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We report new results from the neutrino elastic scattering observation with Nal (NEON) experiment in
the search for light dark matter (LDM) using 2636 kg - days of Nal(TI) exposure. The experiment employs
an array of Nal(Tl) crystals with a total mass of 16.7 kg, located 23.7 m away from a 2.8 GW thermal power
nuclear reactor. We investigated LDM produced by the invisible decay of dark photons, a well-motivated
mechanism generated by high-flux photons during reactor operation. The energy spectra collected during

reactor-on and reactor-off periods were compared within the LDM signal region of 1-10 keV. No signal
consistent with LDM interaction with electrons was observed, allowing us to set 90% confidence level
exclusion limits on the dark matter-electron scattering cross section (o,) across dark matter masses ranging
from 1 to 1000 keV /c?. Our results set a 90% confidence level upper limit of 6, = 3.17 x 1073 cm? for a
dark matter mass of 100 keV/c?, marking the best laboratory result in this mass range. Additionally, our
search extends the coverage of LDM below 100 keV /c? for the first time, assuming the specific invisible

decay of dark photons.
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Astrophysical observations strongly suggest the exist-
ence of dark matter (DM), which is nonbaryonic and
nonluminous [1]. Weakly interacting massive particles
(WIMPs) have long been considered the primary candi-
dates for DM [2,3]. However, despite extensive experi-
mental efforts, no conclusive evidence for WIMPSs has been
found [4-6]. This has led to increased interest in alternative
DM candidates. One such candidate is light dark matter
(LDM; y), which has masses ranging from keV/c? to
GeV/c?. These masses are typically lower than those of
WIMPs. LDM is hypothesized to exist in a dark sector that
interacts with the standard model (SM) sector via a
mediator [7-10].
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The dark photon (DP; A’) is one of the simplest
hypothetical particles in the dark sector and can act as a
mediator in the form of a massive U(1),, gauge boson [11].
Dark photons kinetically mix with SM photons through a
mixing parameter (&), prompting various experimental
searches for DPs [12]. Nuclear reactors are intense sources
of photons with energies up to a few MeV, making them
promising environments to study DPs due to their high
photon flux [13]. Previous phenomenological studies with
NEOS and TEXONO experiments have explored DP
interactions with SM particles [14,15]. Additionally, pair
produced LDMs from DPs interacting with orbit electrons
in the detector material were studied in Ref. [16], assuming
my = 3m,, where my is the DP mass and m,, is the LDM
mass. The COHERENT experiment has investigated LDM
via similar processes, focusing on interactions with target
nuclei [17].

This Letter presents the first direct search for keV /c?-
scale LDM in a nuclear reactor using data from the NEON
experiment. We considered scenarios where DPs decay into
LDM nparticles, assuming m, = 3m,,, similar to invisible
decay channels studied by beam dump experiments
[18-20] and the COHERENT experiment [17]. Although
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both fermionic and scalar DM can be considered [21], we
focused on fermionic DM scattering off electrons in the
detector, following the methodology outlined in Ref. [16].

The neutrino elastic scattering observation with Nal
(NEON) experiment aims to detect coherent elastic neu-
trino-nucleus scattering (CEvNS) using reactor antineutri-
nos [22]. The NEON detector has been operational in the
tendon gallery of the Hanbit Nuclear Power Plant Unit 6
since December 2020, with physics operation commencing
in April 2022 following an upgrade of the detector
encapsulation [23,24]. The detector is located 23.7 m from
the reactor core.

The NEON detector consists of four 8-in. long and two
4-in. long, 3-in. diameter Nal(T1) crystals, with a total mass
of 16.7 kg. These six crystals are submerged in 800 1 of a
linear alkylbenzene-based liquid scintillator (LS) contained
within a acrylic box. The LS serves to reduce the radio-
active background affecting the Nal(TI) crystals by tagging
and shielding radiations [25]. To further minimize the
external radiation background, the LS is enclosed by a
shielding structure composed of 15 cm thick lead, 2.5 cm
thick borated polyethylene, and 30 cm thick high-density
polyethylene [22].

Each Nal(TI) crystal is coupled directly to two photo-
mutiplier tubes (PMTs) without any intervening windows
to enhance light collection efficiency [23,26]. An event is
triggered when coincident single photoelectrons are
detected in both PMTs coupled to a single crystal within
a 200 ns time window. The signals from the PMTs are
processed by 500 MHz flash analog-to-digital converters,
producing 8 ps long waveforms that begin 2.4 ps before
the trigger. Data acquisition is conducted through two
readout channels: a high-gain anode channel for energies
ranging from 0 and 60 keV and a low-gain dynode channel
for energies between 60 and 3000 keV. The LS signals are
processed by charge-sensitive flash analog-to-digital con-
verters. A similar data acquisition system has been used in
the COSINE-100 experiment [27] without any issues for
over 6 yr of operation.

To reject unwanted phosphorescence events from direct
muon hits, a 300 ms dead time is applied to muon candidate
events that have energies above 3000 keV. This results in
approximately 5% dead time for small crystals and 10%
dead time for large crystals. The rate of muon candidate
events is monitored, and the dead time is evaluated for each
hourly dataset.

The distribution of the y-ray flux from a nuclear reactor
is approximated based on the FRIJ-1 research reactor [28]:

dN, P E
CY 058 x 102 (= S N T
T (GW) exP( 0.91 Mev>’ m

where P is the thermal power of the nuclear reactor, which
corresponds to 2.8 GW, and E, is the y-ray energy. In the
reactor core, the y-rays can interact with electrons via a

Compton-like process, resulting in the production of DPs
(y + e = A’ + e), as given by the following equation:

ANy AN, do s 41 (E
A _ iy GJ/ A ( }') dEy, (2)
dEA/ dE}, GtotdEA/

where o, represents the total interaction cross section
between photons and matter in the reactor, and it is used for
normalization. The y-ray energy range utilized in the
integration spans from 0.2 to 15 MeV. In this production
process, the DP flux is proportional to the square of the
kinetic mixing parameter (&) by 6,,-_ 4.~ [13]. Assuming
my > 2m,, the dark photon predominantly decays into two
LDM particles (A" — yy) [12]. The strength of this decay
mode is controlled by the dark fine structure constant
ap = g;/4n > ae’, where a is the SM fine structure
constant and g, is the dark coupling constant between A’
and y. We used g, = 1 for interpretation of LDM search,
similarly to Ref. [16]. In the DP interpretation, we use the
case of ap = 0.1 corresponding to g, = 1.1, close to 1.

We consider signals induced by LDM scattering off
electrons in the detector. The expected energy transfers
from this process range from a few keV to a few tens of
keV. The atomic structure of the orbiting electrons
influences the measured energies. To account for the effect
of energy transfer through the initial state bound electron to
the final state outgoing electron, we use the atomic
ionization factors obtained for sodium and iodine from
Ref. [29], which evaluates these factors from 0 to 10 keV.
Our region of interest (ROI) is defined between 1
and 10 keV.

The expected scattered electron rate is derived as
follows:

dN, N,T [2dN,ds,(E,)
dE,  4zR> / dE, dE, (IFa + IFY)AE,, (3)
where N, represents the number of Nal molecules per
kilogram of Nal crystal, T is the exposure time normalized
to days, R is the distance between the detector and the
reactor core, E, is the electron recoil energy, and /Fy, and
IF; are the integrated ionization factors for sodium and
iodine, respectively. The differential cross section of LDM
scattering off an electron [do, (E,)/dE,] is calculated based
on Ref. [30]. Assume my = 3m, for the invisible decay
channel, we search for LDM in the mass range from 1
to 1000 keV/c?.

The NEON experiment began data collection in April
2022 following improvements in crystal encapsulation
[23], achieving stable physics data. Data collected until
June 2023 was utilized in this Letter. The reactor operated
at full power from April 2022 to September 2022 and from
February 2023 to June 2023, taking reactor-on data. The
reactor was inactive from September 2022 to February
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The energy spectra for reactor-on (left) and reactor-off (right) periods, combining data from five NEON detector modules, are

shown. The spectra cover the energy range from 1 to 60 keV. Both spectra were modeled simultaneously, incorporating expected
background components to accurately reflect the experimental conditions. Differences in background rates between reactor-on and
reactor-off conditions are primarily attributable to seasonal fluctuations in radon levels.

2023 for regular maintenance and fuel replacement, during
which reactor-off data was collected. There was approx-
imately one and a half months of downtime due to an
unexpected power outage beginning on August 4, 2022.
Stable operations resumed on September 23, 2022, follow-
ing recovery from the high voltage power supply failure.

Two readout channels were obtained; however, the
anode channel spectra were primarily used for the ROI
of 1-10 keV. The dynode channel readout was employed
to understand background components, as detailed in
Ref. [24]. Only single-hit events that did not coincide with
LS or other crystals were used for this analysis, while
multiple-hit events were rejected but used for background
understanding.

PMT-induced noise events predominantly occur at low
energies, below a few keV [31,32]. A boosted decision
tree (BDT) [33] was adopted to mitigate this noise. The
BDT employs a decision tree algorithm with multivariate
inputs to establish a robust discriminator that separates
scintillation events from noise events. Boosting enhances
accuracy by increasing the weights of misclassified events.
To better characterize scintillation events, we developed a
waveform simulation package instead of relying on
scintillation-rich calibration data. The waveforms gener-
ated by this package described scintillation waveform of
the Nal(Tl) crystals from single photoelectrons to recon-
structed variables as discussed in Ref. [34]. We used the
waveform simulation dataset as the scintillation signal
samples for the BDT training, while the single-hit physics
data were used for the PMT-induced noise samples. The
BDT output from each crystal’s training determined the
event selection criteria for each crystal [32,34]. Selection
efficiency is approximately 65% at 1 keV and reaches
100% above 3 keV.

The low-energy event rate between 1 and 3 keV was
monitored for each crystal after applying event selection

criteria based on the BDT output. Each 1 h dataset of
each crystal that met the stable conditions within a
30 range of the overall rate was used for physics
analysis. Approximately 35% of the data were excluded
due to persistent PMT-induced noise events, with the
entire dataset from detector-3 being excluded due to
consistently high noise levels. The data exposure for
this analysis amounts to 1214 kg - days of reactor-on
and 1422 kg - days of reactor-off data. Figure 1 shows
the combined energy spectra from five crystal
detectors during reactor-on (left) and reactor-off (right)
periods.

Background contributions in the Nal(T1) detectors were
analyzed using GEANT4-based Monte Carlo simulations.
These simulations modeled measured data for both single-
hit and multiple-hit events within the 3-3000 keV energy
ranges [24]. The simulation considered internal back-
grounds, crystal surface or surrounding PTFE sheet con-
tamination, cosmogenic activation, and external radiation.
Additionally, we included the time-dependent backgrounds
from 2?’Rn in the calibration holes, which have higher
activities in summer and lower in winter, and initial dust
contaminant in the liquid scintillator as detail elsewhere
[24]. Because we removed the quartz window between the
crystal and the PMT, external radiation from the PMT
contributed more background to the NEON crystals com-
pared to the COSINE-100 experiment [31]. This resulted in
an additional peak around 33 keV from the K-shell dip [35]
and x-rays from Cs and Ba in the PMT photocathode [36].
As seen in Fig. 1, the NEON data are well described by the
expected backgrounds for both reactor-on and reactor-
off data.

Since most background contributions remained stable
over the two-year data-taking period, we used reactor-on
data subtracted by reactor-off data to isolate potential
LDM signatures. The time-dependent backgrounds, such
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FIG. 2. The combined energy spectrum (black dots) from the
five NEON detector modules is shown, along with the expected
background (purple solid line) and +1l¢ and 26 systematic
uncertainty bands. For comparison, three benchmark signals were
generated, assuming my = 3m, and g, =1 for the invisible
decay channel, corresponding to LDM masses of 10 (dotted line),

100 (dashed-dotted line), and 1000 keV/c* (dashed line).

as 222Rn in the calibration holes, dust contamination in the
liquid scintillator, and cosmogenic activations due to
cosmic muon radiation, were considered. Dominant
time-dependent background is caused by seasonal varia-
tion of radon that was measured by the NEOS experiment
[37] and verified with the high energy data of the NEON
experiment [24]. Figure 2 shows the reactor-on minus
reactor-off spectrum derived from Fig. 1 with time-
dependent background contributions. In the low-energy
range, 2>’Rn contributions from the calibration holes are
dominant but small enough to allow for the search for
LDM signals. For comparison, three LDM interaction
signals with masses of 10, 100, and 1000 keV/c? are
presented.

Systematic uncertainties considered in this Letter include
energy resolution, energy scale, selection efficiency, back-
ground component uncertainty, and exposure uncertainty.
We accounted for these uncertainties by maximizing the
difference between the reactor-on and reactor-off datasets,
as shown in Fig. 2. Among them, the selection efficiency
driven by differences between reactor on and reactor
off is the dominant systematic uncertainty, amounting to
approximately 0.3 counts/kg/day/keV at 1 keV within the
lo level.

In the search for evidence of LDM-induced events, we
performed a raster scan [38] using chi-square fits across
28 LDM mass values ranging from 1 to 1000 keV/c?.
The measured data were fitted using crystal-specific
background models and crystal-correlated signals for
each crystal. The combined fit was achieved by summing
the chi-square values from all five crystals. The chi-
square depended on both signal strength and nuisance
parameters, which control the background model to
account for systematic uncertainties. Each nuisance

parameter was constrained by its corresponding system-
atic uncertainty.

We performed chi-square fits for the considered LDM
masses. The minimum chi-square is 54.5 at m, =
500 keV/c? and 6, = 4.84 x 1073 cm?, while chi-square
under the null hypothesis is 55.3. The chi-square difference
corresponds to a p value of 67%. The simulated datasets
were generated with 100000 iterations, accounting for
systematic uncertainty, and were also utilized to estimate
expected sensitivities. Based on these p values, we deter-
mined that there is no significant LDM signal. A proba-
bility density function (PDF) for each DM mass was
defined using the combined chi-square values as follows:

2
PDF = Cexp <— %) (4)
where C is a normalization factor that ensures the PDF
integrates to 1 over the physical region (6, > 0). An upper
limit was then estimated from the PDF at 90% confi-
dence level.

The resulting upper limits, shown in Fig. 3 (left), were
compared with upper limits from a phenomenological
study of the TEXONO experiment, assuming similar
production and detection channels as in this analysis
[16]. Taking advantages of 1 keV low energy analysis
threshold compared to 3000 keV of study for the TEXONO
experiment, the NEON experiment significantly extended
the mass range of the LDM search and greatly enhanced the
exclusion limits. Our exclusion limits were also compared
with relic LDM searches by DAMIC-M [39] and SENSEI
[40]. Even though N.; bounds limit the dark matter-
electron scattering cross-section for dark matter masses
below 10 MeV [41], we did not include it to compare with
terrestrial results. Despite being highly model dependent,
the NEON experiment’s limits explored an extremely low
mass region not previously reached by other laboratory
experiments.

We also interpreted our limits in the € — m, parameter
space assuming the invisible decay of DP through the &
extracted by cross section of LDM scattering off an electron
and the mass relationship between DP and LDM, as shown
in Fig. 3 (right). This limit curve was compared with results
from beam dump experiments [18,20] and the LSND
experiment [46,47], which consider the invisible decay
channel of DP, assuming m, = 3m,, consistent with this
Letter. As demonstrated in the figure, reactor-based
searches offer significant advantages for detecting low
mass DP below 1000 keV/c? a region inaccessible to
accelerator-based experiments. A model-dependent com-
parison with TEXONO experimental data, considering the
dark photon absorption process in the detector [14,15],
shows that our limits provide significantly better constraints
for DP masses below 1000 keV. The limits set by NEON
data rule out parameter space already excluded by

021802-4



PHYSICAL REVIEW LETTERS 134, 021802 (2025)

1072

= NEON

. +1o +20

DAMIC-M

[~ — TEXONO SENSEI

1 041

1 0453

DM-electron Cross Section [cm?]

" " sl | " MR
107 1072 107" 1
Dark Matter Mass [MeV/c?]

FIG. 3.

Rydberg

3 10k
[5} E
€ E [ —
5 E
5 C
=5
o 10°F
£ E
= E — NEON
% Al — NA64
;5. 107
2 £ LSND
X r —E137
107 ST e dM  __ 1ExONO
E sl MR ET | N 20l L
1072 107 1 10

Dark Photon Mass [MeV/c?]

(Left) The 90% confidence level exclusion limit on the LDM-electron scattering cross-section from NEON data assuming

my = 3m, and g, = 1, along with the 16 and 420 ranges of the expected sensitivities from 100 000 simulated experiments. This is
compared with a phenomenological study of the TEXONO experiment [16] and relic LDM search experiments of DAMIC-M [39], and
SENSEI [40]. (Right) The 90% confidence level exclusion limit on the DP kinetic mixing parameter from NEON data via the LDM-
electron scattering, along with of 10 and +2¢ expected sensitivities, is compared with the TEXONO result interpreted through the
absorption process of dark photons [14,15]. These DP parameter limits are compared with other limits derived from atomic experiment
(Rydberg) [42], astrophysical observations (solar lifetime SUN-T [43], horizontal branch HB [44]), diffuse x-ray background attributed
to DM (dDM [45]), beam dump experiments (E137 [18], LSND [46,47], NA64 [20]) via invisible decay channel. Here m, = 3m, and

ap = 0.1, corresponding to g, = 1.1, is used.

cosmological or astrophysical bounds for DP masses below
1000 keV [42,44,45]. However, certain model-dependent
environmental effects could potentially circumvent these
limits. Importantly, this marks the first laboratory experi-
ment to reach this parameter space, assuming the invisible
decay of DP.

In summary, we conducted a search for light dark matter
(LDM) using 2636 kg - days Nal(Tl) exposure data from
the NEON experiment, located 23.7 m from a 2.8 GW
thermal power nuclear reactor. Our analysis established
new exclusion limits for the dark matter-electron scatte-
ring cross-section (o,) for LDM masses ranging from 1
and 1000 keV/c?. This Letter significantly extends the
LDM search range in laboratory experiments, achieving a
90% confidence level upper limit of 6,=3.17 x 107> cm?
for an LDM mass 100 keV/c?, marking the first exper-
imental exploration into this parameter space. The NEON
experiment continues to obtain reactor-on data, with more
than twice the amount of data already collected compared
to the current study. An updated study with a larger data
sample and improved analysis techniques, focused on
reducing the energy threshold, will allow us to explore a
much larger region of the currently unexplored LDM
parameter space.
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