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Auscultation is a method that involves listening to sounds from the patient’s body, mainly using a 
stethoscope, to diagnose diseases. The stethoscope allows for non-invasive, real-time diagnosis, 
and it is ideal for diagnosing respiratory diseases and first aid. However, accurate interpretation of 
respiratory sounds using a stethoscope is a subjective process that requires considerable expertise 
from clinicians. To overcome the shortcomings of existing stethoscopes, research is actively being 
conducted to develop an artificial intelligence deep learning model that can interpret breathing sounds 
recorded through electronic stethoscopes. Most recent studies in this area have focused on CNN-based 
respiratory sound classification models. However, such CNN models are limited in their ability to 
accurately interpret conditions that require longer overall length and more detailed context. Therefore, 
in the present work, we apply the Transformer model-based Audio Spectrogram Transformer (AST) 
model to our actual clinical practice data. This prospective study targeted children who visited the 
pediatric departments of two university hospitals in South Korea from 2019 to 2020. A pediatric 
pulmonologist recorded breath sounds, and a pediatric breath sound dataset was constructed through 
double-blind verification. We then developed a deep learning model that applied the pre-trained 
weights of the AST model to our data with a total of 194 wheezes and 531 other respiratory sounds. 
We compared the performance of the proposed model with that of a previously published CNN-based 
model and also conducted performance tests using previous datasets. To ensure the reliability of the 
proposed model, we visualized the classification process using Score-Class Activation Mapping (Score-
CAM). Our model had an accuracy of 91.1%, area under the curve (AUC) of 86.6%, precision of 88.2%, 
recall of 76.9%, and F1-score of 82.2%. Ultimately, the proposed transformer-based model showed 
high accuracy in wheezing detection, and the decision-making process of the model was also verified 
to be reliable. The artificial intelligence deep learning model we have developed and described in 
this study is expected to help accurately diagnose pediatric respiratory diseases in real-world clinical 
practice.
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ResNet	� residual network

Lung disease is an extremely common problem worldwide and the third-most-common cause of death. Physicians 
rely upon a variety of strategies to diagnose lung disease, including arterial blood gas analysis, spirometry, and 
radiologic imaging, but a stethoscope—as a simple, non-invasive method—remains the best tool for diagnosis. 
The stethoscope is also more economical and safer than any other method1,2. However, the stethoscope is not an 
objective test method, as it requires subjective interpretation by the clinician, and it therefore has a limitation in 
that the accuracy may vary considerably depending on the doctor’s experience and judgment. Doctors must be 
well trained to accurately distinguish the characteristics of respiratory sounds using a stethoscope3.

Moreover, traditional stethoscopes have additional limitations that complicate their use in modern medical 
practice4. Specifically, they cannot be utilized for remote treatments, because physicians must physically place 
the stethoscope on the patient’s body to perform auscultation. Recently, spurred by global health crises such as 
the COVID-19 pandemic and significant regional disparities in medical access, the demand for remote medical 
services has surged, highlighting the necessity of innovative auscultation techniques. Artificial intelligence-
enhanced stethoscopes offer the capabilities of real-time monitoring and can be integrated into wearable devices, 
allowing for the continuous monitoring of patients with chronic or critical conditions4. The development of 
high-performance AI stethoscopes is thus crucial for advancing modern medicine, as it would allow for more 
adaptable and accessible diagnostics in diverse medical environments.

Wheezes are high-pitched, continuous adventitious sounds caused by airflow limitation due to narrowed 
or obstructed airways5. They typically have a frequency range of 100 to 5000  Hz, last for at least 80 to 100 
milliseconds, and exhibit a sinusoidal pattern in sound analysis. In contrast, rhonchi, which are also continuous 
adventitious sounds, are low-pitched and are associated with the accumulation of mucus in larger airways, 
generally featuring a dominant frequency below 200 Hz6. From a machine learning perspective, analyzing these 
respiratory sounds involves two key aspects: developing predictive models using traditional machine learning 
methods (e.g., support vector machine (SVM), artificial neural network (ANN)) and advanced deep learning 
architectures (e.g., convolutional neural networks (CNN), residual networks (ResNet)), as well as extracting 
relevant features that describe sound characteristics (e.g., Mel-frequency cepstrum coefficient (MFCC), singular 
spectrum analysis (SSA)) from given data4.

Recent research has actively studied deep learning models that can classify normal and abnormal respiratory 
sounds with good performance4,5. However, many studies have used open databases, and there have not been 
many studies verifying the deep learning models that have been designed to classify respiratory sounds in actual 
clinical situations7,8. There have also been few studies examining pediatric patients, and the existing studies have 
either included too few subjects or too few specific types of abnormal respiratory sounds2,9. Moreover, most of 
the previous studies used Convolution Neural Network (CNN)-based models7–10. The CNN-based model adds 
a pooling layer after the convolution layer to increase computational efficiency. However, the pooling layer has 
the disadvantage of losing important information and not encoding the relative spatial relationship between 
feature maps.

A recent study proposed a new application of the Audio SpectrogramTransformer (AST) model to overcome 
these shortcomings and improve audio classification performance in breath sound classification11. In classifying 
crackle and wheezing using a publicly available adult breathing sound dataset, the proposed model outperformed 
the most recent CNN model12,13. The Transformer model converts all the input data to the same vector 
dimension regardless of its initial size, so there is no need to resize the input data even if it is large. Moreover, 
there is no problem with information loss because the dimension of the embedding vector is processed in the 
same dimension without the need for dimension reduction during the internal operation of the Transformer. We 
hypothesize that the longer the overall length and context required for accurate interpretation, the more suitable 
the Transformer model is for classifying respiratory sounds than the CNN model.

The purpose of the current study is to develop Transformer-based AI algorithms that can be applied to 
real-world clinical settings for the detection of wheezing and abnormal respiratory sounds in pediatric clinical 
practice. We also aim to compare the performance of these developed algorithms with the CNN model developed 
in the primary our study10. Finally, we intended to achieve optimal performance by applying the AST, which is 
the first convolution-free, purely attention-based model for audio classification11.

Methods
Study design and data collection
This prospective study included children who visited the Department of Pediatrics at two university hospitals in 
Korea from 2019 to 2020. We recorded respiratory sounds from the patients who provided voluntary consent for 
such sounds to be recorded. The recordings were taken in an outpatient clinic by a pediatric pulmonologist using 
an electronic stethoscope (Jabes, GSTechnology, Seoul, Korea). The recorded auscultation sounds were classified 
as wheezing and other respiratory sounds based on the diagnosis made by the specialist. Four respiratory sounds 
were obtained from each patient by recording the anterior and posterior regions of both lungs for two cycles 
each. To verify the classifications, blinded validation was performed by two pediatric pulmonologists, and if one 
or more classifications matched the existing classification, they were tagged and stored in the database.

Evaluation of AI algorithm
We constructed a binary classification model to determine whether the recorded respiratory sounds contained 
wheezing sounds. We used 80% of the database as training data and 20% as test data. The mel spectrograms 
extracted from the audio data during the pre-processing process were used as input data. Our deep learning 
model was a pre-trained AST model containing a total of over 1  million data ImageNetconsisting of 1,000 
classes11. We trained our data through this model and the multilayer perceptron (MLP) layer (Fig. 1). First, 
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we changed the audio input to 128-dimensional log mel filter bank (fbank), and the spectrogram was divided 
into 16 × 16 patches. Using a linear projection layer, each patch was flattened into a 1D vector with a size of 768. 
Positional embedding was then added. The outputs were (batch size × specified number of classes) and these 
were used to determine whether or not wheezing was present. Our experiments were conducted using Python 
version 3.6.5. We used the following AST Model structures to deal with the respiratory sounds in our applied 
model:

Audio Spectrogram Transformer
The AST model is a deep learning model that has a transformer structure through which it classifies audio. This 
model showed good performance on the task of classifying a dataset comprising 10-second audio clips into 527 
classes. This model divides the mel spectrogram into patches, uses a linear projection layer to flatten each patch, 
and adds positional encoding to provide patch location information in the spectrogram. In the Transformer 
encoder, a multi-head self-attention mechanism is applied, and there are various performance differences 
depending on the patch size, the use of positional embeddings, and the pre-training11. This model also has the 
advantage of easy transfer learning.

Transformer uses self-attention, in which the model generates attention values between words in a sentence. 
The attention value is calculated through the scaled dot-product attention layer. In order to analyze the 
relationship between patches, the input values are composed of query, key, and value. All keys and queries are 
dot-multiplied, and the weight is obtained by applying the softmax function to the result. The equation for the 
attention score is as follows:

	
softmax (X) = eX/

∑
N
n=1exn ,

	 Q, K, V = zUQ, zUK , zUV

	
Attention (Q, K, V ) = softmax

(
QKT

√
(dk)

)
V

Softmax is a function used for multi-class classification that ensures the sum of the predicted probabilities for 
each class equals 1 for the input value.

Where N is the number of patches, X is the input matrix, and xn is the n-th input value. Q, K, and V are 
matrices representing the query, key, and value, respectively. UQ, UK , UV are the weights of the hidden layers 
for the query, key, and value. dk is the dimensionality of query and key.

The encoder consists of 12 layers, each composed of multi-head attention, MLPs, and residual connections. 
Multi-head attention stacks several scaled dot-product attention layers and processes them in parallel. This 
enables analysis using various criteria through multiple heads simultaneously. The equation for passing through 
a multi-head attention composed of n attention layers is as follows:

Fig. 1.  Architecture of th*e AST model. After embedding the audio spectrogram into patches, we perform 
positional embedding to provide patch location information. It passes through a transformer encoder driven 
by a self-attention mechanism composed of a multi-head, and it calculates the final output through the MLP 
head.
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	 MultiHead (Q, K, V ) = Concat (head1, . . . , headn) W O,

	 where headi = Attention
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)
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QW Q
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i represent the weights of the hidden layers for the i-th head corresponding to the query, 

key, and value, respectively. W O  denotes the weight of the final hidden layer in the Multi-Head Attention 
module.

Pre-processing

	1)	� Data augmentation: We augmented the training data by applying the following six augmentation techniques: 
white noise addition, time shifting, stretching, reverse, minus, and fit transform (Supplement A). The librosa 
package was used to augment 580 pieces of training data into 4,060 pieces and then extract a mel spectro-
gram13.

	2)	� Feature Extraction: Mel spectrograms were extracted from the audio data of respiratory sounds. In this 
process, a 1024-point fast Fourier transform processor and a 64-bit mel filter bank were implemented. We 
converted all sound data to 44,100 Hz. Since 1-channel data and 2-channel data were mixed together, all 
data were 2-channelized to avoid data loss. We performed repeat padding for sound data of variable lengths. 
Shorter samples were repeated from batch to batch with the maximum sample size. The torchaudiopackage 
had been used in a previous work14. Moreover, time masking and frequency masking of SpecAugment were 
performed to avoid overfitting the train data to the model14.

Optimal construction and validation of AI model
We used the cross-entropy loss function and Adam optimizer for deep learning. To identify the optimal hyper-
parameters, we used five-fold cross-validation and the grid search method15 (Supplement B). The applied model 
was learned over 150 epochs, the batch size was 10, and the learning rate was 0.000005. Table 1presents the 
hyper-parameters of all the models, including those selected for comparison. We applied the stochastic weight 
average technique, which updates the weight’s average value every cycle to further boost the performance16. We 
evaluated the performance of the model using a test dataset; in this process, we obtained accuracy, precision, 
recall, F1-score, and area under the curve (AUC) values. We compared the performance of the proposed model 
with the following models: the model in the primary study10, the AST model using previous study data, and 
ResNet34 + CBAM of this study data. We used a PyTorch framework that is compatible with the torchaudio used 
in pre-processing to prepare the deep-learning process.

Validation of AI model using Score-CAM
Score-CAM17 is a tool to visualize how well a model makes image classification predictions, and it visualizes 
where in an image a model is particularly active. Since the proposed model conducts its analysis based on mel 
spectrogram images, we use Score-CAM to visualize the classification results and determine what noise affects 
the model and whether the model makes accurate predictions based on wheezing. The target layer is the first 
normalized layer from the last attention block.

Statistical analysis
To compare the characteristics of the recorded respiratory sounds, we used the Mann–Whitney U test. We also 
used box plots, histograms, and quartiles to compare the lengths of breathing sounds. Our metrics include 
accuracy, precision, recall, F1-score, and the area under the curve (AUC). Accuracy, precision, recall, and F1-
score are calculated as follows:

Accuracy = T P +T N
N

Recall = T P
T P +F N

Precision = T P
T P +F P

F1 = 2 × recall× precision
recall+precision

N is number of sample, TP is number of true positive, TN is number of true negative, FN is number of 
false negative, FP is number of false positive predicted by the model. The AUC is a widely used metric for 
evaluating the performance of binary classification models. It measures the area under the Receiver Operating 
Characteristic (ROC) curve, providing a single scalar value that represents the model’s ability to distinguish 
between positive and negative classes.

Models Selected hyper-parameters with grid search Accuracy AUC Precision Recall F1-score

Primary study results(ResNet34 + CBAM) Epoch: 120 / Batch Size: 32 / Learning Rate: 1e-3 0.912 0.891 0.944 0.810 0.872

AST model using primary study data Epoch: 100 / Batch Size: 16 / Learning Rate: 1e-4 0.930 0.944 0.840 1.000 0.913

ResNet34 + CBAM of follow-up study data Epoch: 120 / Batch Size: 32 / Learning Rate: 1e-3 0.836 0.758 0.742 0.590 0.657

AST model using follow-up study data Epoch: 150 / Batch Size: 10 / Learning Rate: 5e-6 0.911 0.866 0.882 0.769 0.822

Table 1.  Performance for discriminating other respiratory sounds from wheezing. Abbreviations: AUC, 
area under the curve; CBAM, convolutional block attention module; ResNet, residual network; AST, audio 
spectrogram transformer.
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ROC curve illustrates the trade-off between the true positive rate and the false positive rate at various 
classification thresholds. This provides a comprehensive view of the model’s performance across all possible 
thresholds. And AUC is Area Under the ROC curve and is unbiased toward models that perform well on the 
minority class at the expense of the majority class—a property that is particularly beneficial when dealing with 
imbalanced data18.

Ethics statement
This study was approved by the Institutional Review Boards (IRBs) of the Catholic University of Korea (IRB 
approval no. PC19OESI0045) and Seoul National University of Korea (IRB approval no. H-1907-050-1047). 
Written informed consent was obtained from at least one legal guardian for all participants. For children 7 years 
of age and older, the assent of the child was also obtained. All methods were performed while following the 
relevant guidelines and regulations.

Results
Characteristics of the respiratory sound database
In total, 194 wheeze sounds (11.85 ± 5.33 s) and 531 other respiratory sounds (11.64 ± 5.71 s) were collected. 
There were two sampling rates for the recorded files: 48,000 Hz and 44,100 Hz. To integrate these sampling rates, 
we down-sampled all the recorded files at 44,100 Hz. There were also two types of channels among the recorded 
files: Mono and Stereo. We converted all the sound data into 2-channels. The respiratory sounds had different 
lengths and were set equally to 21.72 s through repeat padding.

Performance of proposed model and comparison with other experiment models
Table 1. presents the performance comparison between the proposed model and other experimental models 
such as the model in the primary study, the AST model using the primary study data, and ResNet34 + CBAM of 
the follow-up study data model. The model in the primary study showed an accuracy of 91.2%, AUC of 89.1%, 
precision of 94.4%, recall of 81%, and F1-score of 87.2%. The AST model using primary study data showed an 
accuracy of 93%, AUC of 94.4%, precision of 84%, recall of 100%, and F1-score of 91.3%. The ResNet34 + CBAM 
of the follow-up study data model showed an accuracy of 83.6%, AUC of 75.8%, precision of 74.2%, recall of 
59%, and F1-score of 65.7%.

The applied ImageNet pre-trained AST model outperformed the primary study model. The model had an 
accuracy of 91.1%, AUC of 86.6%, precision of 88.2%, recall of 76.9% and F1-score of 82.2%.

Validation results of proposed model using Score-CAM
Figure 2 presents a Score-CAM result showing a good example of a correct classification, while Fig. 3 shows a 
result of an incorrect classification.

Discussion
We constructed an AI model using the ImageNet pre-trained AST model to classify wheezes from recorded 
pediatric breath sounds. This model exhibited a high accuracy of 91.1% and an F1 score of 82.2%. It therefore 
outperformed both our previous ResNet-based model and prior models based on CNNs10. Another strength of 
our study is that it used breath sound data collected from pediatric patients in an actual clinical environment.

The advent of digital stethoscopes has facilitated the development of various machine learning methods that 
can overcome the limitations of traditional stethoscopes by presenting objective and quantitative results19–21. 
Shallow machine learning-based methods for lung sound classifications, such as SVM, KNN, and ANN, have 
only achieved around 80% accuracy22. However, studies involving pediatric patients have been fewer and 
have shown lower performance compared to those involving adults. Zhang et al.‘s SVM-based model showed 
superior accuracy in detecting abnormal lung sounds compared to pediatricians2. However, its accuracy in 
wheeze classification was only 59.9%. Deep learning-based methods learn without manual feature extraction 
in an end-to-end learning method, and a reduced amount of data is required for pre-training through transfer 
learning22,23. A customized deep learning model can be constructed according to the specific input structure22. 
To date, various artificial intelligence breathing sound classification deep learning models have been developed, 
such as CNN, RNN, and FNN5,24,25. Among these, a model based on CNN, which extracts and analyzes features 
from the Mel spectrogram, was presented as the most basic and suitable model for classifying abnormal 
breathing sounds26.Various CNN-attention hybrid models have recently been proposed, and these have shown 
advanced performance27,28. Deep learning applications in studies involving pediatric patients have also been 
fewer compared to those focused on adults, often facing limitations such as smaller sample sizes. Our previous 
research also developed a deep learning AI model for classifying wheezing in children using a convolutional block 
attention module in a CNN-based residual network structure, and this model showed an accuracy of 91.2%10. 
However, previous models tend to easily overfit and also require large amounts of training data14. Because CNN 
has the limitation of having to extract features close to the pixel reference through a filter of a certain size, it is 
necessary to use a deeper network or a larger convolution kernel to learn long-length information12,29. Recurrent 
Neural Networks (RNNs) are vulnerable to gradient vanishing and gradient explosion during training, making 
it difficult to efficiently update weights in RNNsusing training data12,30.

Recently, the AST model has been proposed to overcome the limitations of existing lung sound classification 
models and ultimately improve audio classification performance12. AST is a pure attention-based audio 
classification model without convolution that can be directly applied to audio spectrogramsand capture long-
range global context even in the lowest layers11. One drawback of a Transformer compared to CNN is that it 
requires more data for training, but as a pre-trained model was proposed on ImageNet, this drawback was 
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compensated for, and it was confirmed to have higher performance than existing state-of-the-art models11,31. 
Moreover, because AST compresses all the information through self-attention, it can capture the global 
characteristics of the data well12,31. Therefore, it naturally supports variable-length input and can be applied to 
a variety of tasks without having to change the architecture32. This gives the model the advantage of classifying 
breath sounds of various lengths, making it highly useful in actual clinical practice. Although AST is the model 
that was most recently proposed in the field of audio classification, there has yet to be substantial research 
applying it to lung sound classification specifically. We applied the AST model pre-trained on ImageNet to 
classify pediatric wheezes. Our proposed model showed a high accuracy of 91.1% and an F1 score of 82.2% 
on our pediatric breath sounds dataset. This showed improvements of 7.5% in accuracy and 16.5% in F1 score 
compared to the classification of the same data with the ResNet34-based model from the previous study. Even 
when evaluated on our previous research dataset, the AST model showed performance improvements of 1.8% 
in accuracy and 4.1% in F1 score.

Children’s breath sounds have different characteristics than those of adults. For example, children’s 
respiratory cycles are significantly faster than those of adults, and there are various deviations from the normal 
range depending on age21. Moreover, children have small rib cages and relatively large hearts, so there is notable 
interference with heart sounds21,33. Crying or other noises may also be auscultated. Auscultation is considered 
to have more clinical importance in children than it can in adults2,9. In general, respiratory diseases are more 
common in children, and rapid assessments of severity are essential, and it is also crucial to minimize radiation 
exposure or invasive tests2. However, because it may be difficult to have children cooperate with assessments, 
it may be difficult to obtain good quality breath sound samples21. Therefore, open databases often contain 
few or no pediatric breath sounds26,34. Further, there have been very few pediatric breath sound classification 
models using artificial intelligence compared to the importance of this task9,35. The Convolutional Recurrent 
Neural Network (CRNN) model, which combines CNN and RNN, showed higher accuracy than doctors in 
wheezing classification with an F1 score of 66.4%, but the performance was not overwhelmingly high35. Other 
researchers have confirmed a positive percent agreement of 0.90 for wheezing detection using the same model9. 
However, the dataset used to construct that model only included 40 wheezes. A recent study showed that an 
SVM-based model achieved higher accuracy than general pediatricians, with wheeze classification accuracy of 

Fig. 2.  Examples of well-classified samples with Score-CAM. Notations: B - Normal Breath, W - Wheezing, 
N - Noise.
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90.42%21. However, more recent studies in children collected fewer wheezes than our study and showed poorer 
performance.

We applied the Score-Class Activation Map (CAM) to interpret the mechanism by which our model 
classifies wheezing17. Score-CAM is a tool that can interpret the model’s decision-making process by visualizing 
the location where the model is activated in the image as well as evaluate whether it is influenced by external 
factors such as noise17. In cases where our model incorrectly predicted that there was no wheezing, there was 
too much noise in the audio file, and the wheezing was quiet compared to other sounds. The sample classified as 
wheezing included beeps from hospital medical equipment along with recordings of various unknown sounds 
that sounded like wheezing. However, the model did not activate to the medical device’s notification sound, but it 
only weakly activated to sounds such as unknown sounds that sounded like wheezing. In the correctly classified 
case shown in Fig. 2, our model was strongly activated when wheezing was heard, and it was weakly activated 
by noise and normal breathing sounds. Even in the absence of wheezing, the model responded to noise and 
breathing, although with significantly less activation. Visualization using Score-CAM allowed us to confirm that 
our model was less responsive to noise and captured wheezing well.

The emergence of open databases of respiratory sounds has motivated the performance of various 
respiratory sound classification studies22,26,36. The performance score using this data also serves as a comparison 
standard for breath sound classification models22,36.However, these open databases feature a very large class 
imbalance20,26. Moreover, the length of the sample, the sampling rate of the recording, and the sound quality vary 
substantially21,26. Under these conditions, it is easy for overfitting to occur. Further, the non-strict labeling of 
samples may have negatively impacted the accuracy of learning26,34. The normal sound samples in the ICBHI data 
set al.so contain some mixtures of wheeze and rale36. Because our study was recorded in a double-blind manner 
by two experienced pediatric respiratory doctors following a specific protocol in an actual clinical setting, it is 
a dataset that is more effective for learning deep learning models and more useful for clinical application than 
open data. Furthermore, we collected breath sounds from real clinical patients while minimizing external noise, 
ensuring data quality. This makes our dataset more effective for training deep learning models and more suitable 
for clinical applications than open datasets. Previous models not only faced performance limitations but also 

Fig. 3.  Examples of misclassified samples with Score-CAM. B: Normal Breath, W: Wheezing, N: Noise, S: 
Strange sound like Wheezing.
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failed to adequately reflect real clinical environments. Our study has the advantage of collecting breath sounds 
from actual patients across two medical institutions, gathering a larger number of cases than previous studies, 
and presenting a high-performance AI classification model.

This study has several limitations. First, despite the addition of more data than previous studies, the absolute 
sample size is still small10. Transformer models require more data for training than CNN models. We overcame 
the problem of insufficient data volume by using a pre-trained model. We also split the data by using 80% for 
training and 20% for validation. We used Audio Data Augmentation and SpecAugment as well. Second, there is 
an imbalance problem in the training dataset. In response to this, we used F1 score as the measurement standard, 
instead of accuracy. Later studies should use various techniques to solve data imbalance problems, such as the 
smote technique. Third, our model is a binary classification model that distinguishes wheezing sounds. The 
binary classification of wheezing is known to be the least difficult21. For better clinical utility, it is necessary to 
propose a model that shows high performance while simultaneously classifying not only wheeze but also rale 
and stridor. To address these limitations in future research, we will focus on building a more robust pediatric 
breath sound dataset by ensuring more accurate labeling and increasing the sample size. Additionally, we will 
explore various Transformer-based model combinations to maximize performance, portability, and usability, 
aiming to achieve optimal outcomes in clinical applications.

Conclusion
In this study, we confirmed that our AI model—which is designed based on AST, a simple and lightweight 
architecture—shows higher accuracy in wheezing classification than the CNN-based AI model that has been 
widely used in previous studies. We also confirmed that this model can be applied to children. AST is also 
advantageous for development on mobile devices because it stores all the weights of the model in the database. 
This development of our model is expected to be a particularly useful tool in decisions regarding the diagnosis 
and treatment of pediatric respiratory diseases.

Data availability
The datasets generated and/or analyzed during the current study are available from the corresponding author 
upon reasonable request.
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