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• New model introduces a physics- 
informed ML approach for predicting 
condensation HTCs.

• Improved performance of PC-XGBoost 
shows better extrapolation than data- 
driven ML methods.

• Comprehensive evaluation assesses 
eight data-driven ML methods with a 
physics-constrained approach.
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A B S T R A C T

Developing a universal model for predicting condensation heat transfer coefficients remains challenging, 
particularly for steam–non-condensable gas mixtures, owing to the intricate nonlinear interactions between 
multiphase flow, heat, and mass transfer phenomena. Data-driven machine learning (ML) shows promise in 
efficiently and accurately predicting condensation heat transfer coefficients. Research has employed various ML 
methods—multilayer perceptron neural networks, convolutional-neural-network–based DenseNet, back-
propagation neural networks, etc.—to investigate steam condensation with non-condensable gases. However, 
these exhibit limited extrapolation ability and heavily rely on data quantity owing to their black-box nature. This 
study proposes a physics-informed ML model that combines physical constraints derived from the modified 
Nusselt model with conventional data-driven ML techniques. The model’s predictive performance is evaluated 
using a comprehensive database (879 datapoints from 13 studies). A physics-constrained and eight data-driven 
ML methods are assessed. The results reveal that the physics-constrained approach combined with XGBoost 
significantly outperforms conventional ML methods on extrapolation datasets (199 datapoints from 3 studies), 
achieving a mean absolute percentage error of 11.22 %, which is approximately half that of the best-performing 
fully data-driven model at 21.63 %. The model demonstrates consistent and reliable performance across diverse 
datasets, making it an effective tool for predicting heat transfer coefficients in steam–non-condensable gas 
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mixtures. By deepening the understanding of the underlying physical processes, the proposed model supports the 
development of precise and efficient engineering solutions for condensation heat transfer.

1. Introduction

Condensation heat transfer is a crucial process for achieving efficient 
heat transfer; in this process, substantial latent heat is leveraged for a 
wide range of energy applications, including energy conversion, [1] 
seawater desalination, [2] water harvesting systems, [3,4] thermal 
management systems, [5] environmental control, [6] and nuclear power 
generation. [7] However, predicting heat transfer becomes increasingly 
complex with the presence of non-condensable gases (NCGs) owing to 
the intricate nonlinear interactions between multiphase flow, heat, and 
mass transfer phenomena. Despite these challenges, accurately pre-
dicting steam condensation in the presence of NCGs remains essential 
for practical engineering applications, as NCGs significantly reduce the 
condensation rate, posing difficulties in scenarios where their presence 
is unavoidable.

Numerous experimental studies have been conducted to access 
condensation heat transfer in the presence of NCGs, as numerical models 
frequently demonstrate limited predictive accuracy. However, these 
experimental studies are often cost-prohibitive, largely owing to the 
complex interplay of geometric and operational parameters, such as 
subcooling (ΔTsub), system pressure (Pt), NCG fraction (Wnc), tube length 
(L), and diameter (D). [8]

The theoretical foundation for filmwise condensation (FWC) in the 
presence of NCG has been achieved by many researchers. Although 
Nusselt’s pioneering work laid the initial foundation for understanding 
condensation phenomena, his model was limited in scope, as it was 
applicable only to laminar flow scenarios involving pure steam 

condensation. [9] Recognizing these limitations, subsequent researchers 
expanded on Nusselt’s framework to incorporate the effects of NCGs, 
which significantly alter the condensation process. They developed 
advanced models using approaches such as heat and mass transfer 
analogy (HMTA) and degradation factor methods. These approaches 
have been crucial in capturing the complex physical mechanisms 
introduced by NCGs, broadening the applicability and improving the 
predictive accuracy of condensation models. HMTA-based models, in 
particular, provide more comprehensive insights and yield more reliable 
predictions than traditional empirical correlations. Dehbi’s work [10] is 
notable in this regard; he used HMTA and curvature correction with the 
Popiel model to derive a general model for the condensation heat 
transfer coefficient (HTC) of vapor–air mixtures over vertical walls. The 
suction effect was considered using Bird et al.’s model, [11] and sub-
sequent improvements incorporated a new curvature enhancement 
model based on parametric numerical studies. Other researchers, such as 
Bae et al., [12] have modified these models using experimental data, and 
Wang et al. [13] investigated the effects of gas compressibility, thermal 
resistance of the condensate film, and convection heat transfer on 
modeling steam condensation using HMTA. Nevertheless, the inherent 
nature of heat and mass analogy, which predicts condensation heat 
transfer by linking momentum, mass, and heat transfer, necessitates the 
use of experimentally derived correlations for mass transfer. This reli-
ance on empirical data highlights a limitation in that theoretical models 
cannot yet fully replace traditional empirical condensation HTC corre-
lations. Regarding the degradation factor model, Kuhn et al. [14] 
developed a degradation factor correlation based on the Reynolds 
number of film thickness and NCG mass fraction, including precise 
measurements of local heat flux and extensive FWC data for NCG 

Nomenclature

Cp specific heat [J/kg·K]
Dh hydraulic diameter [mm]
F degradation factor [-]
h heat transfer coefficient [W/(m2·K)]
hfg enthalpy [J]
I error [-]
k thermal conductivity [W/m·K]
L length [mm]
M molecular weight [g/mole]
ṁ mass flow rate [kg/s]
Tm mean temperature [K]
N number of data
Nu Nusselt number [-]
Ptot system pressure [kPa]
q" heat flux [W/m2]
Re Reynolds number [-]
R" total thermal resistance [K•cm2/W]
Tsat saturation temperature [K]
Tw wall temperature [K]
u fluid velocity [m/s]
W mass fraction [-]
X mole fraction [-]
ΔP pressure drop [Pa]
ΔTsub subcooling temperature [K]

Greek symbols
β expansion coefficient [K-1]

δ film thickness [m]
Γ mass flow rate per unit film width [kg/m⋅s]
λ adjustment factor [-]
μ dynamic viscosity [Pa⋅s]
ν kinematic viscosity [m2/s]
ρ density [kg/m3]
σ surface tension [N/m]
τ* dimensionless shear stress [-]
ψ node [-]

Superscripts
− average component

Subscripts
deg degradation model
* dimensionless
exp experiment
f fluid
film film
g vapor
h heater
mse mean squared error
m mixture
nc non-condensable gas
Nu Nusselt model
pc physics-constrained
pred prediction
tot total
v steam vapor
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mixtures. Although the degradation factor method demonstrated satis-
factory engineering accuracy, its applicability was restricted to specific 
experimental conditions. Accordingly, despite extensive efforts, devel-
oping a universal model for predicting condensation HTC in NCG mix-
tures remains a significant challenge owing to the complex, nonlinear 
nature of multiphase flow, heat, and mass transfer processes. In addi-
tion, conventional empirical correlations are often limited to the data-
sets from which they were derived and involve intricate mathematical 
expressions that are difficult to generalize across a wide range of 
geometrical and operational conditions.

Data-driven machine learning (ML) has recently emerged as a 
promising tool for addressing these challenges; it can predict conden-
sation HTC with high efficiency and accuracy. The ML approach has 
been actively used in the broader field of heat transfer, facilitating ad-
vancements in various applications. [15–21] In particular, to investigate 
steam condensation with NCG, several studies have utilized various ML 
methods, including multilayer perceptron (MLP) neural networks, [22] 
convolutional-neural-network–based DenseNet, [23] and back-
propagation neural networks. [24] Although these data-driven ML 
models offer powerful predictive capabilities, they have limitations such 
as limited extrapolation beyond the training data and strong reliance on 
large datasets owing to their black-box nature. These models generally 
perform well within the scope of the training data but often face chal-
lenges when confronted with data outside that range. To overcome these 
challenges, physics-informed, physics-constrained, or physics-guided 
ML approaches have received increasing research attention. These 
methods integrate the predictive power of ML with physical models by 
embedding physical principles into loss functions, allowing for more 
reliable predictions even for data beyond the training range. This inte-
gration can involve directly solving governing conservation equations or 
incorporating theoretical models and empirical correlations based on 
experimental data. One notable example is the physics-informed neural 
network (PINN) introduced by Raissi et al., [25] which solves partial 
differential equations (PDEs) by incorporating conservation and 
boundary conditions into the neural network’s loss function. By 
combining ML with mathematical theory, Raissi’s approach enhances 
conventional data-driven models, thus enabling accurate predictions 
even in regimes with limited data.

In this study, we employ a physics-informed ML approach that in-
tegrates the mechanistic relationships of condensation and thus reduces 
data dependence to enhance the prediction accuracy of condensation 
HTC for steam–NCG mixtures over a vertical tube. This approach has 
demonstrated higher accuracy and lower risk of overfitting than other 
classical ML methods, such as MLP, random forest regression (RFR), 
support vector regression (SVR), decision tree regression (DTR), 
Gaussian processes regression (GPR), elastic net regression (ENR), and 
light gradient boosting machine (LightGBM), and extreme gradient 
boosting (XGBoost). [26] To incorporate physical constraints into these 
conventional ML models, we developed a novel loss function that 
combines mean squared error (MSE) loss with a physics-constrained loss 
based on our newly developed degradation Nusselt model. Our method, 
referred to as physics-constrained XGBoost (PC-XGBoost), is further 
optimized with a Bayesian algorithm to improve its predictive perfor-
mance and extrapolation capabilities, addressing the limitations of 
purely data-driven models. By integrating physical constraints from the 
degradation Nusselt model with standard ML techniques, this approach 
offers more robust and reliable predictions of HTC, surpassing the ac-
curacy and consistency afforded by traditional data-driven models.

2. Methodology

2.1. Database and preprocessing

A database of 856 experimentally measured condensation HTC data 
points for steam–air or steam–nitrogen mixtures over a vertical plate has 
been compiled by Cho et al. [22] After including recently published 

data, [27,28] the database now contains 879 experimental interpolation 
data points collected from 13 sources. Each dataset includes 17 input 
parameters representing environmental and geometric conditions (Dh, L, 
Mnc, Ptot, Wnc, ΔTsub, Tsat, kf, kg, Cp,f, Cp,g, hfg, μf, μg, σ, ρf, ρg) and 1 output 
parameter (HTC). The input parameters were selected based on their 
significant correlation with HTC, the ability of the ML method to handle 
variables with different units through normalization, and the impor-
tance of capturing physical properties such as steam characteristics and 
the mass fraction of non-condensable gases, as air and nitrogen domi-
nate most practical scenarios. In addition, uncertainty in the data was 
indirectly addressed [29] by ensuring data collection under consistent 
conditions with free-falling NCGs, incorporating inherent uncertainty 
handling through GPR, and conducting a robust error analysis using 
multiple metrics such as the mean absolute percentage error (MAPE) 
and determination coefficient (R2). All input parameters were pre-
processed using min–max normalization, and the output parameter was 
log-transformed to reflect the distribution characteristics of the HTC 
data.

The database of condensation HTC was divided into training (60 %), 
validation (20 %), and test (20 %) datasets for all ML models. In addi-
tion, for validating the predictive accuracy for extrapolation data, 199 
data points were selected from three additional sources. [30–32] These 
data points were obtained from independent experimental conditions 
that were not involved in the model development. The sources used for 
both the interpolation and extrapolation datasets are detailed in Ap-
pendix Tables A.1 and A.2.

Table 1

2.2. Proposed new degradation Nusselt model

Condensed, free-falling films exhibit different heat transfer charac-
teristics depending on their flow regimes, which can be laminar, wavy- 
laminar, or turbulent, as determined by the film’s Reynolds number (see 
Fig. 1). In 1916, Nusselt [9] introduced a theoretical model for pre-
dicting laminar film condensation, taking into account the thermo-
physical properties of the working fluid and the condensation length. 
The derived equation from the force balance can be summarized as 
follows. 

du
dy

=
g
(
ρf − ρg

)

μf
(δ − y) (1) 

The model starts with the differential equation for velocity within 
the condensation film, derived from the balance of forces, including 
gravity and viscous forces. Here, u represents the velocity within the 
condensation film, whereas δ and y denote the film thickness and the 
distance from the wall, respectively. By applying continuity and energy 
balance equations, where the total heat transfer is the sum of the latent 
heat of vaporization lost by condensation and the subcooling of the same 
mass of liquid to the mean fluid temperature, we obtain the following 
equation with an assumption of linear temperature profile within the 
liquid film: 

qʹ́
wΔz = hfg

dΓ
dz

Δz + cp,f
(
ρf
)
(Tsat − Tm)

dΓ
dz

Δz, (2) 

where cp,f
(
ρf
)
(Tsat − Tm) =

∫ δ

0
ρf ucp,f (Tsat − T)dy
∫ δ

0
ρf udy

.

By rearranging the equation and applying Rohsenow’s modified 
parabolic temperature profile [33] with a linear assumption, the film 
thickness and local HTC can be expressed as follows. 

δNu =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
4kf μf ΔTz

gρf
(
ρf − ρg

)
hʹ

fg

4

√

(3) 
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hNu =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
gρf
(
ρf − ρg

)
k3

f hʹ
fg

4μf ΔTz
4

√

(4) 

Here, hʹ
fg = hfg + 0.68cp.f ΔT.

Finally, deriving the average HTC from the local HTC yields the 
following expression. 

hNu =
1
L

∫ L

0
hNudz =

4
3
hL = 0.943

(
gρf
(
ρf − ρg

)
k3

f hʹ
fg

μf ΔTL

)1/4

(5) 

Although the Nusselt model is widely recognized for its accuracy in 
predicting condensation HTC in the laminar flow regime, it tends to 
underestimate HTC in the wavy-laminar and turbulent regimes, as it 
omits interfacial wave and turbulence effects. [34] To address this 
shortcoming, modified models for wavy-laminar and turbulent flow 
regimes that incorporate wave dynamics and turbulence effects, either 
through turbulent models or empirical approaches, have been proposed. 
[10–14] However, these turbulence-based models are often complex, 
lack universal applicability, and tend to inaccurately predict heat 
transfer at low Prandtl numbers owing to their inability to account for 
increased film thickness. [35]

Here, we chose the degradation factor method to account for NCG. 
Although this method relies on empirical correlations, it directly con-
strains predictions to analytical solutions, offering deeper insights into 
the physical relationships in condensation heat transfer. The concept of 
a degradation factor for NCG condensation has been developed and 
refined by several researchers. Vierow [36] introduced the degradation 
factor as the ratio of experimental to pure steam condensation HTC 
based on the Nusselt model, correlating it with the mixed-gas Reynolds 
number and NCG mass fraction. Kuhn [14] developed a correlation for 
the degradation factor in air–helium FWC experiments using the ratio of 
film thickness, film Reynolds number, and NCG mass fraction. Lee and Ta
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Fig. 1. | Conceptual schematic of free-falling condensation heat transfer on 
vertical surface.
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Kim [37] extended this work by exploring local heat transfer in a U-tube 
during reflux condensation with NCG, incorporating film Reynolds 
number, NCG mass fraction, and shear force. Their degradation factors 
and related parameters are summarized in Table 2.

Nevertheless, challenges in adopting these degradation Nusselt 
models as a physics-based approach remain. All three aforementioned 
models have limitations for universal applicability. First, they are 
derived under restricted experimental conditions; second, the parame-
ters used are not always appropriate. In our consolidated database, 
which largely comprises free-falling natural convection scenarios, 
defining the mixed gas Reynolds number is challenging. Moreover, few 
studies have measured liquid film thickness, further limiting the us-
ability of these models. To address this, we redefined the parameters to 
derive a degradation factor that is more universally applicable and 
suitable for our database. Fig. 2 shows the ratio of the HTC predicted by 
the Nusselt model to the experimentally obtained HTC as a function of 
Refilm, with the color of the symbols representing the mass fraction of 
NCGs. The Nusselt model consistently overestimates HTC as the NCG 
fraction (Wnc) increases. In addition, the model tends to overestimate 
HTC as Refilm decreases because, in the laminar regime, turbulent ef-
fects diminish. Conversely, as Refilm increases into the turbulent 
regime, mixing within the film and the increased thermal conductivity 
owing to turbulent eddies cause the actual HTC to increase, leading the 
Nusselt model to underestimate HTC. These findings suggest that both 
Wnc and Refilm are essential degradation factors for predicting free- 
falling condensation in the presence of NCG, and they must be consid-
ered separately for the laminar, wavy regions, and turbulent regimes. 
The equation for the determined factor is as follows. 

Refilm ≡
4Γ
μf

=
4
μf

hNuLΔTsub

hfgʹ
(6) 

F =
hexp

hNu
= f1f2 =

(
1+ aReb

film

)(
1 − cWd

nc
)

(7) 

The values of a, b, c, and d were derived using the GRG nonlinear 
method [38] with a convergence criterion of 1e-12 based on an inter-
polation dataset of 879 data points. This process led to the selection of 
the new degradation Nusselt model as the physical model for this study.

2.3. ML approach

2.3.1. Fully data-driven methods
To evaluate the performance of the physics-constrained method, we 

compared it with eight well-known fully data-driven ML methods that 
are highly regarded for their regression modeling capabilities: 

(1) XGBoost [26] is an ensemble learning technique that combines 
predictions from multiple weak learners to create a more robust 
model. It efficiently implements gradient boosting, using 
second-order gradients for optimization and regularization to 

prevent overfitting. In this study, XGBoost was implemented 
using the XGBoost library.

(2) LightGBM [39] is a gradient boosting framework that utilizes 
tree-based learning algorithms. It is designed for high perfor-
mance, high training speed, low memory usage, and high accu-
racy. In our experiments, LightGBM was implemented using the 
LightGBM library.

(3) SVR [40] is a type of support vector machine (SVM) that supports 
both linear and non-linear regression. It aims to fit the error 
within a certain threshold, making it robust to outliers. The 
scikit-learn library was used to implement SVR in this study.

(4) Also known as the deep neural network, MLP [41] is a class of 
feedforward artificial neural networks comprising multiple layers 
of nodes in a directed graph, with each layer fully connected to 
the next. We implemented MLP using the TensorFlow library.

(5) RFR [42] is an ensemble learning method that constructs multiple 
decision trees during training and outputs the mean prediction of 
the individual trees. It is particularly useful for handling 
high-dimensional data. The scikit-learn library was used for 
implementing RFR.

(6) ENR [43] combines the properties of both Lasso and Ridge re-
gressions, making it useful in the presence of multiple correlated 
features. This method was implemented using the scikit-learn 
library.

(7) DTR [44] uses a decision tree to model the relationship between 
input features and target values. It splits the data into subsets 
based on the value of input features, resulting in a tree-like model 
of decisions. We implemented DTR using the scikit-learn library.

Table 2 
The existing and new degradation factor for the Nusselt model.

Author(s) Correlation Range a b c d

Vierow et al. (1990) [36] F =
(
1 + aReb

m
)(

1 − cWd
nc
)

Rem: Mixture Reynolds number(ρmuD/μm)

Wnc: NCG mass fraction

Air Wnc < 0.063 2.88E-05 1.18 10 1
0.063 < Wnc < 0.6 0.94 0.13
0.6 < Wnc 1 0.22

Kuhn et al. (1997) [14] F =
δexp

δNu

(
1 + aRefilm

)(
1 − bWc

nc
)

Refilm: Film Reynolds number 
(

Γ/μf

)

δexp: Experimental thickness 
δNu : Nusselt thickness

Air Wnc < 0.1 7.32E+04 2.6 0.708
0.1 < Wnc 1 0.202

Helium 0.003 < Wnc < 0.01 − 35.8 1.074
0.01 < Wnc < 0.1 − 2.09 0.457
0.1 < Wnc − 1 0.137

Lee and Kim (2008) [37] F = τ∗g a( 1 + bRefilm
)(

1 − Wc
nc
)

τ∗g : Dimensionless of shear stress 
(
τg/(ρgL)

)
Air 0.038 < Wnc < 0.814 

0.06 < τg*< 46.65
0.3124 0.964 0.402 

Fig. 2. | Determination of degradation factor parameters. The ratio of the HTC 
by Nusselt number to the experimentally obtained HTC according to film 
Reynolds number and NCG mass fraction.
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(8) GPR [45] is a non-parametric, kernel-based probabilistic model. 
It predicts the output by assuming a Gaussian process prior over 
the latent function and using the observed data to update this 
prior. The scikit-learn library was used to implement GPR in our 
experiments.

By employing these diverse ML methods, we thoroughly evaluated 
the performance and robustness of the proposed physics-constrained 
approach against various fully data-driven techniques. Each method 
was implemented using well-established libraries in Python to ensure 
reliability and consistency in the results.

2.3.2. Physics-constrained XGBoost method
In this study, to implement a physics-constrained method, we 

employed XGBoost, as it demonstrated the most stable performance on 
extrapolation datasets relative to fully data-driven ML models. A 
comprehensive analysis of the results is provided in Section 3.2, where 
the performance of the physics-constrained and data-driven ML models 
is compared. The integration model for a decision tree can be described 
as follows. 

ŷi =
∑K

k=1
fk(xi), fk ∈ F (8) 

In this context, yi represents the predicted value, K is the total 
number of decision trees, fk denotes the output from the k-th regression 
tree, F signifies the space of all regression trees, and xi is the i th input 
feature.

The regularized objective function of the XGBoost model is expressed 
as follows. 

L (ϕ) =
∑

i
l(ŷi, yi) +

∑

k

Ω(fk) (9) 

Ω(f) = γTl +
1
2

τ‖ ω ‖2 (10) 

Here, l is a differentiable convex loss function that measures the 
difference between the predicted value yi and the target yi and is 
calculated by l. Ω is the regularization term, which penalizes the 
complexity of the model. α and λ are penalty factors; Tl is the number of 
leaf nodes in the tree; and w is the weight of the leaf nodes. The XGBoost 
model is incrementally trained to minimize the objective function. By 
adding an incremental function ft(x) at the t-th iteration, the following 
objective function is obtained. 

L
(t)

=
∑n

i=1
l
(
yi, ŷ

(t− 1)
i + ft(xi)

)
+ Ω(ft) (11) 

A second-order approximation is applied to Eqs. (11), and constant 
terms are removed to optimize the objective: 

L
(t)

≈
∑n

i=1

[

gift(xi)+
1
2
kif2

t (xi)

]

+ Ω(ft), (12) 

where gi and ki are the first- and second-order gradient statistics on the 
loss function, respectively. Eqs. (12) can be rewritten by expanding Ω: 

L
(t)

=
∑T

j=1

⎡

⎣

⎛

⎝
∑

i∈Ij

gi

⎞

⎠ωj +
1
2

⎛

⎝
∑

i∈Ij

ki + λ

⎞

⎠ω2
j

⎤

⎦+ γTl, (13) 

where Ij is the instance set of leaf j.

Substituting the optimal weight of ω∗
j = −

∑
i∈Ij

gi
∑

i∈Ij
hi+λ

into Eqs. (13), we 

obtain: 

L
(t)

=
1
2
∑T

j=1

(
∑

i∈Ij
gi

)2

∑

i∈Ij
ki + λ

+ γTl. (14) 

Here, we employed a novel loss function that combines the MSE loss 
function and a physics-constrained loss function. The new degradation 
HTC model proposed in Section 2.1 was used for the physics-constrained 
loss function.

The MSE between the values obtained from Eqs. (14) and XGBoost is 
used as the physics-constrained loss. 

lMSE,i =
1
2
(hi − ĥi)

2 (15) 

hdeg = FhNu =
(

1+ aReb
film

)(
1 − cWd

nc
)
0.943

[
gρf
(
ρf − ρg

)
k3

f hfgʹ

μf LΔTsub

]1/4

(16) 

lPC,i =
1
2

⎡

⎣
(

1 + aReb
film

)(
1 − cWd

nc
)
0.943

[
gρf
(
ρf − ρg

)
k3

f hfgʹ

μf LΔTsub

]1/4

− ĥi

⎤

⎦

2

(17) 

Here, hʹ
fgis the modified latent heat given by hʹ

fg = hfg + 0.68Cp,f ΔTsub 

for a nonlinear temperature profile. [33]
A new hyperparameter, the adjustment factor λ, is introduced to 

regulate the relative influence of lpc,i and lmse,i. Consequently, the new 
loss function can be expressed as follows. 

li = lmse,i + λlpc,i (18) 

In summary, the XGBoost model was modified to include physical 
constraints by integrating the degradation Nusselt model into the MSE 
loss function. An adjustable parameter λ was used to balance the 
experimental data with physical principles, improving generalization 
and ensuring predictions align with physical laws, particularly on 
extrapolation datasets.

The schematic of the Physics constrained (PC)-XGBoost model for 
predicting the condensation HTC of steam–NCG mixtures is depicted in 
Fig. 3. The training dataset is employed to train the PC-XGBoost model, 
and the validation dataset is utilized to evaluate the model at each 
iteration. The test dataset is used to assess the accuracy and reliability of 
the ML model using metrics such as MAPE, root mean square error 
(RMSE), R2, and the percentage of data points predicted within ±30 % 
(P30). 

MAPE =
1
N
∑N

i=1

⃒
⃒
⃒
⃒
hpre − hexp

hexp

⃒
⃒
⃒
⃒× 100 (19) 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
N
∑N

i=1

(
hpre − hexp

)2

√
√
√
√ (20) 

R2 = 1 −

∑N

i=1

(
hpre − hexp

)2

∑N

i=1

(
hexp − hexp

)2
(21) 

N is the number of data point, hexp and hpred are the experimental and 

predicted values of condensation HTC, respectively, and hexp is the 
average of hexp overall data points. The present ML models are developed 
under the Python 3.10.12 environment using the TensorFlow 2.15 and 
Hyperopt packages. [46]
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2.4. Hyperparameter optimization

All ML methods were optimized using the Hyperopt library, which 
utilizes a Bayesian optimization technique. Each model was trained on 
100 different configurations. Given the varying hyperparameters for 
each ML method, we focused on optimizing those that significantly in-
fluence model performance.

In particular, for the PC-XGBoost model, hyperparameters such as 
the physics penalty factor, learning rate, evaluation metric, colsample 
by tree, subsample, max depth, L1 regularization, L2 regularization, 
minimum child weight, and minimum loss reduction were optimized 
using the tree-structured Parzen estimator (TPE). The optimized 
hyperparameters for this model are presented in Table 3. TPE is a 
Bayesian optimization method that enhances search efficiency using the 
performance of previously evaluated parameters to predict the most 
promising next steps. The objective function, designed to minimize the 
RMSE of the validation dataset using K-fold cross-validation (k = 5), 
[47] evaluates the performance of the hyperparameters. The Hyperopt 
library facilitated this optimization process. To ensure fair comparison, 
the same Bayesian optimization approach with consistent constraints 
was applied to all ML models. The use of a unified framework ensured 
unbiased evaluation under identical conditions, and the TPE method 
effectively balanced exploration and exploitation, providing a reliable 
basis for comparing performance across the interpolation and extrapo-
lation datasets. [48]

3. Results and discussion

3.1. Degradation Nusselt model

Based on the procedures outlined in the methodology, the proposed 
degradation Nusselt model is presented below. 

Refilm < 1600 hdeg = FhNu =
(

1+ 1.19Re0.39
film

)(
1 − 0.994W0.011

nc
)

(22a) 

Refilm ≥ 1600 hdeg = FhNu =
(

1+ 0.001Re0.837
film

)(
1 − 1.27W0.01

nc
)

(22b) 

Fig. 4 compares the experimental HTC values with the HTC pre-
dictions from (a) the original Nusselt model and (b) the proposed 
degradation Nusselt model. In Fig. 4(a), the comparison reveals that the 
Nusselt model tends to overestimate HTC values in the lower range 
likely owing to the correlation between low HTC values at lower Refilm 
and a higher mass fraction of NCGs. Conversely, as HTC approaches 
10,000, the Nusselt model tends to underestimate the values. This un-
derestimation can be attributed to the increasing liquid film thickness, 
which leads to a transition from laminar to wavy-laminar or turbulent 
flow in the liquid film, thereby increasing the HTC.

Fig. 4(b) displays the results predicted by the proposed degradation 
Nusselt model. As illustrated in this figure, the semi-theoretical model 
shows strong alignment with various experimental conditions, signifi-
cantly reducing the MAPE from 522.3 % to 15.7 %. The degradation 
model underpredicted the HTC, particularly for the data by Kim et al. 
(2009), [49] because the turbulent Refilm had a nitrogen gas mass frac-
tion below 0.1. This discrepancy likely stems from the limited data 
available for turbulent Refilm compared with laminar and wavy Refilm. In 
the turbulent regime, most test cases involved either pure vapor or air 
with a nitrogen gas mass fraction above 0.2, which led to inaccuracies in 
determining the NCG mass fraction coefficient. Nonetheless, these cases 
account for <2 % of the overall dataset. When these instances are 
excluded, the degradation model consistently outperformed the original 
Nusselt model.

3.2. Comparison of physics-constrained and data-driven ML models

The effectiveness of each ML model was assessed using interpolation 
test data, with evaluation metrics including MAPE, RMSE, R², and P30, 
as depicted in Fig. 5. First, considering MAPE, which allows for an 
intuitive comparison of model performance, the PC-XGBoost model 
achieved a MAPE of 10 %. These results are slightly better than those of 
GPR, SVR, RFR, and MLP. RMSE is highly influenced by large errors; 
hence, GPR shows higher RMSE values than SVR and RF. The PC- 
XGBoost model also includes data with significant errors, resulting in 
a higher RMSE than DTR, despite having a lower MAPE.

The R2 metric assesses the extent to which the predicted values 
capture the variability of the actual data. Models such as XGBoost, GPR, 
SVR, RFR, MLP, DTR, and LightGBM demonstrate strong predictive 

Fig. 3. | The schematic of the PC-XGBoost model. The final loss is computed by adjusting the data loss and physics loss with a factor guiding model retraining.
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performance, with R² values exceeding 0.97, indicating their effective-
ness in explaining data variability. In contrast, the ENR model, which 
relies on linear regression, exhibits a MAPE of 18 % and an R² of 0.67, 
indicating suboptimal performance. This disparity is likely attributable 
to the model’s inherent limitations in addressing nonlinear patterns and 
high-dimensional datasets. Given the complexity of our dataset, which 
includes 17 input parameters, the ENR model was not well-suited to 
accurately learn the intricate relationships between these variables.

Based on the interpolation test data alone, the PC-XGBoost model did 
not demonstrate distinct advantages over other fully data-driven 
models, ranking fifth in MAPE performance among the nine models 
assessed. However, evaluating model performance solely on this test 
dataset has inherent limitations. Although the test data were not used for 
model training, the training and validation datasets include data from 
the same experimental setup and similar test conditions, which may 
obscure the signs of overfitting due to the dependence on the dataset 
split. To address this issue and provide a more accurate assessment of 
predictive performance, we extracted an extrapolation dataset from 
three independent studies unrelated to the interpolation dataset. This 
approach enables a more robust and unbiased comparison of model 
performance.

3.3. Extrapolation capability for physics-constrained ML models

Fig. 6 uses kernel density estimation (KDE) to compare the data 
distribution of key parameters between the interpolation and extrapo-
lation datasets. KDE is a non-parametric method that estimates the 
probability density function of a dataset by applying a kernel function to 
each data point and averaging these to estimate the overall distribution. 
In Fig. 6(a) and 6(b) shows that values of ΔTsub and Tsat, respectively, are 
more frequently distributed at higher temperatures in the extrapolation 
dataset. In addition, both the mean and variance are larger in the 
extrapolation than interpolation dataset. As observed in Fig. 6(c), the 
latent heat of vaporization (hfg) has a lower mean and higher variance in 
the extrapolation dataset than in the interpolation dataset. In Fig. 6(d), 
the NC mass fraction covers the same range from 0 to 1.0 in both 
datasets. However, the interpolation and extrapolation datasets 
respectively show higher density of values between 0.3 and 0.5 and 
between 0.15 and 0.25. These differences in data composition highlight 
the distinct conditions and geometries under which the datasets were 
collected. This variation underscores the importance of considering both 
interpolation and extrapolation datasets for robust model evaluation 
and indicates that overcoming the limitations of test data may be key to 
improving model generalization.

Fig. 7 compares the performance of each model on (a) the interpo-
lation and (b) the extrapolation dataset. On the interpolation dataset, 
the GPR model showed the best performance. However, when applied to 
the extrapolation dataset, it underestimated the values, resulting in a 
significant increase in MAPE from 4.96 % to 51.93 %. Similarly, the 
second-best-performing model on the interpolation dataset, SVR, over-
estimated the values on the extrapolation dataset, causing its MAPE to 
jump from 6.26 % to 656.62 %.

The GPR model, which relies on data distribution for predictions, 
tends to converge toward the mean of the data when faced with out-of- 
range values, as seen in Fig. 7. This results in predicted values lower than 
the actual ones. In contrast, the SVR model, which classifies data based 
on hyperplanes, tends to maintain the slope of the hyperplane outside 
the data range, leading to overestimation on the extrapolation dataset.

XGBoost, which performed poorly on the interpolation dataset (only 
better than ENR), showed the best performance among fully data-driven 
models on the extrapolation dataset. This improvement is attributed to 
XGBoost’s boosting algorithm, which iteratively corrects errors, and its 
parallel processing and pruning techniques that prevent overfitting.

The primary focus of this study, PC-XGBoost, exhibited moderate 
performance on the interpolation dataset. However, on the extrapola-
tion dataset, it uniquely showed only a minor increase in error, with Ta
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MAPE rising by just 1.2 % to 11.22 %. This indicates its strong ability to 
effectively predict beyond the data range. The degradation factor in the 
physics model, which incorporates mass fraction and film Reynolds 
number into the Nusselt model derived from energy and mass balance, 
likely provides the necessary physical correlations. For the extrapolation 
dataset, the physics model had a MAPE of 18.07 %, outperforming all 
data-driven ML models. This suggests that the physics model’s integra-
tion into PC-XGBoost significantly enhanced its prediction accuracy and 
reliability. This advantage is attributable to the physics-constrained 
framework of PC-XGBoost, which reduces dependence on training 
data alone and leverages physical principles to provide robust pre-
dictions, minimizing the overfitting commonly observed in fully data- 
driven models.

The performance of each model on the extrapolation dataset can be 
examined through various performance metrics in Fig. 8. Although the 
MAPE error, which provides an intuitive evaluation of model 

performance, decreased for all models on the extrapolation dataset 
compared with the interpolation dataset, the PC-XGBoost model showed 
only a 1.2 % increase, maintaining nearly the same performance. In 
particular, for the PC-XGBoost model, the RMSE significantly improved 
from 455.94 on the interpolation dataset to 190.05 on the extrapolation 
dataset. This improvement is likely attributable to the presence of 
outlier errors in the interpolation test dataset. In other words, the 
extrapolation dataset lacks extremely high or low HTC values. A similar 
trend is observed in XGBoost, where the RMSE improved from 646.67 to 
325.25, indicating better performance owing to the reduced impact of 
outliers in the extrapolation dataset.

In contrast, the R2 metric, which evaluates the suitability of the 
models, showed negative values for the DTR, GPR, and SVR models, 
indicating that these models are inadequate because they converge to 
the mean for out-of-range data owing to their tendency to maintain the 
learned decision boundaries. Models with positive R2 values showed 

Fig. 4. | Comparison of the predictive accuracy of the original and proposed degradation Nusselt models. The predicted HTC (hpred) versus the experimental HTC 
(hexp) is shown for (a) the original Nusselt model and (b) the degradation Nusselt model.

Fig. 5. | Interpolation dataset—Comparison of each ML model for different error metrics. (a) MAPE, (b) RMSE, (c) R2, and (d) P30.
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high MAPE values, confirming their appropriateness for predicting data 
beyond the training range.

In conclusion, across all performance metrics, including MAPE, 
RMSE, R2, and P30, the PC-XGBoost model exhibited the best perfor-
mance on the extrapolation dataset. Among the fully data-driven ML 
methods, XGBoost showed the best performance, highlighting its 
robustness in handling extrapolation tasks.

Fig. 9 examines the changes in HTC with respect to the Wnc mass 
fraction using part of the interpolation dataset from Kim et al. (2020) 

[27] and part of the extrapolation dataset from Kang et al. (2021). [30] 
On the interpolation dataset, the degradation Nusselt model generally 
underestimates the values for Kim et al.’s data; as a result, the 
PC-XGBoost model also underestimates owing to its reliance on this 
model. In addition, in the mass fraction range of 0.1–0.3, the predictions 
across different models show minimal differences. This is because other 
values from the same experimental set are included in the training and 
validation datasets, leading to similar predictions among the models.

In contrast, on the extrapolation dataset, the trends for the GPR, SVR, 

Fig. 6. | Kernel density estimation of the number of data points for the interpolation and extrapolation dataset. (a) ΔTsub, (b) Tsat, (c) hfg, and (d) Wnc.

Fig. 7. | The predicted HTC (hpred) according to the experimental HTC (hexp) for each ML model. (a) Interpolation and (b) extrapolation dataset.
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and DTR models significantly deviate in the 0.1–0.3 mass fraction range. 
This divergence can be attributed to the absence of similar subcooling 
and saturation temperature ranges in the interpolation dataset, causing 
these models to heavily rely on the temperature ranges present within 
the interpolation data to predict HTC. The degradation model, however, 
performs relatively well on the extrapolation dataset. Consequently, the 
PC-XGBoost model also operates effectively across various mass fraction 

ranges without biased errors in specific ranges, demonstrating robust 
performance regardless of the mass fraction range.

4. Conclusions

In this study, we developed a PC-XGBoost model combined with a 
newly proposed degradation Nusselt model for enhanced prediction of 

Fig. 8. | Extrapolation dataset–Comparison of each ML model for different error metrics. (a) MAPE, (b) RMSE, (c) R2, and (d) P30.

Fig. 9. | Variation of condensation HTC with NCG fraction. (a) Interpolation dataset and (b) extrapolation dataset.
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condensation HTC in steam–NCG mixtures. Our approach integrates 
physical constraints from the Nusselt model and incorporates key pa-
rameters such as mass fraction and film Reynolds number into the 
degradation factor. The main findings are as follows: 

1. A new degradation Nusselt model was developed, addressing the 
limitations of existing models that rely on empirical data and 
simplified assumptions. By incorporating mass fraction and film 
Reynolds number, the model better captures the physical phenom-
ena of condensation in the presence of NCGs.

2. Although fully data-driven models such as GPR and SVR performed 
well on interpolation datasets, their accuracy sharply declined in 
extrapolation scenarios, demonstrating their dependency on the 
training data range. In contrast, XGBoost, although weaker on the 
interpolation dataset, showed the best performance on the extrapo-
lation dataset owing to its error correction and overfitting prevention 
abilities.

3. The PC-XGBoost model, which integrates physical constraints, 
significantly improved HTC predictions in steam–NCG mixtures, 
particularly in extrapolation scenarios. Although its interpolation 
performance was moderate, PC-XGBoost maintained accuracy 
beyond the training range with only a minor increase in MAPE (from 
10 % to 11.22 %). This demonstrates the effectiveness of incorpo-
rating physical constraints into the ML framework to obtain a more 
reliable and accurate prediction model for HTC.

4. These results highlight the value of incorporating physical models 
into ML frameworks, particularly for resolving complex engineering 
problems with multiple interacting parameters. The PC-XGBoost 
model offers a reliable tool for addressing multiphase heat transfer 
challenges in energy applications, such as heat exchangers, by 
enhancing prediction accuracy and providing deeper insights into 
the underlying physical processes of the heat transfer.

5. Future work should expand the dataset to cover a broader range of 
experimental conditions, particularly in turbulent regimes with 
varying NCG mass fractions, to improve model generalization. In 
addition, the incorporation of uncertainty analysis using techniques 
such as Bayesian neural networks could enhance the model’s reli-
ability by providing confidence intervals alongside predictions.
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