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Abstract: We present a mathematical framework for analyzing fractal patterns in AI-generated images
using persistent homology. Given a text-to-image mapping M : T → I , we demonstrate that the
persistent homology groups Hk(t) of sublevel set filtrations

{
f−1((−∞, t])

}
t∈R characterize multi-

scale geometric structures, where f : M(p) → R is the grayscale intensity function of a generated
image. The primary challenge lies in quantifying self-similarity in scales, which we address by
analyzing birth–death pairs (bi, di) in the persistence diagram PD(M(p)). Our contribution extends
beyond applying the stability theorem to AI-generated fractals; we establish how the self-similarity
inherent in fractal patterns manifests in the persistence diagrams of generated images. We validate
our approach using the Stable Diffusion 3.5 model for four fractal categories: ferns, trees, spirals,
and crystals. An analysis of guidance scale effects γ ∈ [4.0, 8.0] reveals monotonic relationships
between model parameters and topological features. Stability testing confirms robustness under
noise perturbations η ≤ 0.2, with feature count variations ∆µ f < 0.5. Our framework provides
a foundation for enhancing generative models and evaluating their geometric fidelity in fractal
pattern synthesis.

Keywords: fractal dimension analysis; persistent homology; topological data analysis; text-to-image
synthesis; generative models; box-counting dimension; pattern synthesis; computational topology

1. Introduction

The mathematical analysis of generative models presents a fundamental challenge
in computational topology [1], particularly in the context of text-to-image synthesis [2,3],
where geometric characterization remains an open problem. Let (T, dT) and (I, dI) be
metric spaces representing the text and image domains, respectively. Recent advances
in latent diffusion models [4,5] have established continuous mappings M : T → I that
generate high-fidelity visual content [6–8]. Of particular mathematical interest are natural
fractal patterns characterized by self-similarity in multiple scales [9,10]. These patterns
arise from iterated function systems { fi : Rn → Rn}m

i=1 satisfying the fixed-point equation
F =

⋃m
i=1 fi(F) for some compact set F ⊂ Rn. The analysis of such patterns through their

topological invariants [11,12] provides a framework for evaluating the geometric fidelity
of generative models since their recursive structure admits mathematical characterization
through persistent homology [13,14].

The importance of this research lies in its potential to enhance our understanding of the
geometric properties of AI-generated images [15], particularly those exhibiting fractal-like
structures. By developing robust mathematical tools for analyzing these patterns [16,17],
we can improve the evaluation and optimization of generative models [18], leading to more
accurate and controllable image synthesis. This work is relevant not only to computer
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vision and machine learning but also to fields such as computational geometry, topological
data analysis [19,20], and applied mathematics [21–23].

Practical applications of evaluating the geometric authenticity of fractal-like structures
arise in domains such as remote sensing, where accurate characterization of landscape pat-
terns can guide land-use planning [24–26], or in biomedical imaging, where distinguishing
fractal tumor growth patterns from benign structures can inform diagnostic decisions [27].
Furthermore, fields such as computer graphics and virtual reality benefit from improved
fractal synthesis to improve the realism of generated environments [28]. Building on es-
tablished topological analysis approaches [29], our framework may assist in verifying the
authenticity of patterns in heritage preservation imaging or to scrutinize the fidelity of AI-
generated art, ensuring that generative models produce visually coherent and scientifically
consistent fractal motifs.

Our goal is to establish a comprehensive mathematical framework for characterizing
fractal patterns in AI-generated images using persistent homology. This framework aims
to provide quantitative measures that capture the multi-scale geometric properties of
generated patterns, overcoming the limitations of traditional metrics based on pixel-wise
comparisons or perceptual similarity functions [30]. The challenge lies in developing
stability guarantees for these geometric measurements, given the high-dimensional nature
of the generation process M(p) for p ∈ T.

We address these challenges through a systematic application of persistent homol-
ogy to AI-generated fractal patterns. For a generated image g = M(p), we analyze its
grayscale intensity function f : g → R through the lens of persistent homology, examining
the filtration

{
f−1((−∞, t])

}
t∈R and its associated homology groups Hk(t). This approach

enables the characterization of geometric features on multiple scales using the persistence
diagram PD(g), which records the birth and death times (bi, di) of topological features.
Our main theoretical contribution lies in establishing how the self-similarity inherent in
fractal patterns manifests itself in the persistence diagrams of AI-generated images. We
demonstrate that under certain conditions, the scaling behavior of topological features in
the persistence diagrams corresponds to the self-similar structure of the fractals.

To validate our solution, we performed extensive experiments using the Stable Diffu-
sion 3.5 model [31] in four fractal categories: ferns, trees, spirals, and crystals. Our results
demonstrate a statistically significant differentiation of pattern types through dimension 1
persistence features. This work establishes persistent homology as a mathematical tool
for analyzing geometric properties of AI-generated patterns, with implications for model
evaluation and optimization. The framework enables systematic assessment of geometric fi-
delity through well-defined topological measurements, complementing existing evaluation
protocols for synthetic imagery.

In this work, we present a mathematical framework that leverages persistent homol-
ogy to characterize fractal patterns in AI-generated images. Our key contributions are as
follows: (1) We establish a direct connection between self-similarity in fractal structures and
their topological signatures captured via persistence diagrams. (2) We provide a stability
analysis that ensures the robustness of these topological features under variations in model
parameters and noise. (3) We demonstrate how textual prompts influence fractal complex-
ity, illustrating that linguistic nuances can significantly alter the geometric authenticity
of generated patterns. (4) We introduce a methodology that can serve as a topological
diagnostic tool for the broader AI and computational geometry communities, offering a
new perspective on evaluating generative models and their outputs.

2. Related Work
2.1. Topological Data Analysis in Image Processing

Topological data analysis (TDA) has emerged as a powerful tool for analyzing complex
data structures, with particular applications in image processing. The stability theory
of persistence diagrams, established by Cohen-Steiner et al. [32], provides fundamental
guarantees for the robustness of topological features. For tame functions f , g : X → R
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on a topological space X, the stability theorem bounds the bottleneck distance between
persistence diagrams:

dB(Dgm( f ), Dgm(g)) ≤ ∥ f − g ∥∞ (1)

This result has been extended to Lp-stability [33], broadening the framework for
comparing persistence diagrams. Further generalizations by Patel [34] have expanded the
applicability of these concepts in computational topology. Although these works provide a
solid foundation for topological analysis, they do not specifically address the challenges of
analyzing AI-generated fractal patterns, which is the focus of our study.

In image analysis, persistent homology has been applied to various tasks, including
segmentation. Clough et al. [35] introduced a topological loss function Ltopo incorporating
persistence-based features:

Ltopo =
d

∑
k=0

∑
(b,d)∈Dgmk( f )

ϕ(d − b) (2)

where ϕ weights long-lived topological features. In contrast to this general approach, our
framework specifically addresses the characterization of self-similarity in scales in fractal
patterns, providing a novel perspective on the analysis of AI-generated images.

2.2. Fractal Analysis of Natural Patterns

The mathematical foundations of fractal geometry, pioneered by Mandelbrot [36],
have revealed the ubiquity of fractal structures in nature. The fractal dimension D of a set
F, defined through the box-counting method, is given by:

D = lim
ϵ→0

log N(ϵ)

log(1/ϵ)
(3)

where N(ϵ) is the number of boxes of side length ϵ needed to cover F. This concept has
been applied to analyze various natural phenomena, from non-linear time series [37] to
texture patterns. However, these traditional approaches often lack the ability to capture the
multi-scale topological features inherent in fractal structures.

Our work extends these approaches by establishing a connection between the fractal
dimensions and persistent homology. We provide a multi-scale topological perspective on
fractal patterns, relating the persistence diagrams of generated fractals to their theoretical
scaling properties. This approach bridges the gap between fractal geometry and topological
data analysis, offering a novel framework for characterizing complex geometric structures
in AI-generated images.

2.3. Text-to-Image Generation Models

Recent advancements in text-to-image synthesis have led to sophisticated architec-
tures based on diffusion models. The generation process can be formalized as a map-
ping G : T × Z → X , where T , Z , and X denote the text embedding, latent, and image
spaces, respectively.

Podell et al. [38] introduced a multi-scale framework with dual UNet backbones
U1, U2 : X × T → X operating at different resolutions. The composition U2 ◦ U1 enables
high-fidelity synthesis through cascaded refinements. This approach was extended to
video generation by Blattmann et al. [39], generalizing the process to temporal evolution
Gt : T × Z × [0, T] → X . While these models have shown impressive results in generating
complex images, they lack a mathematical framework to analyze the geometric properties
of the generated patterns.

Efficiency-focused architectures, such as those proposed by Xie et al. [40], have re-
formulated the generation process using linear operators L : X → X that approximate
non-linear diffusion steps:

xt−1 = L(xt, t) + σtϵ, ϵ ∼ N (0, I) (4)



Fractal Fract. 2024, 8, 731 4 of 19

where σt is a time-dependent noise scale. In contrast, Gu et al. [41] introduced nested denois-
ing autoencoders {Ek ◦ Dk}K

k=1 operating at multiple scales simultaneously, allowing for
hierarchical generation of fractal-like structures. These approaches, while efficient, do not
provide a direct means of quantifying the geometric authenticity of the generated patterns.

In addition to topological and fractal-based analyses, other image synthesis and eval-
uation frameworks incorporate domain-specific properties. For example, recent work
in underwater image generation leverages special optical characteristics of water to im-
prove the fidelity of generated scenes [42]. Similarly, in satellite imagery, self-training
methods grounded in geometrical constraints have been proposed to bridge domain gaps,
facilitating improved pose estimation and reducing annotation costs [43]. While these
approaches focus on specific physical or geometrical constraints, our method offers a more
general, topological perspective, complementing such domain-tailored solutions by provid-
ing a universal framework to assess the inherent geometric authenticity of AI-generated
fractal patterns.

Our work complements these generative approaches by providing a topological frame-
work for analyzing the geometric properties of generated patterns. We focus particularly
on fractal characteristics and multi-scale structure, offering a novel perspective on the
evaluation and understanding of text-to-image generation models.

2.4. Persistent Homology in Machine Learning

The application of persistent homology to machine learning tasks has gained traction in
recent years. Horak et al. [44] proposed a topology-based approach to evaluate generative
adversarial networks (GANs), using persistence diagrams to compare the topological
structure of real and generated data distributions. Their method, while innovative, does
not specifically address the challenges of fractal pattern analysis in AI-generated images.

Alipourjeddi and Miri [45] extended this line of research by developing a topological
approach to evaluate GANs, focusing on the stability and quality of the generated samples.
However, their work does not delve into the specific challenges posed by fractal patterns or
the multi-scale nature of such structures.

Our approach differs from those of these previous works in several key aspects. First,
we focus specifically on the analysis of fractal patterns in AI-generated images, leveraging
the self-similarity properties inherent in these structures. Second, we establish a direct
connection between the persistence diagrams and the theoretical scaling properties of
fractals, providing a more comprehensive framework for evaluating geometric authenticity.
Lastly, our method is tailored to the unique challenges posed by text-to-image generation
models, offering insights into how textual descriptions influence the topological features of
the resulting images.

3. Background
3.1. Text-to-Image Generation Models

Text-to-image generation models operate on probability spaces (T, ΣT, µT) and (I, ΣI , µI)
representing the prompt and image spaces, respectively. The generation process is charac-
terized by a measurable mapping M : T → I that preserves the underlying probabilistic
structure. We focus on the mapping M : T → I as it pertains to generating images for
analysis via persistent homology.

Definition 1. A forward diffusion process on the image space I ⊆ Rn is defined as a sequence of
latent variables {xt}T

t=0 where x0 ∼ q(x0) (the data distribution) and for t = 1, · · · , T:

q(xt|xt−1) = N
(

xt;
√

1 − βtxt−1, βtI
)

(5)

Here, βt is a predefined variance schedule, and N denotes the normal distribution.
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3.2. Persistent Homology

Persistent homology provides a framework for analyzing topological features on
multiple scales. We formalize key concepts in this context.

Definition 2. A filtration of a topological space X is a family {Xt}t∈R of subspaces such that
Xs ⊆ Xt for all s ≤ t. For a continuous function, f : X → R , the sublevel set filtration is defined
as Xt = f−1((−∞, t]).

Definition 3. A persistence module is a family of vector spaces {Vt}t∈R with homomorphisms
vt

s : Vs → Vt for s ≤ t satisfying:

vu
t ◦ vt

s = vu
s for all s ≤ t ≤ u (6)

Theorem 1 (Structure Theorem). Every pointwise finite-dimensional persistence module V
decomposes uniquely as a direct sum of interval modules:

V ∼=
⊕
i∈I

I[bi, di] (7)

where I[b, d] denotes the interval module supported on [b, d].

Definition 4. For a continuous function f : X → R on a topological space X, the persistence
diagram PD( f ) is the multiset of points (b, d) ∈ R2

corresponding to the interval summands in
the decomposition of the persistence module H∗

(
f−1((−∞, t])

)
t∈R.

3.3. Fractal Geometry and Natural Patterns

Fractal geometry provides the mathematical foundation for analyzing patterns ex-
hibiting self-similarity on scales, which is characteristic of many natural phenomena. An
iterated function system (IFS) is a method for constructing such fractals by repeatedly
applying a set of contractive mappings. The Hutchinson–Barnsley theorem offers a way to
calculate the fractal (Hausdorff) dimension of the set generated by an IFS, which is essential
in understanding the complexity of fractal structures.

Definition 5. An iterated function system (IFS) is a finite set of contractive mappings { fi}m
i=1

on a complete metric space (X, d). The attractor of an IFS is the unique compact set F satisfying
F =

⋃m
i=1 fi(F).

Theorem 2 (Hutchinson–Barnsley). For an IFS { fi}m
i=1 with contraction ratios {ri}m

i=1, the
Hausdorff dimension D of the attractor F satisfies:

m

∑
i=1

rD
i = 1 (8)

Definition 6. For a bounded set F ⊂ Rn, let Nϵ(F) be the minimum number of boxes of side length
ϵ needed to cover F. The box-counting dimension is:

dimB(F) = lim
ϵ→0

log Nϵ(F)
− log ϵ

(9)

when this limit exists.
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4. Method
4.1. Theoretical Framework

Persistent homology can be understood as a tool that tracks the formation and dis-
appearance of features (e.g., distinct “islands” of intensity or “holes”) within an image
as we gradually adjust a grayscale threshold. Imagine starting from a completely dark
image and slowly “flooding” it with brightness: connected bright regions emerge, merge,
and sometimes enclose voids. Persistent homology quantifies these changes, encoding the
life-span of topological features in different intensity levels. This perspective allows non-
specialist readers to grasp the core idea without being overwhelmed by formal definitions
and equations.

We begin by formalizing the text-to-image generation process in the context of fractal
pattern analysis. Let T denote the space of text prompts and I the space of images. We con-
sider a text-to-image mapping M : T → I that generates images from textual descriptions.

Assumption 1. For any prompt p ∈ T that describes natural fractal patterns, the generated image
g = M(p) admits a grayscale intensity function f : g → R .

This assumption allows us to analyze the topological properties of the generated
images through their grayscale representations. While we reduce each generated color
image to a grayscale intensity function for topological analysis, this simplification may
overlook structural information encoded in color channels. Complex fractal patterns could
manifest differently in hue or saturation, and subtle chromatic variations might not translate
to grayscale intensity. Consequently, certain geometrically meaningful features that are
discernible only through color contrasts might remain undetected. Future work could
incorporate multi-channel or color-based filtrations to capture richer geometric information
and overcome this limitation. We construct a filtration based on the sublevel sets of f :

Definition 7. Let Ft = f−1((−∞, t]) denote the sublevel sets of f. The filtration {Ft}t∈R induces
a sequence of homology groups:

Hk(Ft1) → Hk(Ft2) → · · · → Hk(Ftn) (10)

where Hk denotes the k-th homology group.

This filtration captures the evolution of topological features as we vary the threshold t,
providing a multi-scale perspective on the image’s structure.

4.2. Main Results and Proofs

Our main result establishes a connection between the fractal nature of the generated
images and their persistence diagrams. We begin with a key assumption and lemma that
characterize the behavior of topological features under scaling transformations.

Assumption 2. Let F ⊂ Rn be a self-similar fractal set generated by an iterated function system
(IFS) { fi}m

i=1 that satisfies the open set condition with a uniform contraction ratio r ∈ (0, 1). We
assume that for each ϵ > 0, the sublevel sets Uϵ = {x ∈ Rn | dF(x) ≤ ϵ} satisfy the following
homological self-similarity property:

Hk(Uϵ) ∼= Hk(Urϵ) for all k ≥ 0, (11)

where Hk denotes the k-th homology group, and ∼= denotes isomorphism. This implies that the
homological features of Uϵ replicate at scales related by powers of r, reflecting the fractal’s self-
similar structure.

Lemma 1. Let F ⊂ Rn be a self-similar fractal set generated by an iterated function system
(IFS) { fi}m

i=1 that satisfies the open set condition with a uniform contraction ratio r ∈ (0, 1). Let
dF : Rn → R≥0 be the distance function defined by dF(x) = infy∈F ∥ x − y ∥. Then:
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1. The function dF is 1-Lipschitz continuous.
2. The k-th persistence diagram PDk(dF) exhibits patterns corresponding to the self-similarity of

F, with features appearing at scales related by powers of r.

Proof. For any x, y ∈ Rn:

|dF(x)− dF(y)| =
∣∣∣∣ inf
z∈F

∥ x − z ∥ − inf
w∈F

∥ y − w ∥
∣∣∣∣ ≤ sup

z∈F
|∥ x − z ∥ − ∥ y − z ∥| ≤ ∥ x − y ∥ . (12)

This inequality establishes that dF is 1-Lipschitz continuous.
Consider the sublevel sets Uϵ = {x ∈ Rn | dF(x) ≤ ϵ}. Due to self-similarity, Uϵ

contains scaled copies of Uϵ/rm for m ∈ N. As ϵ varies, the topological features (e.g.,
connected components, holes) in Uϵ replicate at scales ϵ, rϵ, r2ϵ, . . .. This scaling manifests
itself in the persistence diagram PDk(dF) as repeated patterns of birth and death times at
logarithmically spaced intervals, reflecting the fractal’s self-similarity. □

Building on this lemma, we can now state our main theorem characterizing the
persistence structure of fractal patterns in AI-generated images.

Assumption 3. Assume there exists a continuous, bijective mapping ϕ : dom
(

fg
)
→ dom( fF)

such that the pullback function f ϕ
g = fg ◦ ϕ−1 is well-defined on the domain of fF. Furthermore,

we assume that the supremum norm of the difference between f ϕ
g and fF is bounded by a constant

δ > 0, i.e.,
∥ f ϕ

g − fF ∥∞≤ δ. (13)

This allows us to consider f ϕ
g and fF as functions in a common domain X ⊂ Rn, facilitating the

application of the stability theorem for persistence diagrams.

Theorem 3. Let p ∈ T be a prompt that describes a natural fractal pattern, and let g = M(p)
be the image generated by the text-to-image model M. Let fg : g → R be the grayscale intensity
function of g, and let fF : F → R represent a similar function for the ideal fractal F ⊂ Rn. Suppose
fg and fF are extended to functions in a common domain X ⊂ Rn by embedding both the generated
image g and the ideal fractal F in a shared coordinate space. If ∥ fg − fF ∥∞≤ δ for some δ > 0,
then for each k ≥ 0, the bottleneck distance between their persistence diagrams satisfies:

dB
(
PDk

(
fg
)
, PDk( fF)

)
≤ δ. (14)

Proof. Given that ∥ fg − fF ∥∞≤ δ, it follows directly from the stability theorem for
persistence diagrams (Theorem 4) that:

dB
(
PDk

(
fg
)
, PDk( fF)

)
≤ ∥ fg − fF ∥∞ ≤ δ. (15)

This inequality holds because the bottleneck distance between the persistence dia-
grams of two functions is bounded above by the L∞ norm of their difference, provided
that the functions are defined on the same domain and meet the necessary conditions of
tameness and continuity. □

4.3. Algorithmic Implementation

The computation of persistence diagrams from generated images involves transform-
ing discrete grayscale data into a filtered simplicial complex suitable for topological analysis.
The process consists of the following steps:

The grayscale image f : [0, h]× [0, w] → [0, 1] is represented as a 2D grid of pixels
with intensity values fi,j, where i = 1, · · · , h and j = 1, · · · , w.

Each pixel corresponds to a vertex vi,j in a simplicial complex K. The vertices inherit
the grayscale intensity values from the pixels, i.e., fK

(
vi,j

)
= fi,j.
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Edges are formed between adjacent pixels (horizontally and vertically), potentially
including diagonals if 8-connectivity is desired. For example, an edge e =

[
vi,j, vi+1,j

]
is

included if | fi,j − fi+1,j| is below a threshold or unconditionally to capture adjacency.
Higher-dimensional simplices (triangles and tetrahedra) can be formed by connecting

three or more adjacent vertices. The function fK is extended to simplices by taking the
maximum of the vertex values:

fK(σ) = max
v∈σ

fK(v). (16)

The simplicial complex K is filtered by the function fK. Filtration {Kt}t∈[0,1] is defined
by including all simplices σ with fK(σ) ≤ t:

Kt = {σ ∈ K | fK(σ) ≤ t}. (17)

This filtration captures how topological features emerge and disappear as the intensity
threshold t increases from 0 to 1.

Persistent homology is computed using standard algorithms, such as matrix reduction
methods on finite fields (typically Z2). Software libraries such as Ripser or GUDHI can
efficiently handle these computations. The persistence pairs (bi, di) are extracted from the
reduced boundary matrix, representing the birth and death times of the topological features.

The resulting persistence diagrams PDk( f ) for k = 0, 1 provide insight into the topo-
logical structure of the image at different intensity thresholds. The features in PD0( f )
correspond to connected components, while those in PD1( f ) represent loops or holes.

4.4. Stability Analysis

The stability of persistence diagrams is crucial for the robustness of our analysis.
To apply the stability theorem effectively, we must verify that our functions satisfy the
required conditions.

Definition 8. A function f : X → R defined on a triangulable compact metric space X is termed
tame if:

1. It is continuous.
2. It has a finite number of critical values.
3. For all t ∈ R, the sublevel sets Xt = f−1((−∞, t]) have finite-dimensional homology groups.

In the context of this paper, the space X corresponds to the pixel grid of the image,
which is compact and can be triangulated using simplices formed from adjacent pixels. The
grayscale intensity function f is inherently discrete due to the finite resolution of digital
images, making it continuous in a discrete sense.

Although f is defined on a discrete grid, we can consider it as a piecewise constant
function extended over each pixel, which is a small square in R2. Within each pixel, f is
constant, and in adjacent pixels, the change in f is finite. This allows us to treat f as a
continuous function on X.

Since the grayscale values are quantized (typically in 256 levels for an 8-bit image), f
takes on a finite number of values. Therefore, the number of critical values that determine
the intensity levels at which topological changes occur is finite. In each sublevel set Xt, the
simplicial complex constructed from pixels with intensity less than or equal to t is finite,
as there are a finite number of pixels. Consequently, the homology groups Hk(Xt) are
finite-dimensional for all k.

Given that f satisfies these conditions, we can apply the stability theorem for persis-
tence diagrams:
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Theorem 4 (Stability Theorem). For tame functions f , g : X → R , the bottleneck distance
between their k-th persistence diagrams satisfies:

dB(PDk( f ), PDk(g)) ≤ ∥ f − g ∥∞. (18)

This theorem ensures that small changes in the function f (measured by the L∞ norm)
lead to small changes in persistence diagrams. In our analysis, this means that perturbations
in the grayscale intensity due to noise or variations in the generative process will not
significantly affect the topological features captured by persistent homology, provided that
the perturbations are bounded.

We provide here a brief summary of its central assumptions and reasoning. The
theorem assumes that f and g are tame functions defined on a common domain, ensuring
finite and well-behaved persistence diagrams. Under these conditions, the bottleneck
distance between the diagrams cannot exceed the L∞ norm of f − g. Intuitively, this
result follows from the idea that small pointwise perturbations in the function lead to
correspondingly small shifts in the birth and death times of topological features. While
the full proof involves careful measure-theoretic arguments and stability properties of
sublevel sets, the key takeaway is that topological summaries remain stable under bounded
perturbations, providing a foundational guarantee for our analysis.

Theorem 5. Let f , g : X → R be tame Lipschitz functions defined on a compact metric space X.
For each k ≥ 0, the difference in the total persistence µk of their k-th persistence diagrams satisfies:

|µk(PDk( f ))− µk(PDk(g))|≤ 2·dB(PDk( f ), PDk(g))·Nk (19)

where Nk is the number of points (including multiplicities) in PDk( f ) or PDk(g), whichever is
greater.

Proof. Let γ : PDk( f ) → PDk(g) be an optimal match that realizes the bottleneck distance
dB(PDk( f ), PDk(g)). For any (bi, di) ∈ PDk( f ) matched to

(
b′i , d′i

)
= γ(bi, di):

|(di − bi)−
(
d′i − b′i

)
|≤|di − d′i|+|bi − b′i |≤ 2 dB(PDk( f ), PDk(g)) (20)

The total persistence difference can be bounded:

|µk(PDk( f ))− µk(PDk(g))| =

∣∣∣∣∣∣ ∑
(bi ,di)

(di − bi)− ∑
(b′i ,d

′
i)

(
d′i − b′i

)∣∣∣∣∣∣ (21)

≤ ∑
(bi ,di)

∣∣(di − bi)−
(
d′i − b′i

)∣∣ ≤ 2dB(PDk( f ), PDk(g))·Nk (22)

□

These stability results ensure that our analysis is robust to small perturbations in
the input images, providing a solid foundation for comparing and analyzing persistence
diagrams of AI-generated fractal patterns.

5. Experimental Settings

Our experimental framework quantifies the topological properties of AI-generated
fractal patterns using the Stable Diffusion 3.5 model [31]. Let C = fern, tree, spiral, crystal
denote our set of fractal categories, where each category c ∈ C represents natural patterns
with inherent self-similarity properties. For each category c ∈ C, we define a prompt set
Pc =

{
pc

1, . . . , pc
4
}

where each pc
i is constructed to capture specific mathematical aspects of

fractal geometry. For instance, pfern
1 = “detailed fern leaf with intricate fractal patterns”

and pfern
2 = “mathematical fern fractal with precisestructure”. The prompt space P =
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⋃
c∈C Pc forms a discrete metric space under the Levenshtein distance dL : P × P → R≥0 ,

enabling quantitative comparison of textual descriptions.
Our study utilizes the Stable Diffusion 3.5 model obtained through the Hugging Face

Diffusers library, which provides a convenient interface for text-to-image generation. This
model is a multimodal diffusion transformer trained on large-scale image-text datasets and
equipped with multiple text encoders (such as CLIP and T5). By conditioning the latent
diffusion process on textual prompts, the model produces high-fidelity images that can
reflect complex concepts and stylistic nuances. Although details of the full architecture and
training protocols are proprietary to Stability AI, the stable-diffusion-3.5-medium checkpoint
incorporates improvements over previous versions, including enhanced multi-resolution ca-
pabilities and QK-normalization for training stability. We used StableDiffusion3Pipeline from
Hugging Face Diffusers to load the model and run the generation locally on GPU hardware.

The experimental pipeline formalizes the image generation and analysis process
as follows. Let M : P → I denote our text-to-image mapping from the prompt space
P to the image space I ⊂ [0, 1]h×w×3, where h, w ∈ {128, 256, 512} specify the image
dimensions. For each prompt p ∈ P, we generate an image g = M(p) with guidance scale
γ ∈ Γ = {4.0, 5.0, 6.0, 7.0, 8.0}. To ensure reproducibility, we employ a deterministic seed
mechanism s ∈ S = {1, . . . , 50}, which produces the generation function G : P × S × Γ → I
defined by:

G(p, s, γ) = Mγ(p; ξs) (23)

where ξs denotes the random state initialized by seed s. Each generated image undergoes a
transformation T : I → [0, 1]h×w to a grayscale intensity function via the rgb2gray operator:

T(g)i,j = 0.2989gi,j,1 + 0.5870gi,j,2 + 0.1140gi,j,3 (24)

Topological analysis employs the Ripser library for computing persistence diagrams.
For each grayscale image f, we compute its persistence diagram PD( f ) containing birth-
death pairs (bi, di) that characterize the multi-scale topological features. The computation is
performed in dimensions 0 and 1, capturing connected components and loops, respectively.
We define three key statistical measures for each diagram PD( f ):

µ f (PD( f )) = |PD( f )| (feature count) (25)

µp(PD( f )) =
1

|PD( f )| ∑
(bi ,di)∈PD( f )

(di − bi) (mean persistence) (26)

σp(PD( f )) =

√√√√ 1
|PD( f )| ∑

(bi ,di)∈PD( f )

(
(di − bi)− µp(PD( f ))

)2
(std) (27)

Each category incorporates four distinct prompt variations designed to explore differ-
ent aspects of fractal generation. The variations range from mathematical descriptions (e.g.,
“Koch snowflake fractal”) to natural interpretations (e.g., “Natural fern with self-similar
structure”), allowing us to evaluate how different textual formulations affect the topolog-
ical characteristics of the generated patterns. These prompts were selected to maintain
consistent geometric properties while varying the linguistic approach to description.

In creating our dataset, we thoughtfully chose four types of fractals (ferns, trees, spirals,
and crystals) to capture a wide range of self-similar structures that match the theoretical
framework outlined in Sections 3 and 4. Each type includes prompts aimed at highlighting
fractal traits such as recursive branching, scale invariance, and geometric complexity. By
ensuring that text descriptions explicitly evoke fractal concepts, we construct a dataset
that meets the mathematical criteria required for persistent homology analysis. This clear
link between prompt design and theoretical fractal traits enables us to effectively use our
topological approach and verify that the observed persistent features are deliberate and
arise from the planned fractal elements of the generated images. (See Table 1).
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Table 1. Prompt variations by fractal category.

Category Prompt Variations

Fern

1. Detailed fern leaf with intricate fractal patterns
2. Mathematical Barnsley fern fractal
3. Natural fern with self-similar structure
4. Recursive fern pattern with multiple iterations

Tree

1. Fractal binary tree structure
2. Mathematical tree with recursive branching
3. Pythagoras tree fractal
4. Binary branching pattern with self-similarity

Spiral

1. Golden spiral with fractal elements
2. Logarithmic spiral pattern
3. Nautilus shell with recursive structure
4. Fibonacci spiral with self-similar details

Crystal

1. Snowflake with hexagonal symmetry
2. Ice crystal with recursive branching
3. Koch snowflake fractal
4. Crystalline growth pattern

Our experimental design incorporates three key analyses: impact on the guidance scale,
noise robustness, and effects of prompt variation. The guidance scale analysis examines
the values γ ∈ {4.0, 5.0, 6.0, 7.0, 8.0} to understand how the conditioning of the model
affects the topological features. The noise robustness study introduces Gaussian noise
levels η ∈ {0.0, 0.05, 0.1, 0.15, 0.2} to assess the stability of the characteristics. The prompt
variation analysis explores four distinct prompt formulations per category to evaluate the
consistency of topological signatures in different textual descriptions. This comprehensive
framework enables a systematic evaluation of the relationship between the parameters of
the generative model and the resulting topological features of fractal patterns.

As illustrated in Figure 1, the process of applying persistent homology to AI-generated
fractal patterns involves several key steps, beginning with a text prompt that is transformed
into a generated image by a text-to-image model. The resulting image is then converted
to a grayscale intensity function and filtered to form sublevel sets, providing a structured
input for topological analysis. After computing the persistent homology and extracting
the associated persistence diagrams, we performed a detailed evaluation of the geometric
authenticity and fractal properties inherent in the generated patterns.
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6. Results
6.1. Preliminary Topological Analysis

Preliminary experimental analysis consisted of generating 20 images (5 each) in
four fractal categories using the text-to-image model, with fixed image dimensions of
256 × 256‘pixels. Figure 2 presents a representative subset of the generated patterns. The
persistence diagrams were computed in dimensions 0 and 1, capturing the evolution of con-
nected components and loops, respectively. The dimension 0 persistence analysis revealed
consistent feature counts (µ f = 256.0) in all categories, with infinite mean persistence and
undefined standard deviation. This uniformity is attributed to the digital image repre-
sentation, where each pixel forms a distinct connected component at the lowest intensity
threshold. In contrast, the characteristics of dimension 1 exhibited statistically significant
variations between categories, as evidenced by the measurements in Table 2.
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values. The standard deviation of persistence values revealed varying degrees of structural
consistency, with spirals showing remarkable consistency (σp = 1.07) and trees exhibiting
the highest variability (σp = 4.37).
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Figure 2. Generated fractal patterns for the different categories. Each row represents one category
(fern, tree, spiral, crystal) with four different examples, demonstrating the variety and consistency of
the generated patterns. All images are 256 × 256 pixels.

Table 2. Dimension 1 features from preliminary analysis.

Category Mean Features Mean Persistence Std Persistence

Fern 63.8 17.59 3.51
Tree 79.2 11.53 4.37

Spiral 37.4 7.37 1.07
Crystal 71.2 19.33 2.87

The mean persistence values in dimension 1 provided quantitative support for our
theoretical framework with respect to the complexity of the generated fractal patterns.
Crystal structures exhibited the highest mean persistence (µp = 19.33), followed closely
by ferns (µp = 17.59), while trees (µp = 11.53) and spirals (µp = 7.37) showed lower
values. The standard deviation of persistence values revealed varying degrees of structural
consistency, with spirals showing remarkable consistency (σp = 1.07) and trees exhibiting
the highest variability (σp = 4.37).

These measurements align with the theoretical prediction that more complex fractal
patterns generate more persistent topological features while also providing a quantitative
measure of structural regularity. However, we acknowledge that factors such as model
biases, prompt specificity, and image resolution may influence these outcomes.
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6.2. Extended Study on Prompt Variations

An extended study was conducted to analyze the impact of prompt variations on
topological features, with 160 images generated per category using four distinct prompt
formulations. This comprehensive analysis revealed significant insights into the relation-
ship between textual descriptions and the resulting topological structures of generated
fractals. Table 3 presents the results for the fern category, illustrating how different prompt
formulations affect the topological features.

Table 3. Dimension 1 features by prompt variation—fern category.

Prompt Mean Features Mean Persistence Std Persistence

Detailed 62.75 18.35 6.09
Mathematical 73.85 19.66 6.94

Natural 51.58 17.94 6.53
Barnsley 69.65 22.64 8.74

The results demonstrate that prompt variations significantly influence the topological
characteristics of the generated fractals. For instance, in the fern category, the “Barns-
ley” prompt yielded the highest mean persistence (µp = 22.64) and standard deviation
(σp = 8.74), indicating more complex and variable structures. In contrast, the “Natural”
prompt produced the lowest feature count (µ f = 51.58) and mean persistence (µp = 17.94),
suggesting simpler and more uniform patterns.

Similar patterns were observed in other categories. In the spiral category, logarithmic
spiral prompts produced markedly different features (µ f = 175.75, µp = 32.18) compared
to other variations (µ f ∈ [40.28, 78.28], µp ∈ [8.25, 13.17]), suggesting a strong sensitivity
to the specific mathematical terminology in the prompts. The Pythagoras tree prompts
similarly generated distinctive features (µ f = 108.33, µp = 25.55) compared to other
tree variations.

These results provide empirical support for our theoretical framework, demonstrating
that persistent homology effectively captures the underlying geometric structure of AI-
generated fractal patterns while being sensitive to variations in textual descriptions. The
significant differences observed in prompt variations highlight the importance of language
in guiding the generation of specific fractal structures.

6.3. Impact of Guidance Scale

The analysis of guidance scale effects on topological features reveals systematic pat-
terns in the range γ ∈ {4.0, 5.0, 6.0, 7.0, 8.0}. Figure 3 illustrates the relationship between
the guidance scale and the mean persistence for each fractal category.

For the crystal category, the mean persistence exhibits monotonic growth from µp = 15.49
at γ = 4.0 to µp = 21.43 at γ = 8.0, while feature counts decrease from µ f = 85.5
to µ f = 73.7. The tree category demonstrates similar behavior, with mean persistence
increasing from µp = 13.71 to µp = 18.19 as feature counts decrease from µ f = 106.8 to
µ f = 98.0. The spiral category maintains a consistent feature reduction from µ f = 97.1 to
µ f = 79.1 with increasing persistence from µp = 12.19 to µp = 14.40. The fern category
exhibits the most stable response to guidance scaling, with persistence values ranging from
µp = 18.63 to µp = 22.42 and feature counts varying between µ f = 82.2 and µ f = 74.6.

These results suggest that higher guidance scales generally lead to more pronounced
and persistent topological features, potentially at the cost of reduced feature diversity. This
trade-off between feature persistence and count provides insight into the model’s behavior
under different levels of prompt adherence. However, we note that the generative model’s
interpretation of prompts and inherent limitations could impact the fidelity of the generated
fractal patterns. (See Figure 4).
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Figure 3. Impact of guidance scale on topological features. The plot shows mean persistence values
(dimension 1) in different guidance scales for each fractal category, with error bands indicating
standard deviation.

Figure 4. Comparison of topological features in prompt variations. Bar heights represent mean
persistence values for different prompt formulations within each category, with error bars showing
standard deviation.
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sian noise perturbations η ∈ {0.0, 0.05, 0.1, 0.15, 0.2}. Table 4 summarizes the results for
each category at different noise levels.
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6.4. Noise Robustness Analysis

Noise robustness analysis quantifies the stability of topological features under Gaus-
sian noise perturbations η ∈ {0.0, 0.05, 0.1, 0.15, 0.2}. Table 4 summarizes the results for
each category at different noise levels.
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Table 4. Noise robustness analysis (dimension 1 features).

Category Noise 0.00 Noise 0.05 Noise 0.10 Noise 0.15 Noise 0.20

Fern 69.73 69.80 69.87 70.03 69.87
Tree 97.93 97.97 97.70 98.23 98.17

Spiral 76.37 76.27 76.60 76.60 76.27
Crystal 78.47 78.30 78.33 78.43 78.70

The fern category maintains exceptional stability, with mean feature counts that vary
only between µ f = 69.73 and µ f = 70.03 and persistence values that remain consistent at
µp = 20.11 ± 0.01 at all noise levels. The crystal category exhibits similar robustness, with
feature counts varying from µ f = 78.47 to µ f = 78.70 and persistence values that maintain
µp = 19.87 ± 0.01. The tree and spiral categories show comparable stability, with minimal
variations in feature counts and persistence values across noise levels.

These quantitative results establish the robustness of persistent homology as a reliable
tool for analyzing the geometric properties of AI-generated fractal patterns under varying
noise conditions. The stability of topological features across different noise levels supports
the theoretical predictions of the stability theorem for persistence diagrams, as discussed in
Section 4.4.

Figure 5 provides a concrete visual example of the influence of prompt variations on
the fractal-like structures generated by the model. By comparing multiple images across
categories and prompt formulations, we observe that certain textual cues lead to more
pronounced self-similar patterns or increased feature complexity. This visual evidence
supports our quantitative findings, reinforcing the conclusion that the interplay between
language and topological characteristics is pivotal in shaping the geometric authenticity of
AI-generated fractal patterns.
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7. Conclusions

Our analysis demonstrates that persistent homology effectively detects and quantifies
fractal characteristics in AI-generated images, thus confirming the presence of self-similar
structures. By examining variations in the guidance scale, we identify a monotonic relation-
ship between the model’s parameters and the resulting topological complexity, indicating
that parameter tuning can systematically influence geometric authenticity. Furthermore,
noise robustness tests verify that the topological features remain stable under perturba-
tions, underscoring the reliability and broad applicability of our approach. Finally, our
comparative examination of different textual prompts reveals that persistent homology is
sensitive to linguistic specificity, which substantially affects the complexity of the generated
fractal patterns.

This work establishes a framework for analyzing fractal patterns in AI-generated
images using persistent homology. We have shown that for a text-to-image mapping,
M : T → I , the persistent homology groups Hk(t) of sublevel set filtrations characterize
the multi-scale structure in generated patterns. Our analysis demonstrates that for a fractal
prompt p ∈ T, the persistence diagram PD(M(p)) contains birth–death pairs (bi, di) that
reflect the geometric properties of synthetic patterns.

Our experimental validation using the text-to-image model in four fractal categories
(ferns, trees, spirals, and crystals) supports our theoretical framework. The analysis of the
guidance scale γ ∈ [4.0, 8.0] reveals a relationship between γ and the mean persistence
µp, with crystal patterns showing an increase from µp = 15.49 at γ = 4.0 to µp = 21.43 at
γ = 8.0. Concurrently, feature counts for crystals decrease from µ f = 85.5 to µ f = 73.7.
These results suggest that higher guidance scales generally lead to more pronounced but
fewer topological features in generated fractals.

The stability of our approach is supported by a noise perturbation analysis, where
feature counts remain ∆µ f < 0.5 at all noise levels η ∈ [0, 0.2]. Our analysis of prompt vari-
ations shows that topological signatures are sensitive to specific mathematical terminology.
For example, logarithmic spiral prompts produce features with µ f = 175.75 and µp = 32.18,
differing significantly from other variations (µ f ∈ [40.28, 78.28], µp ∈ [8.25, 13.17]). These
findings suggest persistent homology as a potential metric for evaluating generative models
in the context of geometric pattern synthesis.

We recognize the limitations inherent in our methodology, particularly the assumption
of a close approximation between generated and ideal fractals, which may not consistently
hold true. Furthermore, the current implementation is restricted to dimensions 0 and 1 of
persistent homology, suggesting opportunities for investigation into higher-dimensional
characteristics. Variables such as model biases, specificity of prompts, and image resolution
might impact our results, necessitating future efforts to disentangle the effects of the fractal
structure from these influences.

Beyond the immediate context of fractal image synthesis, our framework holds practi-
cal implications for the broader AI and computational geometry communities. In AI-driven
content generation, persistent homology can serve as a diagnostic tool, allowing practition-
ers to verify whether the generated imagery adheres to the specified geometric or structural
constraints. This topological perspective can complement existing evaluation metrics,
offering a more intrinsic shape-based assessment. In computational geometry and related
fields, our approach opens avenues for analyzing complex data through topology-based
features, potentially informing shape analysis, 3D reconstruction tasks, and graph-based
pattern recognition. By establishing a connection between theoretical fractal principles and
empirical topological signatures, our method provides a valuable methodological template
for others aiming to integrate topological data analysis into their workflows.

Future research directions include extending our framework to analyze temporal
persistence in video generation models and developing topology-aware loss functions.
Investigating prompt-geometry mappings and implementing parallel computation meth-
ods for higher-dimensional persistence modules could reveal more complex topological
structures in generated fractals. Further studies could also explore the relationship between
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persistence diagrams and traditional fractal dimension measures, potentially leading to
new insights into the geometric properties of AI-generated patterns.

Our future research plan includes several specific objectives. We aim to (1) inves-
tigate higher-dimensional homological features and their sensitivity to fractal prompt
design, (2) integrate temporal analysis to examine how fractal patterns evolve over video
sequences generated by advanced diffusion models, and (3) incorporate color-based or
multi-channel filtrations to capture structural nuances absent in grayscale simplifications.
Methodologically, we will explore topology-aware loss functions to guide generative mod-
els, experiment with prompt geometry mappings to link linguistic attributes with geometric
outcomes and employ parallel computing strategies to handle the computational complex-
ity of larger datasets and higher-dimensional features. We anticipate that these efforts will
yield improved control over fractal authenticity, more interpretable topological descriptors,
and a broader understanding of the interplay between generative modeling, language,
and geometry.
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