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Association of overexpressed carboxyl-terminal amyloid precursor protein in
brains with altered glucose metabolism and liver toxicity
Sungguan Honga*, Seungwoo Hong a* and Sung Hoon Leeb

aDepartment of Chemistry, Chung-Ang University, Seoul, Republic of Korea; bCollege of Pharmacy, Chung-Ang University, Seoul, Republic of
Korea

ABSTRACT
Alzheimer’s disease (AD) is the most prevalent neurodegenerative disease. The deposition of
amyloid plaques mainly composed of amyloid beta (Aβ) is observed in brain regions in AD
patients. AD presents with similar pathophysiology to that of metabolic syndrome, including
glucose and insulin resistance. In addition, epidemiological studies indicate diabetes, impaired
glucose metabolism, and obesity increase the prevalence of AD. The liver is considered a key
organ in the reciprocal relationship between AD and metabolic syndrome and is the major
organ for the clearance of Aβ in the periphery. Furthermore, liver dysfunction aggravates Aβ-
induced pathophysiology. Aβ is produced in the brain and peripheral tissues and penetrates the
blood–brain barrier. However, in vivo evidence showing the effect of Aβ on the crosstalk
between the brain and liver has not been reported yet. In the present study, we investigated
the toxicity of brain-derived Aβ on glucose metabolism and the liver using transgenic mice
overexpressing the carboxyl-terminal of amyloid precursor protein in the brain. The transgenic
mice were overweight, which was associated with impaired glucose metabolism and insulin
resistance, but not due to increased food intake. In addition, transgenic mice had enlarged
livers and reduced gene expressions associated with glucose and lipid metabolism. Thus,
overexpressed amyloid precursor protein in the brain may promote being overweight and
glucose resistance, possibly through liver toxicity.
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1. Introduction

Alzheimer’s disease (AD) is a progressive neurodegen-
erative disorder leading to the loss of cognitive function.
The deposition of amyloid beta (Aβ), a 39–43 amino acid
long peptide derived from the cleavage of amyloid pre-
cursor protein (APP) (Vassar et al. 1999), is a hallmark of
AD. APP has a single transmembrane domain with a
large N-terminal extracellular domain and a short cyto-
plasmic domain. APP is cleaved by α-secretase to
release sAPPα, and further cleavage of membrane-
anchored C-terminal fragments (CTFs) by γ-secretase
generates a soluble N-terminal fragment and mem-
brane-bound C-terminal fragment (Tyan et al. 2012).
However, the cleavage of APP by β-secretase releases
sAPPβ and the further cleavage of CTFs by γ-secretase
produces Aβ42. The overproduction and abnormal
accumulation of Aβ as insoluble oligomers are relevant
to AD (Hardy and Selkoe 2002).

The carboxyl-terminal 105 amino acid fragment of
APP (APP-C100/C104), composed of an Aβ42 peptide
and 58–62 adjacent amino acids, seems to contribute
to the neuropathology of AD. The carboxyl-terminal
105 amino acid fragment of APP (C105) induces neuro-
toxicity in Xenopus, PC12 cells, and cortical neurons
(Fraser et al. 1996, Kim and Suh 1996) and changes glu-
tamatergic synaptic transmission in the cerebellar cortex
(Hartell and Suh 2000). Injection of recombinant C105
caused memory impairment in mice and decreased
ACh levels in the cortex and hippocampus (Choi et al.
2001). Furthermore, transgenic animals that overex-
pressed C105 in specifically in the brain by a neuron-
specific enolase promoter, exhibited memory impair-
ment and overexpression of Aβ42 in the brain (Lim
et al. 2005, Lim et al. 2013). These studies indicate
C105 may responsible for Aβ42-induced neurotoxicity
and memory impairment during AD development.
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Impaired glucose or lipid metabolism is a well-
known risk factor for AD (Leibson et al. 1997, Ott
et al. 1999). AD is referred to as type 3 diabetes (de
la Monte 2019), and epidemiological studies have
shown that diabetes patients exhibited lower cogni-
tive function and a 2-3-fold increased risk for AD
(Fontbonne et al. 2001, Biessels et al. 2006). 18F-deox-
yglucose positron emission tomography studies have
implicated the dysregulation of brain glucose uptake
is associated with AD pathology (Mosconi 2005, Hunt
et al. 2007), and impaired glucose metabolism and gly-
colytic flux in brains were also related to Aβ deposition
and severity of AD (An et al. 2018). In addition, the
abnormal dysregulation of brain glucose has been
suggested to be an early marker of AD (Reiman et al.
2004, Herholz 2010), and longitudinal fasting plasma
glucose was a primary observation of glucose dysregu-
lation before the onset of clinical symptoms (An et al.
2018). Given that abnormal plasma glucose concen-
trations are associated with higher brain glucose con-
centrations in AD, abnormal plasma glucose
concentrations may reflect the early stages of AD
pathogenesis.

Lipid metabolism is also linked to AD because APP
processing and Aβ production are involved in choles-
terol metabolism (Wahrle et al. 2002, Grziwa et al.
2003). Elevated cholesterol is associated with AD devel-
opment (Shepardson et al. 2011), and cholesterol levels
correlated with Aβ production and burden (Refolo et al.
2001, Shie et al. 2002). Furthermore, lipid metabolism
affected Aβ production and Aβ affected cholesterol
metabolism or membrane fluidity (Grimm et al. 2005,
Grimm et al. 2006).

It was suggested that high glucose or insulin resist-
ance promoted Aβ production (Ho et al. 2004, Nagai
et al. 2016), and that glucose facilitated the oligomeri-
zation of Aβ42 (Kedia et al. 2017). Aβ is known to
inhibit the insulin pathway by reducing insulin
binding and inducing insulin resistance by suppressing
insulin receptors (Xie et al. 2002). In addition, Aβ
impaired glucose uptake by the lipid peroxidation of
transport protein 3 (GLUT3) in hippocampal and cortical
neurons (Mark et al. 1997). These results indicate that
Aβ and glucose or lipid metabolism have a reciprocal
relationship. However, there is currently a lack of evi-
dence from in vivo studies to support the claim that
Aβ disrupts glucose or lipid metabolism. In the
present study, we investigated Aβ-induced metabolism
impairment using AD NSE/hAPP-C105 Tg mice, which
exhibit the AD phenotype, and the selective expression
of fragments of Aβ in brains to facilitate our under-
standing of the causal role of Aβ in abnormal glucose
and lipid metabolism.

2. Materials and methods

2.1. Animal care

The animal care and experiments were performed in
accordance with the guidelines issued by the Insti-
tutional Animal Care and Use Committee of Chung-
Ang University. C57BL/6-Tg (NSE-hAPP-C105)/Korl
(C105) mice were obtained from the National Institute
of Food and Drug Safety Evaluation (NIFDS, Cheongju,
Korea). The same number of mice were placed in one
cage (3-4 mice/cage) with free access to water and stan-
dard rodent chow (PMI Nutrition, St. Louis, US) under a
12 h light/dark cycle. The same number of male and
female mice was included per group for measuring
mouse weight, food consumption, and tissue analysis.

2.2. Weight and food intake measurement

Mouse weight was measured every week. To measure
food consumption, mice were individually housed in a
standard cage, fasted for 6 h, and then food (5 g of
chow) was supplied at 09:00 pm At 09:00 am, the
remaining food was measured, and food consumption
was calculated by subtracting the amount of remaining
food from 5 g.

2.3. Glucose and insulin tolerance tests

Glucose or insulin tolerance tests were performed in
accordance to a previous report with slight modification
(Park et al. 2022). All animals were blinded prior to the
glucose or insulin resistance tests. A glucose tolerance
test (GTT) and insulin tolerance test (ITT) were performed
after fasting for 12 h. Glucose was intraperitoneally (i.p.)
injected at 1.5 g/kg of body weight for GTT, and insulin
(Humulin R) was i.p. injected at 0.75 U/kg of body weight
for ITT. Blood samples were collected from the tail vein
at 0, 15, 30, 60, and 120 min after glucose or insulin injec-
tion, and blood glucose was determined by a gluc-
ometer (CareSens Pro, Seoul, Korea). Blood glucose
levels were plotted against time.

2.4. Tissue preparation and qPCR

Total RNA was extracted from the liver tissues using
TRIzol reagent. First-strand cDNA was synthesized by
MultiScribe reverse transcriptase using random
primers. Quantitative polymerase chain reaction (qPCR)
was performed using Power SYBR Green Master Mix.
Primer sequences used for the qPCR are listed in Sup-
plementary Table 1. Glyceraldehyde 3-phosphate dehy-
drogenase (GAPDH) was used as the internal control
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for normalization. The relative quantitation of mRNA was
determined based on the geometric mean of all the rela-
tive quantities of two internal control genes, with cycle
threshold (Ct) values obtained using the QuantStudio1
Real-Time PCR System (Thermo Fisher Scientific, MA,
USA).

2.5. Western blotting

Protein was extracted from liver tissue using RIPA buffer
(Biosesang, Kyunggido, Republic of Korea) with phospha-
tase inhibitor cocktail (Roche, Basel, Switzerland). Protein
concentrations were determined with bovine serum
albumin (BSA) method. A total 20–40 μg of denatured
protein was loaded and separated using 10% SDS-poly-
acrylamide gel electrophoresis. The proteins were trans-
ferred onto nitrocellulose membranes (GE Healthcare,
Little Chalfont, Buckinghamshire, UK). The membranes
were blocked by incubation of 5% skim milk in Tris-
buffered saline (TBS) buffer containing 1% Tween 20
(TBS-T) at 20–25°C for 1 hr and then incubated with
TBS-T containing primary antibody at 4°C overnight.
The membranes were washed three times with TBS-T
and incubated with secondary antibody at 20–25°C for
1 hr. The bands were developed with enhanced chemilu-
minescence (ECL) solution (WEST-ZOL Plus, iNtRON Bio-
technology, Gyeonggi-do, Korea), and the bands were
detected with a chemiluminescence system (Vilber,
Marne-la-Vallée, France). Primary antibodies against per-
oxisome proliferator-activated receptor delta (PPARδ,
1:10,000; cat. no. #74076; Cell Signaling Technologies,
Danvers, MA, USA), Akt (1:2,000; cat. no. #9272S; Cell Sig-
naling Technologies), and GAPDH (1:10,000; cat. no. sc-
25778, Santa Cruz Biotechnology, Dallas, TX, USA) were
obtained from the indicated sources.

2.6. Statistical analysis

Data are presented as the mean value ± standard error of
the mean (SEM). Statistical analyses were performed by
Student’s t-tests and blood glucose levels were analyzed
by one-way ANOVA followed by Tukey’s test. All analyses
were performed using GraphPad Prism 5.01 (GraphPad
software, La Jolla, CA, USA). p < 0.05 was considered stat-
istically significant.

3. Results

3.1. Increased weight of C105 mice

To investigate whether C105 mice had metabolic dys-
function, we measured their weight weekly to compare
body weight differences between the C105 and wild-

type (WT) mice. To account for the fact that male mice
typically have a higher weight than females, we include
an equal number of males and females in each group
when measuring animal weights. C105 mice exhibited a
significantly higher weight from 9 weeks (7w: 20.68 ±
1.36, 9w: 22.74 ± 0.87, 11w: 23.65 ± 0.65, 30w: 31.64 ±
1.07, 31w: 32.76 ± 1.02, 32w: 33.92 ± 1.03) compared to
the WT mice (7w: 17.81 ± 0.50, 9w: 18.50 ± 0.37, 11w:
20.16 ± 0.26, 30w: 28.21 ± 0.70, 31w: 29.48 ± 0.73, 32w:
30.00 ± 0.69) (Figure 1A). Next, we assessed whether
increased food consumption induced weight gain in
C105 mice. A significant difference in body weight was
observed between C105 and WT for a period of 9
weeks, whereas the food uptake per day was similar in
the WT (7w: 3.37 ± 0.19, 9w: 3.73 ± 0.29, 11w: 3.70 ±
0.27, 30w: 3.46 ± 0.10, 31w: 3.37 ± 0.07, 32w: 3.38 ± 0.10)
and C105 groups (7w: 2.80 ± 0.24, 9w: 3.38 ± 0.14, 11w:
3.33 ± 0.16, 30w: 3.75 ± 0.15, 31w: 3.73 ± 0.12; 32w: 3.79
± 0.16) (Figure 1B). These results suggest the increased
weight of C105 mice may be related to the dysregulation
of metabolism and not by food consumption.

3.2. Impaired glucose homeostasis in C105 mice

To investigate whether glucose metabolism was
impaired in C105 mice, an in vivo GTT was performed
by i.p. glucose injection after 12 h fasting. WT and
C105 mice (9 weeks) were injected with glucose and
plasma glucose concentrations were determined at
various times. Blood glucose concentrations of WT
were transiently increased by glucose injection, and sub-
sequently decreased to baseline at 2 h (0 min: 141.23 ±
7.19, 15 min: 278.71 ± 9.11, 30 min: 247.66 ± 48.33,
60 min: 189.28 ± 6.90, 90 min: 168.76 ± 6.66, 120 min:
153.19 ± 6.67). C105 mice showed significantly impaired
glucose tolerance (0 min: 118.87 ± 6.42, 15 min: 339.87
± 14.44, 30 min: 342.68 ± 14.18, 60 min: 244.43 ± 16.52,
90 min: 189.06 ± 10.96, 120 min: 157.68 ± 6.50) (Figure
2A). To further investigate the insulin response of C105
mice, the kinetics of blood glucose were measured by
glucose levels in insulin injected mice. C105 mice were
significantly insensitive to insulin (Figure 2B; WT 0 min:
95.00 ± 4.00, 15 min: 88.50 ± 5.50, 30 min: 78.00 ± 4.00,
60 min: 69.50 ± 6.50, 90 min: 72.00 ± 3.00, 120 min:
75.00 ± 0.01; C105 0 min: 107.00 ± 7.00, 15 min: 144.67
± 9.27, 30 min: 97.66 ± 1.76, 60 min: 87.67 ± 1.67,
90 min: 93.67 ± 3.92, 120 min: 122.67 ± 4.80) indicating
C105 mice exhibited impaired glucose metabolism.

3.3. Increased liver weight in C105 mice

Next, we investigated the weight of organs of WT and
C105 mice (9 weeks) involved in the regulation of
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glucose metabolism. Liver weight (WT: 4.34 ± 0.13; C105:
5.31 ± 0.08) and size were significantly increased in C105
mice (Figure 3), and the heart (WT: 0.53 ± 0.03; C105:
0.59 ± 0.06), gastrocnemius (WT: 0.51 ± 0.03; C105: 0.50
± 0.04), and soleus (WT: 0.03 ± 0.001; C105: 0.03 ±
0.0005) were similar in WT and C105 mice.

3.4. Reduced glucose and lipid metabolism-
related gene expressions in C105 mouse livers

Hepatic glucose metabolism is highly associated with
lipid metabolism (Jones 2016), and insulin signaling
plays a crucial role in the intimate relationship
between lipid and glucose metabolism (Bechmann
et al. 2012). In addition, the dysregulations of
glucose and lipid metabolism were observed in liver
diseases (Bechmann et al. 2012). Thus, we investigated
the expressions of genes related to lipid and insulin

metabolism in the liver. Lipoprotein lipase (LPL)
(C105: 0.48 ± 0.13), PPARδ (C105: 0.78 ± 0.05), hepato-
cyte nuclear factor-4 α (HNF4α) (C105: 0.72 ± 0.07),
and diacylglycerol acyltransferase 1 (DGAT1) (C105:
0.59 ± 0.08) gene expressions were reduced in C105
mouse livers (Figure 4A). We further investigated
gene expressions of Toll-like receptor 4 (TLR4), low
density lipoprotein receptor-related protein 1 (LRP-1),
Akt, and MAPK that are related to inflammatory cyto-
kine production or the clearance of Aβ (Sagare et al.
2012, Yang and Seki 2012, Wani et al. 2019, Gee
et al. 2020). These gene expressions were not signifi-
cantly different between C105 and WT mice (C105;
TLR4: 1.03 ± 0.02, LRP1: 0.97 ± 0.13, Akt: 0.98 ± 0.09,
MAPK: 1.14 ± 0.15). Furthermore, protein expression
of PPARδ was reduced in contrast to those of
Akt was marginally changed in C105 mouse livers
(Figure 4B).

Figure 1. Body weight and food consumption of C105 mice. (A) Body weight of WT (n = 6–8) and C105 (n = 6–12) mice. (B) Food
consumption per day of WT (n = 6–8) and C105 (n = 6–12) mice. Data shown are the mean ± SEM. *p < 0.05 and **p < 0.01 compared
with WT mice.

Figure 2. Glucose and insulin tolerance in C105 mice. (A) Glucose tolerance test in WT (n = 8) and C105 (n = 10) mice. Blood glucose
measurements after glucose injection in WT and C105 mice. (B) Blood glucose measurements after insulin injection in WT (n = 8) and
C105 (n = 10) mice. Data shown are the mean ± SEM. ***p < 0.001 compared with WT mice.
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4. Discussion

Numerous studies have suggested glucose metabolism
is associated with AD initiation or progression. In
addition, obesity and metabolic impairments, such as
glucose intolerance and insulin resistance, increase the
risk of AD (Whitaker et al. 1997, Lloyd et al. 2010, Calso-
laro and Edison 2016). Aβ burden is regionally associated
with a reduction in glucose metabolism in mild cognitive
impairment and early-onset AD patients (Carbonell et al.
2020). Aβ is known to induce toxicity in glucose, insulin,
and lipid metabolism. Aβ deposition is linked to a
reduction in glucose transporter type-1 (GLUT-1) levels
in AD mouse brains (Hooijmans et al. 2007) and Aβ
decreased glucose transport in cortical and hippocampal
neurons by the formation of 4-hydroxynonenal, a

product of lipid peroxidation (Mark et al. 1997). Aβ
also impaired insulin signaling by the degradation of
LRP-1, which influenced glucose metabolism and neur-
onal insulin signaling (Liu et al. 2015, Gali et al. 2019).
In addition, Aβ induced insulin resistance by activating
the JAK2/STAT3/SOCS-1 signaling pathway (Zhang
et al. 2013). Furthermore, Aβ decreased lipid synthesis
by reducing 3-hydroxy-3-methylglutaryl-coenzyme A
reductase, which is a key enzyme for cholesterol syn-
thesis (Grimm et al. 2007). In the present study, we
found that the overexpression of carboxyl-terminal
amino acid of APP in brains impaired glucose and
insulin metabolism and lipid metabolism-related gene
expressions. Considering food uptake was similar
between WT and C105 mice, the overweight of C105

Figure 3. Organ weight of C105 mice. Liver, heart, gastro, and soleus weight of WT (n = 9) and C105 (n = 5) mice. **p < 0.01 compared
with WT mice.

Figure 4. qPCR of genes and western blots of proteins. (A) Glucose and lipid regulating gene expressions were decreased in C105
mouse livers (n = 4–6 per group). *p < 0.05 compared with WT mice. (B) PPARδ and Akt protein expressions in mouse liver were ana-
lyzed with western blotting. GAPDH was used as a loading control.
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mice might be related to impaired glucose metabolism
and not a change in appetite. In a previous study,
C105 mice had memory impairment after 9 months
(Lim et al. 2005), although they exhibited abnormal
weight and glucose regulation from 9 weeks (Figure 1).
We speculate that the dysregulation of glucose metab-
olism or being overweight is primarily observed during
AD development.

Aβ penetrates the blood–brain barrier and the clear-
ance of Aβ in the periphery promotes efflux of Aβ
from the brain, thereby reducing Aβ in the brain
(Roberts et al. 2014). Therefore, promoting the clearance
of Aβ in peripheral tissues has been suggested to be a
potential therapeutic strategy for the treatment of AD
(Xiang et al. 2015). The liver is a crucial organ for redu-
cing brain Aβ by eliminating circulating peripheral Aβ
(Estrada et al. 2019). When Aβ is cleared from the
brain, it is incorporated into high-density lipoprotein,
transported to the liver (Sparks 2007), and then cleared
by LRP-1). Thus, hepatic functions are correlated to Aβ
levels, and liver cirrhosis patients with hepatitis B virus
exhibited higher plasma levels of Aβ (Wang et al. 2017).

In a recent study, AD was suggested to be a liver
disease of the brain (Bassendine et al. 2020), and
impaired functional liver enzymes and brain glucose
were suggested to be part of the AD diagnosis (Nho
et al. 2019). Aβ is known to induce hepatotoxicity. It
tends to accumulate in the vicinity of bile ducts and
exposure to Aβ can lead to abnormal morphological
and transcriptomic changes, such as biliary atresia, in
human liver organoids (Babu et al. 2020). In addition,
Aβ promoted the autophagy-lysosomal degradation of
LRP-1 (Gali et al. 2019). Therefore, Aβ-induced hepato-
toxicity may aggravate AD pathology by reducing Aβ
clearance. Promoting hepatic function may attenuate
AD progression or development by reducing the Aβ
burden.

LPL hydrolyzes triglyceride (TG) into fatty acid and
glycerol (Bechmann et al. 2012) and hepatic lipase
deficiency exhibited glucose intolerance and hepatic
steatosis (Andres-Blasco et al. 2015), whereas increasing
LPL rescued glucose and insulin tolerance in high fat
diet-induced obesity (Walton et al. 2015). PPARδ is
highly expressed in hepatocytes (Hoekstra et al. 2003)
and modulates glucose, fatty acid, and insulin metab-
olism, and insulin sensitivity (Lee et al. 2006, Cariello
et al. 2021, Jang et al. 2021). HNF4α is mainly expressed
in hepatocytes and plays a role in regulating glucose and
lipid homeostasis as well as activating the insulin promo-
ter (Hayhurst et al. 2001, Bartoov-Shifman et al. 2002).
DGAT1 synthesizes TG and mediates lipid droplet for-
mation (Nguyen et al. 2017, Chitraju et al. 2019), and
the overexpression of DGAT1 rescued insulin resistance

in diet-induced obesity (Koliwad et al. 2010). In the
present study, glucose, insulin, and lipid regulatory
genes were decreased in C105 mouse livers, indicating
Aβ may induce overweight by the impairment of
glucose and lipid metabolism in livers.

In the current study, we overexpressed a specific
sequence of Aβ in mouse brains and we presented in
vivo evidence that Aβ induced metabolic disorders and
liver damage with weight gain. It would be great of
interest to study the reciprocal relationship between
Aβ metabolism and metabolic disorders or hepatic dys-
function, and impaired glucose metabolism during AD
development in humans or AD animal models in
future studies.
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