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Abstract 

Milk thistle (Silybum marianum) is a Mediterranean herb renowned for its liver-protective, antioxidant, anti-inflam‑
matory, and detoxifying properties, primarily attributed to the bioactive compound silymarin. Recent studies have 
also highlighted its potential efficacy against COVID-19, contributing to the growing demand for milk thistle dietary 
supplements, particularly for liver health and immunity support. Milk thistle seeds, rich in silymarin and unsaturated 
fatty acids, hold significant industrial value as both medicinal and oilseed crops. To meet the growing demand, 
it is essential to develop standardized seeds, cultivation practices, and extraction methods aimed at maximizing 
yields of silymarin and other valuable metabolites. Recent advancements in genetic and genomic research, includ‑
ing the development of the first reference genome of S. marianum, have played a pivotal role in elucidating the bio‑
synthesis pathways of silymarin and optimizing phytochemical production. This review highlights recent advance‑
ments in the genetics, genomics, and biochemistry of milk thistle, with particular emphasis on the importance 
of diverse genetic resources and AI-driven phenomics strategies, such as hyperspectral and RGB imaging, for high-
yield and chemotype breeding. Further, feasibility of developing elite cultivars through molecular approaches, such 
as genome editing and metabolic engineering, is also discussed as the new traits obtained this way would be key 
to enhancing the commercial value of milk thistle in light of mass production of phytochemicals to meet rising mar‑
ket demands.
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Introduction
Milk thistle (Silybum marianum (L.) Gaertn.), an herba-
ceous plant in the Asteraceae family native to the Medi-
terranean region, has become widely distributed across 
the globe, including the Korean peninsula [1–3]. For over 
2000 years, S. marianum has been utilized as a medicinal 
remedy for a variety of diseases and disorders, including 
hepatitis, jaundice, and other liver conditions, as well as 
gallbladder disorders. It has also been used to treat snake 
bites, insect stings, plant poisoning, and alcohol-related 
issues [1, 4–7]. In recent years, the value of milk thistle 
as a dietary supplement has garnered significant public 
interest, particularly in response to growing concerns 
about liver health. According to the WHO’s 2024 Global 
Hepatitis Report, viral hepatitis is the second leading 
infectious cause of death worldwide, responsible for 1.3 
million deaths annually, surpassed only by tuberculosis 
[8]. Additionally, the current trend of an aging population 
structure and the experience of the COVID-19 pandemic 
have increased awareness of the benefits of enhanced 
immunity and antioxidants, further driving interest in 
milk thistle [9].

The primary active ingredient responsible for the 
medicinal properties of milk thistle is a silymarin, a 
complex mixture of flavonolignans, flavonoids, and 
polyphenols [10, 11]. Among these compounds, several 
flavonolignans including silychristin, silydianin, silybins 
A and B, and isolilybins A and B, are the primary active 
components responsible for most of the health ben-
efits associated with milk thistle [12]. Consistent with 
the known therapeutic effects of milk thistle, silyma-
rin has been identified not only as a highly effective 
antioxidant with potent anti-inflammatory and antifi-
brotic properties but also for its role in detoxification, 

liver protection, and promoting liver regeneration [11, 
13–16]. Furthermore, several of these compounds have 
been found to modulate the host’s cytokine storm and 
inhibit viral replication in COVID-19 infections [17].

According to a recent global market trend report, the 
global phytochemicals market is projected to grow at 
a compound annual growth rate (CAGR) of 9.8% from 
2021 to 2031. Specifically, the market for milk thistle 
dietary supplements is expected to expand at a CAGR 
of 8.05% over the next decade (2024–2033), reaching an 
estimated value of USD 213.82 million by 2033 (Fig. 1) 
[18]. Given its status as an oilseed crop with a diverse 
array of valuable phytochemicals, the rapid market 
growth of milk thistle underscores the necessity for 
developing efficient methods for the mass production 
of silymarins from its seeds. It is therefore crucial to 
ensure a consistent supply of seeds with uniform qual-
ity and improved yields, both in terms of seed produc-
tion and the desired secondary metabolites. Achieving 
this requires the development of diverse seed varieties, 
from which the most favorable traits can be selected, 
along with the establishment of large-scale cultivation 
methods and the standardization of extraction pro-
cesses [3, 19, 20].

This review aims to summarize the current knowl-
edge of the genetics, genomics, and biochemistry of 
milk thistle (S. marianum). The recently constructed 
reference genome of S. marianum provides a valuable 
resource for understanding the biochemical pathways 
involved in silymarin synthesis and for developing 
reliable sources of natural biochemical products. Our 
research has explored the genetic diversity of the key 
chemical components of silymarin, and we will discuss 
future prospects for digital phytochemical breeding.

Fig. 1  Scope of the milk thistle market. Growth rate from 2024 to 2033 and regional market share in 2023. * CAGR: compound annual growth rate.  
Source: Persistence Market Research, April 2024
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Key benefits of milk thistle
Phytochemicals
Silymarin is composed of 70–80% flavonolignans and 
20–30% flavonoids, with the remaining portion consist-
ing of polymeric and oxidized polyphenolics, forming a 
complex mixture of bioactive molecules [11]. It is pri-
marily concentrated in the seed coat (also known as the 
pericarp or integument) of the seeds (achenes or fruits), 
accounting for approximately 1.5–4.3% of the total dry 
seed weight [21–23]. The main bioactive component 
of silymarin was first identified by Pelter and Hänsel in 
1968, and in the 1970s, the WHO approved milk this-
tle extract as a recognized treatment for liver-related 
diseases.

Research into the chemistry of silymarin, including 
isolation and structural analysis, began in the 1960s and 
continues to this day [24–28]. Silymarin biosynthesis 
occurs via the phenylpropanoid pathway, using taxifolin 
and coniferyl alcohol as precursors. Taxifolin is synthe-
sized in the floret and transported to the pericarp, where 
flavonolignans are formed through oxidative processes 

involving peroxidase enzymes [29]. Although the specific 
enzyme responsible for oxidative coupling remains uni-
dentified, this process leads to the production of silybin 
A, silybin B, silychristin, isosilybin A, isosilybin B, and 
silydianin. Additionally, silybin synthesis has been suc-
cessfully achieved in vitro using peroxidase (EC 1.11.1.7) 
from S. marianum cell cultures [11, 30].

Silymarin accumulation in milk thistle is classified 
into chemotypes A or B, based on the composition of its 
compounds. Chemotype A is characterized by high lev-
els of silychristin and silybin, whereas chemotype B is 
distinguished by the presence of silydianin. It has been 
suggested that chemotype B possesses a fully functional 
silymarin biosynthetic pathway, encompassing all enzy-
matically catalyzed silymarin compounds. In contrast, 
chemotype A is believed to be a natural mutant lacking 
the ability to biosynthesize silydianin [3, 31]. Figure  2 
illustrates the differences between these two chemotypes 
of milk thistle based on their silymarin content and geo-
graphical origins. Among the flavonolignan complexes, 
silybins A and B are the most abundant, constituting 

Fig. 2  Comparative analysis of two chemotypes of milk thistle (S. marianum) based on their silymarin content and geographical origins: (1) 
silychristin, (2) silydianin, (3) isosilybin B, (4) isosilybin A, (5) silybin B, and (6) silybin A
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approximately 50–70% of the total silymarin extract. 
These are the primary bioactive components playing 
vital roles in various therapeutic applications [12, 32]. 
Furthermore, silydianin has been suggested to have anti-
inflammatory potential by inhibiting oxidative products 
and promoting apoptosis, thereby mitigating the severity 
of inflammatory responses [33].

Owing to the complexity of the various flavonolignan 
compounds and the high lipid contents (20–30%), the 
purification of silymarin from milk thistle seeds in a sin-
gle-step process has been a technically challenging task 
[1, 34]. Several extraction techniques have been explored, 
including supercritical CO₂ extraction [35], subcritical 
fluid extraction [36], microwave-assisted extraction [37, 
38], enzyme-assisted extraction [39], ultrasound-assisted 
extraction [40], and supercritical fluid extraction method 
[41]. Optimizing the extraction process is one of the most 
critical factors in achieving the efficient purification of 
individual flavonolignan compounds in large quantities, 
while effectively removing oil constituents. Therefore, 
selecting the most appropriate extraction method under 
specific conditions is essential to obtain high-purity sily-
marin in a cost-effective manner. Most studies on silyma-
rin to date have utilized analytical-scale reverse-phase 

high-performance liquid chromatography (HPLC) for the 
quantitative analysis (Fig. 3) [3, 11, 42, 43].

Oil content
In addition to its high silymarin content, a significant 
portion of the milk thistle seed extract consists of oils, 
accounting for up to 20–30% of the seed’s dry weight. 
These oils are primarily composed of linoleic and oleic 
acids, constituting 39.7% and 36.7% of the total lipids, 
respectively, and smaller amounts of other fatty acids, 
including palmitic (10.2%), arachidic (3.6%), stearic 
(6.9%), and behenic (2.5%) acids, with trace amounts of 
linolenic and gadoleic acids [44]. The total lipid content 
of milk thistle seeds is comparable to that of well-known 
oilseed crops such as sunflower and soybean. Further-
more, the high proportion of unsaturated fatty acids 
makes it a suitable source for cooking oil [45]. However, 
the high linoleic acid content is considered undesirable 
due to its high susceptibility to lipid peroxidation, which 
significantly reduces the stability and shelf life of oil prod-
ucts derived from milk thistle. Future research efforts on 
milk thistle will likely focus on developing new milk this-
tle varieties with reduced linoleic acid content through 

Fig. 3  HPLC chromatogram of silymarin in milk thistle with the chemical structures of silymarin components: taxifolin, silychristin, silydianin, silybin 
A, silybin B, isosilybin A, and isosilybin B
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conventional breeding, molecular breeding, or metabolic 
engineering approaches [44].

Other uses
In addition to their phytochemical and oil content, milk 
thistle plants offer various other uses. The leaves, young 
stems, and sprouts are edible and can be used as fodder 
for livestock [46–48], as well as consumed as vegetables 
[46, 49]. Whole or processed seeds are rich in fiber, with 
calcium and potassium levels higher than many conven-
tional vegetables, making them valuable for enriching 
processed foods. Furthermore, the high biomass produc-
tion efficiency exhibited by milk thistle makes it a good 
candidate for bio-energy production. Additionally, owing 
to silymarin’s potent antioxidant properties, milk thistle 
is also an ideal ingredient for cosmetic products [50].

Agronomic traits of milk thistle
Plant architecture and morphology
The genus Silybum comprises two species: S. marianum, 
characterized by variegated leaves, and S. eburneum, 
which has completely green leaves. Crossing experi-
ments between these species have shown higher fruit 
yields compared to the parent species [51]. Milk thistle 
(S. marianum) is an annual to biennial plant, commonly 
found in a variety of environments [52]. Its stems are 
40–200  cm tall, glabrous or slightly downy, erect, and 
branched at the upper part [20, 53]. The basal leaves are 
large, glabrous, alternate, and have spiny margins, meas-
uring 50–60 cm in length and 20–30 cm in width. A dis-
tinctive feature of milk thistle is the milk-white veins, 
with smaller stem leaves [52]. Milk thistle typically pro-
duces red–purple flower heads about 5  cm in diameter 
[53], though white flowers have also been reported [20, 
54]. These flower heads are surrounded by spiny bracts, 
and the florets are hermaphroditic. The plant is primar-
ily self-pollinating, with an outcrossing rate of approxi-
mately 2% [51]. The seeds are achenes, 5–8 mm long, and 
vary in color from black to brown, with a white pappus. 
Each flower head produces approximately 190 seeds, with 
an average of 6350 seeds per plant. Milk thistle seeds can 
remain viable in the soil for up to 8 years and exhibit little 
to no dormancy [20, 55, 56].

A study on milk thistle leaves with white variegation, 
caused by air spaces between the epidermis and green 
chlorenchyma, examined the characteristics and differ-
ences between the white and green patches, as well as 
their photosynthetic efficiency at low temperatures. The 
findings suggest that the white veins may serve a physi-
ological function by maintaining a higher temperature in 
the white areas compared to the green areas under cold 
conditions, providing an adaptive advantage for tolerat-
ing chilling stress [57]. The following sections summarize 

the results from the cultivation and study of domestically 
and internationally collected milk thistle resources over a 
3-year period in Korea [3].

Plant architecture and morphology in Korea
Figure  4 illustrates the variations in agricultural mor-
phology in flowers, rosettes, involucres, and seed color in 
milk thistle cultivated and studied in Korea. Key pheno-
typic traits, such as rosette width, involucre width, spine 
length, hundred-seed weight, plant height at flowering, 
and days to harvest after sowing, exhibited high heritabil-
ity, averaging over 60% among the traits (Table 1) [3].

Relationship between morphology and phytochemical 
content
To investigate the potential correlation between the cul-
tivar-specific morphology of milk thistle and its silymarin 
content, an ANOVA analysis was conducted on six geno-
types over a 3-year period, accounting for environmental 
variations and total silymarin content. The character-
istic phenotypes of each cultivar exhibited significant 
differences each year, suggesting highly significant geno-
type × year interactions [3]. However, the genetic diver-
sity of milk thistle was insufficient to comprehensively 
elucidate the interactions between agronomic traits and 
phytochemical content, as previously reported in various 
studies. Future studies should focus on developing more 
precise and accurate non-destructive methods to meas-
ure agronomic traits, such involucre spine length, plant 
height, seed color, and other phenotypic characteristics, 
while also incorporating environmental data.

Genotype × environment interaction of silymarin 
components
Over the observation period, each milk thistle variety 
exhibited relatively consistent patterns in total silymarin 
content and the composition of individual components. 
This consistency facilitated the identification of high-
silybin and high-silydianin types as key indicators for 
variations in silymarin composition across the two chem-
otypes. Notably, a significant increase in silydianin accu-
mulation was detected in one particular variety in one of 
the two regions studied, indicating a genotype-by-envi-
ronment interaction in silymarin accumulation (Fig.  5) 
[3]. Figure  5 demonstrates that each variety exhibits a 
genetically consistent pattern of component accumula-
tion. Although total silymarin content and composition 
in each variety was fairly consistent with its respective 
genotypic characteristics across both study regions, one 
high-silydianin chemotype, M06, showed a remarkable 
increase in silydianin content in the southern region of 
Korea during a specific particular year (Haenam, 2021). 
This suggests that the biochemical process of silydianin 
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production is significantly influenced by environmental 
factors.

Abiotic stress tolerance
Environmental stresses, both biotic and abiotic, are 
major limiting factors that affect a plant’s growth, devel-
opment, metabolism, and availability of biologically 
active substances, directly impacting agricultural yields 
[58, 59]. Morphological characteristics such as plant 
height, leaf area, chlorophyll content, number of leaves 
or branches, and root volume clearly reflect the effects 
of these stress conditions [60, 61]. Plants possess a broad 
range of defense mechanisms that enable them to survive 
extreme conditions. These defense responses are often 
accompanied by an increase in the production of second-
ary metabolites, which have been implicated in mitigat-
ing both biotic and abiotic stresses [61]. Milk thistle is 
particularly known for its drought resistance, with stud-
ies showing an increase in total phenolic and flavonoid 
compounds under drought stress [62, 63]. Another study 
found that drought stress induces the expression of genes 
for chalcone synthase (CHS1, CHS2, and CHS3), a key 
and rate-limiting enzyme in the phenylalanine ammonia-
lyase (PAL) pathway, which is involved in the synthesis of 
flavonoids and silymarins [59]. The white variegation of 

milk thistle leaves, caused by sub-epidermal air spaces, 
may be a unique adaptation that helps protect the plant 
from cold stress. Additionally, certain salinity-tolerant 
varieties, such as ‘Royston’ and the Iranian wild type, 
have been reported to withstand high salinity levels 
(15  dS  m⁻1) while maintaining high silymarin content 
in the seeds, suggesting a potential role of silymarin in 
salinity tolerance [19, 64].

Genomics of milk thistle
The first reference genome of milk thistle
Recently, the genome of S. marianum was successfully 
assembled and annotated at the chromosome level, iden-
tifying 53,552 predicted protein-coding genes (Fig.  6a, 
b) [65]. Of these, 94% (50,329 genes) were annotated 
with known functions available in public databases. This 
advancement enables a more detailed understanding 
of the molecular mechanisms underlying of silymarin 
synthesis and its varying compositions through com-
prehensive functional genomic analyses. The S. mari-
anum genome also revealed that transposable elements 
constitute 58% of the genome. Compared to other well-
studied genomes, such as those of Arabidopsis (up to 
20%), rice (up to 40%), and humans (approximately 45%), 
the relatively large size of transposons in the genome 

Fig. 4  Phenotypic traits of milk thistle six varieties: M01, Canada; M02, Germany; M03, North Korea; M04, Moldova; M05, South Korea; and M06, 
South Korea; A flower (scale bar = 5 cm), B rosette form (scale bar = 20 cm), C harvested involucre with spine-tipped bracts (scale bar = 5 cm), and D 
seeds (scale bar = 2 cm).  Source: Adapted from [3] with permission
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of milk thistle suggests the presence of more complex 
gene regulatory networks, with several other potential 
implications.

Chloroplast and mitochondrial genomes of milk thistle
In a recent study, a complete chloroplast genome of a 
local S. marinum variety with high silybin B content 
was sequenced and annotated to compared against 
other milk thistle accessions of different genotypes [66]. 
The chloroplast genome was found to be approximately 
150  kb in length, comprising 87 protein-coding genes 
(out of 132 transcripts). These genes primarily function 
in photosynthesis and the translation of chloroplast tran-
scripts. While the overall chloroplast sequences con-
firmed the unique identity of S. marianum as distinct 
from its closest relatives, Cirstium spp., no sequence 
polymorphisms were identified among the six different 
genotypes analyzed in the study. Therefore, the chloro-
plast genome sequence obtained from the study can be 
utilized to develop S. marianum-specific DNA markers. 
These markers would be instrumental for differentiating 
various S. marianum varieties and distinguishing them 
from other members of the Asteraceae family, including 

Cirsium species. Given that many Cirsium species are 
morphologically similar to milk thistle and are also used 
as medicinal plants, the development of such DNA mark-
ers would significantly facilitate the screening and clas-
sification of milk thistle varieties, enabling the creation 
of novel varieties with improved traits for industrial 
applications.

It was found that S. marianum has a relatively large 
mitochondrial genome, approximately 400  kb in length, 
containing only 27 protein-coding genes (74 transcripts), 
which is typical of plant mitogenomes compared to their 
animal counterparts [67]. Similar to the chloroplast 
genome, these genes are primarily involved in energy 
metabolism and the translation of the mitochondrial 
genome. However, due to the abundance of repetitive 
sequences, the S. marianum mitogenome is less suit-
able than the chloroplast genome for developing DNA 
markers to distinguish milk thistle varieties from closely 
related species. Instead, the mitochondrial genome holds 
greater potential for differentiating individual S. mari-
anum genotypes among various landraces and indig-
enous varieties. In the study referenced in this review 
[67], a comparative mitogenomic analysis was conducted 

Table 1  Six phenotypic traits of six varieties over 3 years in Hwaseong

RW width at rosette, FPH plant height at flowering, IW involucre width, SPL spine length, HSW hundred seed weight, SHAS starting harvest days after sowing

Source: Adapted from [3] with permission

* Individual plants for each variety as an initial selection in 2019 (no population)

** Heritability (%) by two-way ANOVA

Variety Year RW (cm) FPH (cm) IW (mm) SPL (mm) HSW (g) SHAS (days)

M01 2019* 54.0 100.0 45.0 15.1 2.37 101.0

2020 117.7 ± 6.7 108.7 ± 5.7 40.8 ± 2.8 11.4 ± 5.3 2.14 ± 0.3 110.8 ± 4.5

2021 146.8 ± 6.3 145.7 ± 5.5 42.8 ± 5.6 19.0 ± 3.5 2.06 ± 0.1 130 ± 0.0

M02 2019 94.0 124.0 41.6 19.9 2.4 99.0

2020 116.3 ± 2.1 99.7 ± 4.2 38.4 ± 1.6 20.3 ± 4.2 2.61 ± 0.1 106.8 ± 1.8

2021 122.2 ± 2.8 102.7 ± 5.9 41.0 ± 0.6 20.9 ± 2.4 2.09 ± 0.1 130 ± 0.0

M03 2019 105.0 140.0 52.8 16.5 1.73 111.0

2020 131.3 ± 8.7 129.0 ± 11.4 39.3 ± 1.8 11.3 ± 4.0 2.14 ± 0.1 105.4 ± 1.3

2021 130.8 ± 6.0 147.0 ± 7.2 38.9 ± 0.3 22.1 ± 2.6 2.01 ± 0.1 130.8 ± 1.8

M04 2019 108.0 144.0 58.2 8.5 2.53 109.0

2020 125.3 ± 9.1 122.3 ± 13.9 47.9 ± 4.8 9.5 ± 4.1 2.38 ± 0.2 114.0 ± 0.0

2021 133.5 ± 3.9 152.7 ± 4.2 48.1 ± 1.7 17.8 ± 0.7 2.27 ± 0.0 126.0 ± 0.0

M05 2019 120.0 160.0 41.7 27.3 2.70 110.0

2020 136.3 ± 0.6 138.3 ± 13.5 40.8 ± 1.8 22.6 ± 5.3 2.80 ± 0.0 106.0 ± 0.0

2021 134.5 ± 3.5 163.7 ± 8.1 36.2 ± 1.1 20.5 ± 0.9 2.43 ± 0.1 126.8 ± 1.8

M06 2019 90.0 145.0 43.2 14.3 2.33 110.0

2020 106.0 ± 11.5 118.7 ± 12.2 37.9 ± 3.9 5.2 ± 2.9 2.40 ± 0.1 105.3 ± 1.5

2021 111.3 ± 5.0 157.7 ± 4.6 35.8 ± 0.7 7.9 ± 2.3 2.27 ± 0.0 126.0 ± 0.0

Heritability (%)** 2020 61.3 54.7 61.0 74.9 75.8 87.0

2021 88.1 96.2 76.2 80.4 86.7 67.7

Ave 74.7 75.4 68.6 77.6 81.3 77.4
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with close relatives of S. marianum, including Saussurea 
costus, Arctium lappa, and Arctium tomentosum. The 
analysis confirmed the feasibility of using sequence infor-
mation to decipher phylogenetic relationships among 
closely related species.

Candidate genes for phytochemical traits
Extensive research has been conducted to identify the 
key genes responsible for the biosynthesis of milk this-
tle-specific phytochemicals, particularly silymarins. It 
is well established that the pathway for silymarin bio-
synthesis originates from the PAL pathway of flavonoid 
biosynthesis, branching into the synthesis of taxifolin, 
from which various silymarin compounds are derived 
[22]. Therefore, chalcone synthase (CSH), a rate-limit-
ing key regulator in the PAL pathway, is considered the 
top candidate gene for identifying alleles that enhance 
flavonoid and silymarin production. Additionally, the 

gene encoding ascorbate peroxidase (APX1), which 
regulates the initial step of silymarin synthesis from 
taxifolin [29], has garnered significant attention as 
a strong candidate target. This enzyme is thought to 
play a pivotal role in regulating the synthesis of all 
silymarin components. However, the identities of the 
enzymes involved in the synthesis of individual silyma-
rin compounds remain largely unknown. It is specu-
lated that many of these enzymes may belong to the 
oxygenase or peroxidase families, specifically of the 
cytochrome P450 type [31].

To gain deeper insight into the genetic and molecu-
lar basis of various phytochemical traits in milk thistle, 
thorough analyses of the expression patterns of candi-
date genes associated with these traits are essential. In 
RT-qPCR analyses, it is crucial to include a reliable and 
standardized set of reference genes to normalize and 
validate gene expression data across different genotypes 
and environmental conditions. These reference genes 
must accurately reflect the physiology and environmental 
interactions unique to the species under investigation. In 
a recent study, Fulvio et al. proposed a set of ten candi-
date reference transcripts that can be reliably used in S. 
marianum, based on an analysis of expression patterns 
across various tissues [68]. Many of these genes have 
been annotated as homologs of reference genes com-
monly used in other plant systems, including those for 
actin (SmACT​), RNase (SmRNASE3), tubulin (SmTUBα), 
ribosomal RNA (Sm18S), and PP2A (SmPP2A).

Naturalization of milk thistle in Korea
Evidence of naturalization in Korea
Initially considered a harmful weed, milk thistle has 
increasingly been cultivated on various farms across 
Korea as its benefits for liver health have become more 
widely recognized. The plant, locally known as “white-
veined thistle,” is now included in the national standard 
cultivation plant list [69]. Recent studies on milk thistle 
collected from both domestic and international sources 
revealed that domestically sourced plants exhibit more 
uniform growth patterns, suggesting a higher degree of 
domestication [3, 11].

Comparison of major milk thistle types in Korea
A 3-year study involving six selected milk thistle varie-
ties with distinct agricultural traits was conducted for 
genomic research. The study evaluated 220 plants derived 
from both domesticated and foreign seed sources culti-
vated in Korea. Agricultural traits and silymarin content 
were assessed, revealing two genetically distinct types: 
one with high silybin content and another with high 

Fig. 5  Cumulative silymarin component contents of taxifolin, silybins, 
and silydianin. Quantitative analysis conducted over 3 years (2019, 
2020, and 2021), comparing two different cultivation regions in 2021: 
Hwaseong (HS) and Haenam (HN); the analysis included six selected 
varieties: M01 from Canada, M02 from Germany, M03 from North 
Korea, M04 from Moldova, M05 from South Korea, and M06 
from South Korea; 19HS_2019, Hwaseong; 20HS_2020, Hwaseong; 
21HS_2021, Hwaseong; 21HN_2021, Haenam.  Source: Modified 
from [10] with permission
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silydianin content. Resources with high silydianin con-
tent, in particular, showed significant regional differences 
in silydianin accumulation, indicating that environmental 
factors play a role in influencing silydianin levels (Fig. 5) 
[3, 23].

Molecular marker development for genetic identification 
in milk thistles
In both basic and applied research, DNA-based molec-
ular markers are essential for genotype fingerprint-
ing, marker-assisted selection and breeding, as well 

Fig. 6  Overview of the genomic landscape of Silybum marianum. a Pore-C interaction heatmap for the S. marianum genome assembly illustrating 
interactions across the chromosomes, with the intensity of interactions represented by varying shades of red, corresponding to the number 
of Pore-C reads. b Genome features of S. marianum mapped across its 17 chromosomes, with each track displayed in 500 kb windows. The tracks 
include: a. chromosomes of S. marianum; b. synteny regions between Cynara cardunculus and S. marianum; c. synteny regions between Helianthus 
annuus and S. marianum; d. gene count of S. marianum in 500 kb intervals; e. DNA TE count of S. marianum in 500 kb intervals; f. LTR TE count 
of S. marianum in 500 kb intervals. g. Curved lines at the center indicate segmental duplication regions in S. marianum. Each color labeled 
in the tracks a, b, c, and g corresponds to a specific chromosome.  Source: Adapted from [67] with permission. c DNA fingerprinting of six selected 
accessions using a minimum set of InDel markers. Primer list with corresponding sequences and allele types. Homozygous reference alleles (AA) 
and homozygous alternative alleles (BB). d Agarose gel images using selected InDel markers from two samples per accession. Source: Adapted 
from [19] with permission
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as analyzing genetic diversity analysis [23, 70–73]. 
Recently, six milk thistle accessions exhibiting nota-
ble differences in agricultural traits were selected for 
sequencing against the reference genome. This data 
was subsequently used to develop genome-wide DNA 
markers [23]. Of the 177 markers generated, six InDel 
markers (SM182, SM176, SM135, SM102, SM034, 
SM026) were successfully employed to differentiate 
the six accessions (Fig. 6c, d) [23].

In another study, 31 S. marianum accessions, col-
lected from geographically diverse regions with het-
erogeneous genetic backgrounds, along with one 
S. eburneum accession, were subjected to diversity 
arrays technology (DarT) sequencing. This identi-
fied 5178 allelic polymorphisms [21]. Among these, 
seven SNP markers (Smar03g006250, Smar10g014580, 
Smar05g013800, Smar05g040540, Smar05g014220, 
Smar10g000170, Smar11g021760) showed significant 
trait-specific associations with accessions of varying 
oil and flavonolignan content, demonstrating their 
potential as screening tools for genes related to these 
traits. The study further revealed that S. eburneum is 
split into two distinct genetic groups, indicating that 
some accessions previously classified as S. eburneum 
based solely on the absence of leaf variegation had 
been misclassified.

Phytochemical content of naturalized milk thistle
A recent study compared the phytochemical content 
of S. marianum seeds from various origins, including 
domestically collected resources from South Korea 
and internationally sourced seeds from North Korea, 
Germany, Canada, and Moldova. These resources were 
cultivated and harvested under identical conditions in 
Korea over a 3-year period (2020–2022). HPLC/DAD 
analysis revealed that the samples from South Korea 
consistently exhibited the highest silymarin content 
throughout the study period [11].

This indicates that the naturalized resources col-
lected in South Korea are already well domesticated 
and highly adapted to the local environment, exhibit-
ing relatively consistent phenotypes and yield stability 
each year compared to resources from other countries. 
Additionally, the study observed a high degree of con-
sistency in chemotype-specific total silymarin content 
and its compositional ratio. These findings indicate 
that a significant cultivar selection for establishing a 
domestic breeding program to enhance silymarin pro-
ductivity is feasible. Furthermore, utilizing domestic 
sources can be more cost-effective in meeting the mar-
ket demands of pharmaceutical companies [3].

Further studies on milk thistle
Trait identification through quantitative trait loci analysis 
and multi‑omics approaches
Shim et  al. [3] conducted a comprehensive study on six 
diverse accessions of milk thistle, focusing on silyma-
rin content, key agronomic traits, and quantitative trait 
loci (QTL) analysis related to silymarin accumulation 
in seeds. The application of the data obtained from this 
study can be significantly enhanced by the recent com-
pletion of the chromosome-level genome assembly of S. 
marianum [65], with transcriptome analysis across vari-
ous tissues expected to follow.

Integrating genome annotation information into the 
identified QTL regions will facilitate the efficient verifica-
tion and validation of candidate QTLs associated with the 
agronomic traits of interest. Additionally, transcriptome 
data related to flowering and seed maturation can be 
used to identify candidate genes for developing specific 
molecular markers associated with the traits of interest, 
such as flowering time, seed maturation, shedding, yield, 
and silymarin content. This, in turn, could lead to the 
efficient development of cultivars with improved traits in 
these areas.

To complement tissue-specific transcriptome data, 
which often lacks temporal continuity, single-cell RNA-
seq analyses can be employed to analyze different cell 
types within a tissue. This approach would help provide 
deeper insights into complex biochemical interactions 
between various cell types within a tissue, which may 
be masked by the averaging effect if investigated solely 
through conventional transcriptome analysis [74]. Com-
parative analyses of single-cell and spatial transcrip-
tomics can yield a more precise map of gene expression 
patterns at specific developmental stages, which can 
expedite the identification of genes involved in flower 
development, seed maturation, and the biosynthesis of 
individual silymarin compounds.

Possibility of phenomics application
Phenomics holds significant promise for improving 
milk thistle seed productivity and bioactive compound 
yields, particularly silymarin. By collecting multi-dimen-
sional phenotypic data on floral traits (e.g., total involu-
cre length, thorn angle) and seed development stages, 
researchers can identify critical growth phases and opti-
mize seed yield. Advanced imaging technologies, such 
as hyperspectral and RGB imaging, can capture detailed 
phenotypic variations, providing insights into how dif-
ferent developmental stages influence seed quality. For 
example, a study successfully detected elaiosomes in milk 
thistle seeds using image-based learning. By employing 
the Detectron2 deep learning algorithm, elaiosomes were 
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identified with an accuracy of 99.9%. This method can 
be extended to high-throughput analysis of various seed 
morphological traits, significantly accelerating breeding 
programs aimed at cultivar improvement [75]. Detailed 
phenotyping provides valuable insights into optimizing 
growing conditions and stages, ultimately enhancing seed 
production. This directly impacts silymarin accumula-
tion, making it a crucial tool for improving agricultural 
traits.

Moreover, the integration of phenomics with artificial 
intelligence (AI) has the potential to revolutionize sily-
marin production and metabolic optimization. Phenom-
ics data, combined with AI-driven models, can predict 
seed counts based on floral structure, silymarin content 
per seed, and the proportions of major silymarin com-
ponents like silybin and silydianin. This multi-dimen-
sional approach allows comprehensive assessments of 
growth conditions, photosynthetic efficiency, and overall 
plant health, contributing to the development of intel-
ligent breeding strategies. In particular, AI can lever-
age phenotypic markers for high yields of silymarin and 
silydianin, optimizing metabolic pathways to increase 
bioactive compound concentrations. This would signifi-
cantly enhance the productivity and economic value of 
milk thistle cultivation.

Breeding targets
Several factors critically impact the key agricultural traits 
related to the overall productivity of milk thistle and its 
silymarin yield. These include the rate of seedling estab-
lishment, water management under both irrigated and 
water-deficit conditions [76], seed shedding characteris-
tics (such as involucre shape, crown formation, and invo-
lucre opening and bending) [19], and spiny leaves [77], all 
of which directly influence silymarin production in seeds. 
Additionally, silymarin production is directly propor-
tional to achene yield [78, 79]. Therefore, breeding efforts 
have focused on improving these traits by targeting 
cross-chemotype breeding for higher silymarin content 
in seeds, developing cultivars that exhibit traits such as 
synchronized flowering, reduced thorns, and minimized 
achene shedding [19].

Genome editing for phytochemical metabolic engineering
Recent advances in genome editing techniques have 
transformed the field of genetic engineering. Through 
precise modifications to specific regions of the genome, it 
is now theoretically possible to create new traits for crops 
that do naturally exist. Several gene editing techniques 
have been successfully applied to enhance the production 
of secondary metabolites with medicinal or nutritional 
value [80, 81].

A similar approach can be applied to improve the quality 
of oils produced from milk thistle. Milk thistle seeds pre-
dominantly contain oleic acid (18:1) and linoleic acid (18:2) 
as major fatty acids, while linolenic acid, an omega-3 fatty 
acid, is nearly absent. As previously mentioned in the part 
of ‘Key benefits of milk thistle’ in this review, the high pro-
portion of linoleic acid (an omega-6 fatty acid) lowers the 
commercial value of oils derived from milk thistle, omega-6 
fatty acids are prone to lipid peroxidation. By employing 
genome editing techniques, the metabolic pathway for fatty 
acid synthesis in milk thistle could be modified to alter the 
properties of the enzymes involved, thereby increasing the 
omega-3 fatty acid content and reducing the production of 
omega-6 fatty acids.

Furthermore, genetic engineering technologies, such 
as gene editing, metabolic engineering, and synthetic 
biology, can be utilized to identify, modify, and enhance 
the genes involved in the movement, transport, and final 
synthesis of silymarin precursors. These approaches 
could elucidate the underlying mechanisms and improve 
high-yielding silymarin genotypes for phytochemical 
production.
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