect of process pressure was measured by setting the Ar flow rate to 5 sccm under the
conditions of 300 W plasma power and 200 W RF power. Thereby, it was confirmed that
the Ar sputter-etching process caused substrate damage, with the primary factor directly
influencing the TW signal being the DC self-bias. For comparative observations, the TW
signal was also measured under 60% nitride over-etching conditions currently applied in
the contact etching process for borderless contact structures in 0.18-µm CMOS logic devices.
The horizontal line in Figure 5 indicates that the TW signal value under those conditions
was approximately 480; thus, the damage was greater during the sputter-etching process
than during the contact opening process.
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To better understand this phenomenon, the Si surfaces of wafers after nitride over-
etching and Ar sputter-etching under a low DC bias of −77 V were examined via trans-
mission electron microscopy (TEM) (Figure 6). It can be observed that an amorphous
Si layer existed even after Ar sputter-etching with a low bias of −77 V (a TW signal of
560). This indicates that a damaged layer was formed on the Si substrate, leading to a
higher bias than that during nitride over-etching (a TW signal of 480). The thickness of the
damaged layer is relatively small, about 30 Å, and can be sufficiently consumed during Ti
siliconization; it was not observed under the currently used process conditions, a DC bias
of −358 V. Therefore, contrary to other reports, this result suggests that physical damage
from Ar sputter-etching might not necessarily cause degradation of the device. However,
the possibility of distortion or stress accumulation in the Si lattice beneath the amorphous
layer cannot be ruled out. In addition, changes in silicidation behavior might occur, which
requires verification through electrical testing.
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Figure 6. Transmission electron microscopy (TEM) images of the Si surface after (a) Ar sputter-etching
(DC bias −77 V; RF 150 W; plasma 500 W) and (b) nitride over-etching (60%, 230 Å).

Figure 7 presents the results of plasma charge damage via PDM under the same Ar
sputter-etching process conditions used for the TW signal generation testing. Charging
damage occurs due to the non-uniform distribution of charges when using plasma for



Micromachines 2024, 15, 1409 8 of 13

etching or oxide deposition, specifically resulting from the difference between the ion and
electron current values [33]. This phenomenon has been reported to affect gate leakage and
threshold voltage. With the continued reduction in gate oxide thickness, plasma charge
damage may exert a greater influence on device sensitivity. Moreover, an evaluation of
the gate oxide integrity (GOI) should also be performed. From this perspective, it was
observed that the change in PDM voltage (∆VPDM) value remained at approximately 1 V
under all sets of Ar sputter-etching conditions, indicating that significant GOI-related issues
are unlikely to arise, and the current process conditions fall within a manageable range.
However, none of the Ar sputter-etching process variables were found to significantly
influence the PDM results, which could be due to background influences arising from
device tolerance during PDM measurements or related to equipment issues that were not
checked in this experiment. Therefore, a more detailed analysis of the plasma mechanism
and the PDM results is required.
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Figure 7. Plasma damage monitoring (PDM) results for various sets of Ar sputter-etching process
conditions: (a) ∆VPDM = 1.140 V, P 300/R 400 (DC: −333); (b) ∆VPDM = 0.887 V, P 300/R 300
(DC −256); (c) ∆VPDM = 0.793 V, P 200/R 200 (DC: −261); (d) ∆VPDM = 1.458 V, P 300/R 200
(DC: −173); (e) ∆VPDM = 0.967 V, P 500/R 200 (DC: −77); and (f) ∆VPDM = 1.346 V, P 300/R200
(DC: −158).

3.4. Sub-Layer Removal and Contact Profile Changes

Variations in the sub-layer etching rate and contact profile resulting from adjustments
in process parameters during the Ar sputter pre-cleaning process were examined.

As shown in Figure 8, measurement points a and b were selected to observe the degree
of tapering in the contact profile after the Ar sputter-etching process and to identify the
causes of bowing such as re-deposition of the oxide layer by additional etching resulting
from Ar ion reflection on the sidewalls or by another factor. This ensures optimal step
coverage, particularly for subsequent processes such as W or Al plugging. Measurement
point e was used to measure the removal rate of the sub-layer. It should be noted that
although the intended CoSi2 formation thickness was 500–600 Å, the actual thickness was
only around 300 Å, which made it difficult to determine the exact removal rate.
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Figure 8. Measurement points for the Ar sputter-etching process.

Figure 9 shows scanning electron microscopy (SEM) images of the contact profile in a
region with a CD of 0.24 µm on TP after Ar sputter-etching of a 0.18-µm CMOS logic device
while Table 2 provides the values for the measurement points in Figure 8 based on the SEM
images in Figure 9.

From the results in Figure 9 and Table 2, it can be deduced that there was some loss
of the underlying Si layer after contact dry etching (approximately 270 Å). In addition,
the contact-hole profile deviated slightly from a conformal shape, showing bowing effect.
The b/a ratio values (indicating the degree of contact-hole tapering) indicate that the
greatest amount of tapering was observed under plasma power of 300 W and RF power
of 300 W. However, none of the process variables predominantly influenced the degree of
tapering. Based on these results, we suggest that future experiments should be conducted
to examine the degree of tapering while varying the process pressure. In addition, it was
found that the degree of bowing in the contact-hole profile was most pronounced under
the processing conditions of plasma power of 300 W and RF power of 400 W while the
other sets of conditions did not cause significant bowing. The c and d measurements for
wafers #1 to #6 decreased compared to the as-etched one (wafer #7). This suggests that the
bowing phenomenon was likely caused by the effects of re-deposition. However, after Ar
sputter-etching, the distinction between the upper PETEOS and lower BPSG layers became
relatively more pronounced depending on the ILD structure. In addition, the bowing
effect was most noticeable under the processing conditions for wafer #1, where the DC
bias was the highest. This indicates that additional sputter effects due to the reflection
of Ar ions also likely occurred. The etching extent of the sub-layer Si shows the trend:
wafer #1 > wafer #3, wafer #4 > wafer #2 > wafer #5 > wafer #6. Notably, there was almost
no etching loss of the sub-layer Si under the process conditions of plasma power at 500 W
and RF power at 150 W, with a DC bias of 50 V. In contrast, wafer #1, under the current
process conditions, exhibited the highest amount of Si loss. These results suggest that
considering the increased number of Ar ions due to higher plasma power, the effect on the
Si sub-layer loss largely depends on the DC bias.

Under the processing conditions for wafers #1 to #4, the CoSi2 layer appears to have
been completely removed, with additional etching of the underlying Si layer also evident.
However, under the processing conditions for wafers #5 and #6 (a lower DC bias), the CoSi2
layer remained. CoSi2 is known to have a significantly higher removal rate in Ar sputter-
etching than titanium silicide (TiSi2). Therefore, it was necessary to perform electrical
evaluations of wafers #5 and #6. Similar to the results for the Si substrate, it was confirmed
that the etching behavior of CoSi2 also depends on the DC bias. Table 3 provides changes in
the etching rate of the different sub-layers according to the process conditions to evaluate
this trend quantitatively.
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Figure 9. Scanning electron microscopy (SEM) images of the sub-etching amount and contact
profile under various sets of Ar sputter-etching process conditions: the Si layer in (a) wafer #1
(P300/R400(DC-334)), (b) wafer #2 (P300/R300(DC-256)), (c) wafer #3 (P300/R200(DC-172)),
(d) wafer #4 (P200/R200(DC-265)), (e) wafer #5 (P500/R200(DC-78)), (f) wafer #6 (P500/R150(DC-
50)), and (g) wafer #7 (as-etched) and the CoSi2 layer in (h) wafer #1 (P300/R400(DC-
334)), (i) wafer #2 (P300/R300(DC-256)), (j) wafer #3 (P300/R200(DC-172)), (k) wafer #4
(P200/R200(DC-265)), (l) wafer #5 (P500/R200(DC-78)), (m) wafer #6 (P500/R150(DC-50)),
and (n) wafer #7 (as-etched).
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Table 2. Changes in contact profile morphology under various sets of Ar sputter-etching
process conditions.

Wafer # a b c d e CoSi2 Layer
Etching Amount b/a d/c

1 800 1570 2870 3200 900 (630) All + Si 300 1.95 1.11
2 600 1600 2970 3230 370 (100) All 2.67 1.09
3 730 1370 2970 3230 400 (130) All + Si 70 1.86 1.09
4 800 1330 3070 3300 400 (130) All + Si 30 1.67 1.08
5 730 1230 2670 2930 330 (70) 200 1.68 1.10
6 800 1200 2800 3070 270 (0) 100 1.5 1.09
7 – – 3130 3340 270 70 – 1.06

Point measurements are in Å.

Table 3. Comparison of sub-layer etching rates for various sets of Ar sputter-etching
process conditions.

Wafer # Plasma Power (W) RF Power (W) DC Bias (V) Si Etching Rate (Å/s) CoSi2 Etching Rate (Å/s)

1 300 400 −334 31.7 Etching off + Si loss
2 300 300 −256 4.0 Etching off
3 300 200 −172 4.2 Etching off + Si loss
4 200 200 −265 2.9 Etching off
5 500 200 −78 2.5 5.11
6 500 150 −50 0 0.94

The results in Table 3 reaffirm that the substrate etching rate is related to the DC bias,
and it was confirmed that the etching rate of CoSi2 was more than twice that of Si.

4. Conclusions

We investigated the effect of varying the parameter values of an Ar sputter-etching
process to clean the contact holes in a dielectric device pre-metallization. It was discovered
that plasma power and RF power significantly influenced the etching rate, contact profile
behavior, and potential damage. The results demonstrate that an increase in plasma power
reduced the DC bias while increasing the etching rate, whereas an increase in RF power
increased both. Varying the process pressure improved etching uniformity but slightly
reduced the DC bias. Notably, the selectivity between nitride and oxide was approximately
1:2, with thermal oxide exhibiting the highest etching rate. Damage evaluation indicates
that greater physical damage occurred under high DC bias conditions while that caused by
the plasma charge was not severe enough to cause device degradation.

In particular, we formed device contact profiles and evaluated CoSi2 silicide etching
and sub-layer influence. Depending on the process conditions, we found Si losses of up to
31.7 Å/s Si loss at Plasma power 300 W and RF power 400 W, while only CoSi2 etching
occurred without Si loss at Plasma power 500 W and RF power 150 W. We confirmed that Si
sub-layer loss is strongly dependent on DC bias, and achieved a Si/CoSi2 sub-layer etching
selectivity of approximately 1:2 at Plasma power 500 W and RF power 200 W condition.

Optimizing plasma power and RF power to achieve a balanced etching performance
while minimizing damage presents a complex challenge in semiconductor processing.
While we have provided important insights into the effects of varying the process pa-
rameters for Ar sputter-etching, several areas warrant further investigation to optimize
and improve semiconductor processing. Future research should focus on understanding
the combined effects of process parameter variations, hardware systems, and process
optimization in Ar sputter-etching.
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