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The neural network proposed here specializes in herbarium image seg-
mentation. The encoder of the proposed model contains multiple ker-
nels of different sizes to address the complex structures of plant com-
ponents, such as tangled roots and stems. By employing multiple ker-
nel sizes, the convolution block enables multiscale learning, which is
underexplored in previous approaches. This design effectively extracts
and fuses local and global features, enabling both broad and narrow per-
spectives on complex structures within herbarium images and thereby
improves segmentation performance. The experimental results demon-
strate that the proposed model outperforms three conventional mod-
els. The source code can be accessed at https://github.com/tkdgur658/
herbarim_segmentation_network

Introduction: Plant identification is the process of naming a plant based
on taxonomic knowledge and is essential in several fields, such as ecol-
ogy, pharmacy, and agriculture [1]. In addition to the plant body, herbar-
ium sheets include non-plant components, such as labels with collec-
tion information, rulers, and colour palettes [2]. Formal climate change
monitoring can be achieved by exploring the information provided by
herbarium images; for example, widely distributed Viola species can
be used for this purpose [3]. However, the development of automatic
plant identification systems, necessitated by the declining number of
taxonomists, requires preprocessing to remove non-plant components
from plant images, as these elements interfere with model training [4].
Despite the rapid development of neural network-based segmentation,
conventional studies on herbarium image segmentation have not ex-
plored recent achievements, such as multiscale convolution. Here, we
propose a simple but effective neural network for herbarium image
segmentation.

Related work: The field of plant segmentation, including herbarium im-
age segmentation, remains at an early stage compared to major areas
such as medical image segmentation. Slight modifications to popular
baselines such as UNet [5], SegNet [6], and DeepLabV3+ [7] have been
widely explored for plant segmentation. UNet was improved by adding
three convolutional layers to the decoding blocks, which improves the
extraction of characteristics of the diseased leaf [5]. For SegNet-based
models, the SegNet pooling indices were combined with a UNet de-
coder to improve the segmentation of small targets, such as lesions in
tomato leaf disease [6]. In addition, SegNet integrated with an attention
module to enhance feature emphasis [8]. Finally, DeepLabv3+-based
models enhance segmentation by addressing challenges such as uneven
lighting and overlapping plant structures [7].

Within plant segmentation, herbarium images have received even
less attention than other subfields. UNet has been included in herbar-
ium segmentation experiments, where the training was conducted on
320 images with pre-trained encoder [9]. Meanwhile, DeepLabV3+
was employed for leaf segmentation in herbarium images and com-
pared to detection-based methods for leaf feature extraction [10]. In
addition, DeepLabV3+ was evaluated after training on 2685 spec-
imens from 20 different families, encompassing varying resolution,
quality, and layout [11]. Finally, four encoder—decoders were com-
pared with a novel network based on visual geometry group [12],
demonstrating the superiority of combinations of average pooling and
tanh.

According to our brief review, herbarium image segmentation
still requires further research to bridge the gap with major areas
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of semantic segmentation. Multiscale convolution remains underex-
plored in plant segmentation and has significant potential in seg-
mentation of complex structures, such as those found in herbarium
specimens [13].

Proposed method: Unlike natural plant images captured by non-experts,
herbarium images have complex objects, such as tangled roots and
stems. To address this issue, we designed the proposed model, char-
acterized by convolution layers with multiple kernel sizes. The pro-
posed model comprises an encoding phase £ and a decoding phase
D, each consisting of five encoding stages E', ..., E> and four de-
coding stages D!, ..., D*. Let the input image be represented by x €
{0, ..., 25573 where H and W denote the height and width of the
input image, respectively. The first encoding stage involves two 3 x 3
convolution layers, one 1 x 1 layer, and a max-pooling layer. Each con-
volution layer can be followed by a batch normalization layer and rec-
tified linear unit function. The output of the initial encoding stage E'
is represented by z! = P!(F!(x)), where F! denotes the combination of
three convolution layers and P! denotes the max-pooling operation. The
remaining four encoding stages, denoted by E?, ..., E*, each comprise
one proposed block, characterized by multiple kernel sizes within a con-
volution layer, and one max-pooling layer. The proposed block captures
multiscale features to address both broad and narrow target aspects, en-
hancing the segmentation of complex objects. For each encoding stage
i=2,...,4, the output can be formulated as z/ = P'(F'(z""!)), where
zi=1 is the output of the previous stage, and F' 2 ..., F* denote the cor-
responding blocks for the second through fourth stages. Finally, the out-
put of the encoding phase is defined as z° = F°(z*) = E°(z*) = E(x),
where F° and E? refer to the proposed block.

The proposed block improves the complex object segmentation by
extracting multiscale features and fusing them to classify each pixel
using both broad and narrow perspectives. Employing multiple kernel
sizes naturally supports the capture of both local and global features
for enhanced segmentation. Before this process, the proposed block
transforms the feature maps into a suitable form for multiple kernel
sizes through a composition of 1 x 1 and 3 x 3 convolutions. The max-
pooling operation in the previous stage with fixed computations for small
pool sizes may leave unnecessary information from a global perspective.
The 1 x 1 and 3 x 3 convolutions compress the essential information
along the channel and spatial axes, respectively, effectively preparing a
feature map for convolution with multiple kernel sizes. The feature map
is then divided into four groups, each containing ¢/4 channels, yielding
four distinct feature maps. The four feature maps are passed through
a convolution layer utilizing kernel sizes of 1 x 1, 3 x 3, 5x 5, and
7 x 7, with padding implemented to preserve the original dimensions.
The four feature maps are subsequently aggregated to generate a sin-
gle feature map involving ¢/4 channels by addition. Multiscale features
are then fused to extract high-level representations, effectively capturing
complex patterns across different scales. Finally, the input feature map
is combined with the expanded feature map using a residual architec-
ture with 1 x 1 convolution to enhance the representation of the original
feature scale.

In the decoding phase, the four decoding stages, denoted as
D',...,D* aim to reconstruct the high-resolution output. The four
stages in the decoding phase include one unpooling layer and a varying
number of 3 x 3 convolution layers. The output of each decoding stage
is calculated as £/ = G/([FC—/+D(z5=1), U/(4/~1)]), where U/ is the
Jjth unpooling operation, G’ is the composition of convolution blocks
in the decoding stage j, [-] represents the concatenation operation, and
29 = 73, The first and second decoding stages contain three 3 x 3 con-
volution layers, whereas the third and fourth decoding stages include
one and two 3 x 3 convolution layers, respectively. Each unpooling layer
uses pooling indices from the corresponding max-pooling layer during
the encoding stage. The feature maps upsampled by the unpooling layer
are concatenated with the feature maps from the corresponding encod-
ing stage before max pooling. The concatenated feature maps are then
passed through the convolution layers and fed into the next decoding
stage. Finally, the segmentation mask is derived by applying a sigmoid
activation function to the output and classifying pixels with significance
values over a predefined threshold as belonging to the target region. A
schematic of the proposed model is presented in Figure 1.
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Table 1. The results of the main experiments, with ¥ and YV denoting that the proposed model passed the paired t-tests at the 0.1 and 0.05
significance levels, respectively. The values in parentheses indicate the average ranking

Model name mloU DC

Precision Recall

Proposed 0.847 £+ 0.008 (1.20)

Shoabib et al. [5] 0.838 4 0.003 (2.00)7 ¥
Kaur et al. [6] 0.829 4 0.003 (2.80)7 ¥

Hussein et al. [10] 0.765 = 0.003 (4.00)" ¥

0.908 + 0.006 (1.25)
0.902 £ 0.002 (1.95)¥ ¥
0.898 £ 0.002 (2.80)7 ¥

0.859 £ 0.002 (4.00)7 ¥

0.885 = 0.013 (1.40) 0.960 = 0.005 (1.70)

0.876 4= 0.008 (2.05) 0.961 & 0.005 (1.60)
0.872 £ 0.008 (2.55)" ¥ 0.954 £ 0.007 (2.70)¥

0.836 £ 0.007 (4.00)¥ ¥ 0.910 £ 0.005 (4.00)7 ¥
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Fig. 1 Architecture of the proposed model

Experimental results: We conducted experiments using three conven-
tional models for plant segmentation [5, 6, 10]. We collected 14,939
specimen images of 36 Viola classes on the Korean Peninsula and con-
ducted 10 iterative experiments by splitting the dataset into training, val-
idation, and test sets in a 0.6:0.2:0.2 ratio. The network input consisted
of three-channel RGB images resized to 384 x 256 with zero padding
to maintain the original aspect ratio. Each training was performed for
up to 50 epochs with an early stopping strategy that halted training if
no improvement was observed for 25 epochs. We utilized a batch size
of 16 with an AdamW optimizer configured with a learning rate of
1 x 1073, and weight decay of 1 x 107, A cosine annealing scheduler
was used to adjust the learning rate during training, with a minimum
rate of 1 x 107°. Dice—cross-entropy loss was used as the loss func-
tion without any weighting between the Dice and cross-entropy terms.
Data augmentation included random crop resizing with scales from 0.7
to 1.0, horizontal flipping, and random rotations, each applied with 50%
probability. We evaluated the models using four common segmentation
measures — mean Intersection over Union (mloU), Dice coefficient (DC),
precision, and recall — and performed paired #-tests at significance levels
of 0.1 and 0.05.

Table 1 represents the comparison results of the proposed and the
three comparison models in mloU, DC, precision, and recall. The ex-

mloU
Difference
0.04 Proposed > Bottleneck [14] (Superior)
Proposed < Bottleneck [14] (Inferior)

0.02

0.00
—0.02
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Fig. 2 Comparison of species-specific mean intersection over union (mloU)
in ablation study. The x-axis were sorted in descending order using mloU
values of the proposed model
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Fig. 3 Examples from the top two species and the two species showing the
most significant improvements. The values in parentheses show the mean in-
tersection over union

perimental results showed that the proposed model significantly outper-
formed comparison models in mloU, DC, and precision.

We conducted an ablation study to validate the efficacy of our strat-
egy. Specifically, two counterpart model were used as follows. The first
removed the convolution layers with multiple kernel sizes from the pro-
posed blocks (i.e., original bottlenecks [14]), while the second replaced
the proposed blocks with UNet blocks, which are widely used in plant
segmentation. As shown in Table 2, the proposed model achieved higher
values in mloU, DC, and precision. Furthermore, the robustness of the
proposed model is highlighted in Figure 2 with consistent performance
improvements in 27 out of 36 species, underscoring the adaptability of
the model to diverse species. Notably, these improvements were more
pronounced for plants with complex regions. Figure 3a,b shows the
random samples for the top two species based on the mloU values of
the proposed and two counterpart models, which were relatively eas-
ier targets. Figure 3c,d presents the random samples for two species
with the most significant improvements by the proposed block, repre-
senting more challenging cases for counterpart models. The targets with
greater performance improvement tend to contain more intricate regions

Table 2. The ablation study results, with ¥ and YV denoting that the proposed model passed the paired t-tests at the 0.1 and 0.05 significance
levels, respectively. The values in parentheses indicate the average ranking

Model name mloU

Precision Recall

Proposed 0.847 £ 0.008 (1.20)

Bottleneck [14] 0.841 = 0.004 (2.20)" ¥

UNet Block [15] 0.839 4 0.004 (2.60)7 ¥

0.908 + 0.006 (1.30)
0.904 £ 0.003 (2.20)7

0.903 £ 0.003 (2.50)" ¥

0.885 4 0.013 (1.55) 0.960 £ 0.005 (1.75)

0.880 4 0.008 (2.10) 0.959 £ 0.004 (2.35)

0.877 4 0.008 (2.35) 0.961 £ 0.005 (1.90)
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(a) Image (b) Ground Truth (c) Proposed (d) Bottleneck [14]

Fig. 4 Comparison of output masks from the proposed and counterpart mod-
els in the ablation study. White, black, red, and green pixels represent true
positives, true negatives, false negatives, and false positives, respectively
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Fig. 5 The skipped feature maps, un-pooled feature maps, and final score
maps for the last decoding stage of the proposed model and its ablation coun-
terpart

(Figure 3c,d), such as entangled roots or stems, whereas the simpler tar-
gets with smaller gains tend to have larger leaves or less complex ob-
jects (Figure 3a,b).

Figure 4 illustrates the qualitative results of the ablation study, com-
paring the output masks of the proposed model and the counterpart
model with bottlenecks [14]. The results illustrated an improved per-
formance of the proposed model in recognizing complex objects, such
as tangled roots or stems. Finally, Figure 5 illustrates the skipped feature
map, un-pooled feature maps fed into the final decoding stage, and the
output score maps. The proposed model, with convolutions of diverse
kernel sizes, effectively captures fine-grained structures, as evident in the
skipped feature map. In contrast, counterpart models struggle to capture
such details, resulting in lower-quality output scores.

Conclusion: Here, we propose a novel neural network for herbarium im-
age segmentation. The proposed model outperformed conventional mod-
els in the three measures. In future studies, we plan to apply a neural
architecture search to optimize the model for this task.
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