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Non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH) are recognized 
risk factors for dyslipidemia. Current prediction models that rely solely on dyslipidemia polygenic risk 
score (PRS) have certain limitations. We aimed to validate simple indexes for NAFLD and NASH as 
predictors of dyslipidemia using the PRS. This study utilized cohort data from an urban population-
based dataset comprising 48,263 South Koreans. The incidence of dyslipidemia was higher in men 
than in women (32.4% and 27.8%; p < 0.001). The PRS model predicted dyslipidemia more accurately 
in men (AUROC [95% confidence intervals]: 0.645 [0.636–0.754]). Notably, integrating the fatty liver 
index (FLI) and fibrotic NASH index (FNI) with the PRS model resulted in the highest accuracy in 
diagnosing dyslipidemia, particularly in men (AUROC [95% confidence intervals]: 0.704 [0.698–0.711]). 
In conclusion, a predictive model combining the PRS with FLI and FNI was validated. This model offers 
more accurate predictive value for diagnosing dyslipidemia, particularly in East Asian men. Thus, 
our study has the clinical potential for identifying high-risk individuals and determining preventive 
measures for dyslipidemia in a sex-specific manner.
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Dyslipidemia is characterized by elevated blood concentrations of total cholesterol (TC), low-density lipoprotein 
cholesterol (LDL-C), and triglycerides (TG), along with decreased high-density lipoprotein cholesterol (HDL-C) 
levels1. Dyslipidemia gradually develops over several years, resulting in coronary artery disease (CAD), which 
contributes to a substantial proportion of global mortality2. In the Asia-Pacific region, CAD and dyslipidemia 
have emerged as major health concerns with increasing incidence rates over the past few decades3. Dyslipidemia 
differs distinctly according to the sex of the patient, with previous studies from East Asia having indicated sex-
based disparities in the age of onset, prevalence, and mortality of CAD4,5. In the last decade, the polygenic risk 
score (PRS) has been used to assess an individual’s lifelong susceptibility to complex diseases, such as dyslipidemia 
and CAD, to support diagnosis and decision-making regarding treatments6. Additionally, the examination of sex 
differences in the context of CAD and its implications is currently the central focus of PRS research7.

Non-alcoholic fatty liver disease (NAFLD) is the abnormal hepatic condition with excessive fat accumulation 
without excessive alcohol consumption and non-alcoholic steatohepatitis (NASH) is the inflamed liver or 
ballooning hepatocytes in addition to fat droplets. NAFLD is a recognized risk factor for dyslipidemia, similar 
to NASH, which can exacerbate the risk of dyslipidemia8,9. The fatty liver index (FLI) serves as a simple and 
highly predictive tool for NAFLD diagnosis, whereas the fibrotic NASH index (FNI) is an accurate, cost-
effective, and non-invasive score for NASH prediction based on simple laboratory test results10,11. Because PRS 
implementation in clinical practice has limitations, a study on PRSs for CAD reported a significant improvement 
in classification when combined with conventional risk factors12. To the best of our knowledge, no study has 
evaluated the effectiveness of the PRS in combination with an index for these risk factors. Thus, the effect of the 
PRS on dyslipidemia beyond the FLI or FNI remains unknown and may be sex-specific, highlighting the need 
for further investigation.
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Although predictive models have shown a certain degree of accuracy, most have been designed based on 
European populations, thereby raising concerns about their applicability to non-European populations, including 
Asian populations13. Hence, this study aimed to evaluate the performance of a PRS model derived from an Asian 
population in predicting dyslipidemia independently, in conjunction with other indexes in distinct male and 
female cohorts. We hypothesized that the development of a predictive PRS model incorporating the FLI and 
FNI would enhance the ability to predict dyslipidemia. Additionally, we expected that the outcomes would reveal 
sex-based disparities, indicating varying model effectiveness between men and women.

Results
Study population
A total of 48,263 individuals, comprising 17,064 men and 31,199 women, met all inclusion criteria and were 
included in the analysis (Supplementary Fig. S1). Supplementary Table S1 summarizes the characteristics of each 
group. Interestingly, both the FLI and FNI, along with systolic but not diastolic blood pressure, were significantly 
higher in men than in women (p < 0.001, p < 0.001, p < 0.001, and p = 0.937, respectively). Fasting glucose, TC, 
LDL-C, and TG levels showed sex-based differences among the metabolic profiles, whereas the liver function 
test results showed sex-based differences in alanine transaminase (ALT), aspartate transaminase (AST), alkaline 
phosphatase (ALP), gamma-glutamyl transferase (GGT), and platelet values (Supplementary Table S1).

PRS and dyslipidemia risk prediction
The prevalence of dyslipidemia was significantly higher in men than in women (p < 0.001). However, the PRS 
related to dyslipidemia showed no sex differences (p = 0.952) (Supplementary Table S1). In both male and female 
cohorts, the distribution of PRS among cases of dyslipidemia showed a rightward shift, indicating higher PRS 
than those of controls (both p < 0.001) (Supplementary Fig. S2). Supplementary Figure S3 shows the distribution 
of cases and controls according to PRS quartiles in the male and female cohorts (both p < 0.001). Regarding the 
risk of dyslipidemia based on PRS, the high PRS group had a higher odds ratio (OR) (up to 2.456) than that of 
the moderate PRS group in the male cohort only. In the female cohort, the top 1% PRS group showed a risk OR 
of 1.538 compared with the moderate PRS group (Table 1).

Correlation of PRS and risk factors
Supplementary Figure S4 shows how closely FLI and FNI variations in the male and female cohorts correlated 
with the PRS for dyslipidemia. For both men and women, the FLI and FNI showed a significant moderate 
correlation (r = 0.425, p < 0.001; r = 0.44, p < 0.001, respectively). In contrast, the FLI and PRS showed a very weak 
correlation in both male and female groups (r = 0.089, p < 0.001; r = 0.084, p < 0.001, respectively), as did the FNI 
and PRS (r = 0.055, p < 0.001; r = 0.055, p < 0.001, respectively). Glycated hemoglobin (HbA1c) levels and platelet 
counts were significantly correlated in both cohorts (r = 0.997, p < 0.001 and r = 0.999, p < 0.001, respectively) 
(Supplementary Tables S2 and S3).

Dyslipidemia incidence risk based on the FLI or FNI subgroup
As shown in Table 2, the participants were classified into three subgroups according to rule-out standard scores 
and diagnostic favorability in accordance with previous studies10,11. Individuals with lower FLI or FNI scores in 
rule-out zones were used as the reference group. The groups with higher FLI and FNI scores had a significantly 
higher risk of dyslipidemia than that of their respective reference groups in both male and female cohorts. A 
higher FLI indicated a higher OR of dyslipidemia incidence than a higher FNI in both men and women in each 
subgroup (Table 2).

High PRS group Reference group

Model 1 Model 2

OR 95% CI OR 95% CI

Men

99–100%

45–55%

2.343 1.7063–3.2165 2.456 1.7802–3.3890

98–100% 2.315 1.8294–2.9308 2.401 1.8881–3.0523

95–100% 1.974 1.6667–2.3385 2.069 1.7409–2.4599

90–100% 1.670 1.4508–1.9223 1.758 1.5222–2.0304

80–100% 1.498 1.3241–1.6956 1.573 1.3862–1.7856

55–100% 1.373 1.2269–1.5373 1.419 1.2646–1.5921

Women

99–100%

45–55%

1.566 1.2291–1.9952 1.538 1.2033–1.9669

98–100% 1.362 1.1345–1.6357 1.351 1.1223–1.6266

95–100% 1.409 1.2372–1.6054 1.391 1.2192–1.5871

90–100% 1.417 1.2729–1.5781 1.412 1.2665–1.5741

80–100% 1.304 1.1865–1.4332 1.296 1.1778–1.4259

55–100% 1.190 1.0919–1.2972 1.180 1.0814–1.2872

Table 1.  Stratification of risk using the PRS for dyslipidemia. Model 1 is unadjusted, and Model 2 is adjusted 
for age and BMI. OR, odds ratio; CI, confidence interval; BMI, body mass index.
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Performance of the PRS with the FLI and FNI
Using blood lipid concentrations as a reference, the PRS model demonstrated predictive performance for 
diagnosing dyslipidemia in both men and women, with an area under the receiver operating characteristic 
(AUROC) curve of 0.645 and 0.605 (95% confidence intervals [CIs], 0.636–0.654 and 0.598–0.612), respectively. 
The receiver operating characteristic (ROC) curves of the PRS model in men and women had sensitivities of 
67.7% and 61.4%, specificities of 53.3% and 54.4%, and correct classification accuracies of 58.0% and 54.4%, 
respectively. The PRS model showed a significantly better performance in men than in women (p < 0.001). The 
combination of the FLI with the PRS model showed a significant increase in the AUROC, indicating better 
performance in both men and women (both p < 0.001). The PRS model beyond the FNI showed a significant 
improvement in the AUROC in both men and women (both p < 0.001). The highest AUROC value was observed 
when combining the FLI and FNI with the PRS model in both men and women within the same cohort (AUROC: 
0.774 and 0.704, respectively) (Fig. 1 and Supplementary Table S4).

Fig. 1.  Receiver Operating Characteristic Curve of the Prediction Model Based on the PRS.
PRS, polygenic risk score; FLI, fatty liver index; FNI, fibrotic NASH index; BMI, body mass index.

 

Index
Case/Control
No. (%) OR 95% CI p-value

Men

FLI

< 30 1,336/7,020
(16.0/84.0) 1 Reference

30–60 2,274/3,487
(39.5/60.5) 4.541 4.143–4.978 < 0.001

≥ 60 1,915/1,032
(65.0/35.0) 16.079 14.127–18.301 < 0.001

FNI

≤ 0.10 1,617/6,535
(19.8/80.2) 1 Reference

0.10–0.30 2,849/4,168
(40.6/59.4) 2.633 2.444–2.837 < 0.001

≥ 0.30 1,059/836
(55.9/44.1) 4.622 4.143–5.157 < 0.001

Women

FLI

< 30 5,359/19,096
(21.9/78.1) 1 Reference

30–60 2,478/2,886
(46.2/53.8) 3.646 3.381–3.932 < 0.001

≥ 60 829/551
(60.1/39.9) 7.665 6.678–8.799 < 0.001

FNI

≤ 0.10 4,673/16,591
(22.0/78.0) 1 Reference

0.10–0.30 3,187/5,022
(38.8/61.2) 2.070 1.965–2.192 < 0.001

≥ 0.30 806/920
(46.7/53.3) 2.632 2.374–2.917 < 0.001

Table 2.  Associations of clinical scores with incident dyslipidemia. OR, odds ratio; CI, confidence interval; 
BMI, body mass index; FLI, fatty liver index; FNI, fibrotic NASH index.
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Discussion
This study examined the incidence of dyslipidemia by analyzing blood lipid concentrations and individuals’ 
genetic susceptibility, while also considering comprehensive liver-related indexes. The PRS for dyslipidemia 
separately correlated with the FLI and FNI in middle-aged men and women. Our final model, which comprised 
a combination of the PRS, FLI, and FNI, was significantly effective in predicting dyslipidemia risk in East Asian 
male and female cohorts.

We found a substantial proportion of dyslipidemia cases in men, but not in women, similar to a meta-analysis 
that included the other ethnic populations14. However, genetic susceptibility to dyslipidemia risk based on the 
PRS showed no sex-based differences. Interestingly, the risk of dyslipidemia was significantly higher in the high 
PRS group than in the intermediate PRS group, especially in men. Furthermore, the predictive model based 
on the PRS showed better performance in men than in women. Similarly, Huang et al. showed that the risk of 
developing CAD based on genomic susceptibility is greater in men than in women15. This can be attributed to 
variations in genetic heritability between sexes and the impact of these variations on the association between 
PRS and the incidence of specific diseases such as cardiovascular diseases16. A previous meta-analysis identified 
only 12 lipid-related single-nucleotide polymorphisms (SNPs) with heterogeneous sex effects among more than 
10,000 individuals, implying that genetic architecture differs greatly based on the individual’s sex17. Moreover, 
lipid metabolism exhibits sexual dimorphism, which is likely influenced by hormonal and lipid metabolic 
differences that extend beyond genetic differences18.

Our PRS, derived from a European population-based genome-wide association study, showed moderate 
predictive power in an East Asian population, although the effect sizes of SNPs, allele frequency, and linkage 
disequilibrium related to lipid profiles varied across races19. For Type 2 diabetes mellitus, the cross-racial PRS 
shows a good predictive value for risk classification20. Additionally, our PRS, based on the binominal incidence 
of dyslipidemia, has more predictive power than the PRS based on a single lipid index, such as TG or LDL-C 
levels, as previously reported21. However, Aulchenko et al. reported conflicting findings, showing that a PRS 
derived from TC levels alone has lower performance in males than in our male cohort22. Consequently, our PRS 
will primarily stratify individuals into risk groups for dyslipidemia, independent of single lipid concentrations.

The concurrent prevalence of dyslipidemia with NAFLD and NASH is 69% and 72%, respectively, as reported 
in a global cohort of > 8  million people23. Incorporating the combined PRS into a risk model consisting of 
conventional clinical features improves its discriminative ability24. Herein, we found that each fatty liver-related 
index, FLI and FNI, contributed to a noteworthy modest improvement in the predictive performance of the PRS 
beyond the contribution of traditional risk factors, such as age and body mass index (BMI). Abnormal levels of 
TG, LDL-C, TC, and HDL-C are significantly correlated with GGT, a component of the FLI25. The FLI improved 
predictive performance more than the FNI using the PRS model, which may be explained by the fact that severe 
steatohepatitis is not associated with worse dyslipidemia in patients with NAFLD26. In the present study, the 
integration of both indexes with the PRS risk model provided the best dyslipidemia prediction ability.

Our PRS model combined with the FLI and FNI showed better dyslipidemia predictive performance in the 
male cohort than in the female cohort. NAFLD is more prevalent in women only after menopause, indicating 
sex differences among the major risk factors, with estrogen playing a protective role27. The genetic variants 
of patatin-like phospholipase domain-containing 3 (PNPLA3) are known to interact with estrogen receptor-α 
agonists, which contributes to progressive fatty liver diseases risk in menopausal women28. Additionally, NASH 
is an age- and sex-dimorphic disease, with both its prevalence and severity caused by obesity and an individual’s 
lifestyle29. Once NAFLD is established, the risk of NASH progression is comparable between men and women30. 
Multiple pathogenic factors, including inflammation, fibrosis, the gut–liver axis, and insulin sensitivity, affect 
sex differences in NAFLD and NASH31. In addition, the livers of men and women have distinct metabolic 
characteristics that are modulated by sex-specific regulators27. FLI-defined NAFLD has a stronger association 
with dysmetabolic state in women than in men32. A recent study found that the ideal threshold values for 
visceral fat area in NAFLD were higher in lean and overweight/obese men than in women33. The hazard ratios 
clearly differed between male and female participants, indicating that a high FLI predicts the development of 
hypertension34. Moreover, a sex-specific NASH index might enhance the predictive ability tailoring predictions 
to the distinct metabolic profiles of men and women with regards to hepatic metabolism, bile acid synthesis, 
and cytochrome P-450 enzymes35. Future studies should consider premenopausal and postmenopausal women 
separately.

This study has several noteworthy findings. First, the discovery of the value of the FLI and FNI in predicting 
lipid disorders lies in their ability to be integrated with the PRS, beyond conventional risk factors. Second, it 
offers robust validity by encompassing a large sample derived from an East Asian population. Moreover, our 
approach used a sex-specific PRS to evaluate performance, thereby capturing the likelihood of differential genetic 
influences between men and women. However, this study has some limitations that require consideration. 
First, the use of case-control design limits the ability to determine causality between NAFLD and dyslipidemia, 
highlighting the necessity of a longitudinal study to improve our understanding of these relationships. Second, 
we did not consider sex chromosomes in the genetic information of the individuals. Third, although FLI and FNI 
are validated and non-invasive surrogate markers, they are not equivalent to imaging-based diagnostics, which 
offer higher accuracy for diagnosing NAFLD and NASH. Finally, the exclusive focus on the Korean population 
necessitates caution when generalizing these findings to diverse ethnic populations. Further studies are required 
for additional external validation of the model in cohorts of various races.

In conclusion, the findings of this study revealed significantly more dyslipidemia cases in men than in women 
within the Korean population. A considerable increase in the incidence risk of dyslipidemia was observed in 
individuals with a high PRS compared with those with an intermediate PRS, particularly in middle-aged men. 
Nonetheless, no significant differences in PRS were observed between male and female cohorts. For a more 
accurate prediction of the risk of dyslipidemia among East Asian individuals, NAFLD and NASH indexes should 
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be integrated with the PRS for dyslipidemia. Our model showed a significantly better predictive ability among 
East Asian men than among women. This study has significant implications for clinical nursing, as it implies 
that sex-based differential screening and guidance are necessary to support early screening and prevention of 
dyslipidemia. Moreover, this approach provides valuable evidence for identifying high-risk populations and 
could help tailor preventive guidelines and individualized nursing interventions to mitigate the disease, given 
the increasing prevalence of dyslipidemia in East Asia and globally.

Methods
Study population
The population-based cohort known as the KoGES_Health Examinee (HEXA) comprised urban-dwelling 
individuals recruited from the Korean Genome and Epidemiology Study (KoGES). These individuals were 
examined during the first follow-up period, between 2012 and 2014. A more detailed description of the HEXA 
cohort and KoGES has been previously reported36. This study was approved by the institutional review boards of 
Chung-Ang University (approval no.: 1041078-201908-HRBR-236-01) in accordance with the guidelines of the 
Declaration of Helsinki. All participants provided written informed consent for the study participation.

The disease status of the participants and their families was self-reported through interviews. Anthropometric 
and clinical data including height, weight, waist circumference, blood pressure, biochemical analysis of lipid 
profiles, and other biomarker levels, were analyzed. Biochemical traits including glycemic traits (fasting glucose 
and HbA1c), plasma lipid concentrations (TC, LDL-C, TG, and HDL-C), and liver enzymes (ALT, AST, ALP, 
GGT, and albumin) were measured36.

Dyslipidemia cases were defined according to the 5th Korean Guidelines for the Management of Dyslipidemia 
by the Korean Society of Lipid and Atherosclerosis1,37. Individuals aged between 40 and 75 years were 
considered to have dyslipidemia if they met any of the following criteria: (1) TC levels ≥ 240 mg/dL, (2) LDL-C 
levels ≥ 160  mg/dL, (3) TG levels ≥ 200  mg/dL, or (4) HDL levels < 40  mg/dL. The control group comprised 
individuals who did not meet any of these criteria. Individuals who were receiving ongoing treatment for fatty 
liver disease, dyslipidemia, acute liver disease, or lung cancer; those who excessively consumed alcohol (men: ≥2 
times per day, women: ≥1 time per day); and those with missing data were excluded (Fig. 1)21,38.

Genotyping
Peripheral blood samples from all the participants were genotyped using the Korea Biobank Array (Affymetrix, 
Santa Clara, CA, USA), referred to as the “Korean Chip” by the National Bank of Korea. The Korean Chip is a 
customized array optimized specifically for the Korean population, with more than 600,000 variants selected 
for genome-wide tagging among 833,000 markers39. We used genome-wide data from the baseline recruitment, 
and the sample quality control genotyping call rate was set at < 99%. For quality control of single nucleotide 
polymorphisms (SNPs), SNPs with a Hardy–Weinberg equilibrium failure P-value (1E-6) or a low SNP call rate 
(< 95%) were excluded. Imputed variants (minor allele frequency < 0.05) were also excluded. Only the SNPs 
found in HapMap3 were included. Consequently, we analyzed 5,407,270 variants from chromosomes 1 to 22 
after genotyping and purification. Only the SNPs found at the HapMap3 site were included.

PRS calculation
We calculated the PRS, a weighted sum of risk alleles, related to dyslipidemia using the “auto” mode of the 
PRS-continuous shrinkage method (version released on November 3, 2022), which infers the posterior effect 
sizes of specific SNPs based on high-dimensional Bayesian regression and continuous shrinkage40. We used 
genome-wide association summary statistics from Willer et al. and an external linkage disequilibrium reference 
panel from the same ancestry, the East Asian LD score panels from the 1,000 Genome Project Phase 341,42. We 
recalculated the PRS z-scores for subsequent analyses.

Liver-related index calculation
The FLI was calculated using the simple algorithm developed by Bedogni et al. (Equation [Eq] 1)10. FLIs of 30 
and 60 were used as cutoff scores for NAFLD in the original study43. The FNI was calculated as reported by 
Tavaglioni et al. (Eq. 2)11. An FNI score ≤ 0.10 is considered a rule-out zone for fibrotic NASH and has been 
validated in individuals with metabolic disorders11.

	
F LI = e(−15.745+0.953× ln T G[mg/dL]+0.139× BMI[kg/m2]+0.718× ln GGT [IU/dL]+0.053× W • C[cm])

1 + e(−15.745+0.953× ln T G[mg/dL]+0.139× BMI[kg/m2]+0.718× ln GGT [IU/dL]+0.053× W • C[cm])
× 100� (1)

 

	
F NI = e(−10.33+2.54× ln AST [IU/L]+3.86× HbA1c[%]−1.66× ln HDL−C[mg/dL])

1 + e(−10.33+2.54× ln AST [IU/L]+3.86× HbA1c[%]−1.66× ln HDL−C[mg/dL])
� (2)

 

Statistical analysis
Baseline characteristics of the HEXA cohort were described for the entire group based on sex using numbers with 
percentages for categorical variables and means with standard deviations or medians with interquartile ranges 
(25th − 75th percentiles) for continuous variables, as appropriate. A Kolmogorov–Smirnov test was performed 
to examine the normal distribution of each continuous variables. Student’s t-test or Chi-squared test was used to 
compare the aforementioned variables between male and female participants and to determine the difference in 
the incidence percentage of cases and controls between the male and female cohorts. Furthermore, we conducted 
a two-sample Kolmogorov–Smirnov test on the PRS distribution in the case and control groups. The association 
between the PRS and dyslipidemia prevalence was evaluated using a logistic regression model with adjusted ORs 

Scientific Reports |         (2025) 15:7849 5| https://doi.org/10.1038/s41598-025-92766-3

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


and 95% CIs. We compared the granular top PRS groups with the intermediate PRS group (45–55%) in terms 
of ORs, as described in a previous study7. Additionally, we compared the high FLI and FNI groups with their 
respective disease-rule-out zones. Correlation coefficients between the PRS and risk factors were measured using 
Pearson’s correlation analysis to examine their linear relationships. ROC analysis was conducted to evaluate the 
performance of the PRS prediction model for case and control discrimination. This analysis was conducted 
separately for male and female cohorts, both in the presence and absence of the FLI and FNI. The AUROC 
was calculated using a non-parametric method. We also calculated sensitivity, specificity, accuracy, positive and 
negative predictive values, and positive and negative likelihood ratios. The difference between the prediction 
models was tested by the DeLong method, which compares AUROCs. General information on age and BMI 
were included as covariates in all analyses. Statistical analyses were performed using R software version 4.3.0 (R 
Project for Statistical Computing, Vienna, Austria) and Python version 3.11.3 (Python Software Foundation). 
Statistical tests were two-sided with an α = 0.05.

Data availability
The data supporting the conclusions of this study are available from the National Biobank of Korea upon request 
under the data access and sharing policy of the National Institute of Health, Republic of Korea ​(​​​h​t​t​p​s​:​/​/​b​i​o​b​a​n​k​
.​n​i​h​.​g​o​.​k​r​/​e​n​g​/​c​m​m​/​m​a​i​n​/​m​a​i​n​P​a​g​e​.​d​o​​​​​)​. The code for PRScs is available to the public at the following website: 
https://github.com/getian107/PRScs.
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