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12Université Libre de Bruxelles, Science Faculty CP230, B-1050 Brussels, Belgium

13Vrije Universiteit Brussel (VUB), Dienst ELEM, B-1050 Brussels, Belgium
14Department of Physics and Laboratory for Particle Physics and Cosmology, Harvard University,

Cambridge, Massachusetts 02138, USA
15Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA

16Department of Physics and The International Center for Hadron Astrophysics, Chiba University, Chiba 263-8522, Japan
17Department of Physics, Loyola University Chicago, Chicago, Illinois 60660, USA

18Department of Physics and Astronomy, University of Canterbury, Private Bag 4800, Christchurch, New Zealand
19Department of Physics, University of Maryland, College Park, Maryland 20742, USA
20Department of Astronomy, The Ohio State University, Columbus, Ohio 43210, USA

21Department of Physics and Center for Cosmology and Astro-Particle Physics, The Ohio State University,
Columbus, Ohio 43210, USA

22Niels Bohr Institute, University of Copenhagen, DK-2100 Copenhagen, Denmark
23Department of Physics, TU Dortmund University, D-44221 Dortmund, Germany

24Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824, USA
25Department of Physics, University of Alberta, Edmonton, Alberta T6G 2E1, Canada

26Erlangen Centre for Astroparticle Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg,
D-91058 Erlangen, Germany

27Physik-department, Technische Universität München, D-85748 Garching, Germany
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The DeepCore subdetector of the IceCube Neutrino Observatory provides access to neutrinos with
energies above approximately 5 GeV. Data taken between 2012 and 2021 (3387 days) are utilized for an
atmospheric νμ disappearance analysis that studied 150 257 neutrino-candidate events with reconstructed
energies between 5 and 100 GeV. An advanced reconstruction based on a convolutional neural network is
applied, providing increased signal efficiency and background suppression, resulting in a measurement
with both significantly increased statistics compared to previous DeepCore oscillation results and high
neutrino purity. For the normal neutrino mass ordering, the atmospheric neutrino oscillation parameters and
their 1σ errors are measured to be Δm2

32 ¼ 2.40þ0.05
−0.04 × 10−3 eV2 and sin2θ23 ¼ 0.54þ0.04

−0.03 . The results are
the most precise to date using atmospheric neutrinos, and are compatible with measurements from other
neutrino detectors including long-baseline accelerator experiments.

DOI: 10.1103/PhysRevLett.134.091801

Introduction—The discovery of neutrino oscillations
[1,2] triggered significant experimental effort over the
course of the past quarter century to confirm and
subsequently measure with increasing precision the
properties that describe neutrino flavor oscillations [3].
These oscillations result from the mixing between neu-
trino mass and flavor states described by the Pontecorvo-
Maki-Nakagawa-Sakata (PMNS) mixing matrix [4,5]
(often parametrized as three mixing angles and a
CP-violation phase), and differences between the masses
of the states. For GeV-scale atmospheric neutrinos,
flavor oscillations occur primarily between the muon
and tau flavors, driven by the mixing angle θ23 and the
mass splitting of the neutrino states Δm2

atm (where
Δm2

atm ≡ Δm2
32 for the normal neutrino mass ordering).

The probability for these neutrino oscillations may be
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approximated by a vacuum transition of muon to tau
flavor of the form

Pðνμ → ντÞ ≈ sin2ð2θ23Þsin2
�
Δm2

atmL
4E

�
; ð1Þ

where L is the distance the neutrino traveled, and E is the
energy of the neutrino. Increasingly precise experimental
constraints on the mass splittings and PMNS elements
allow stringent tests of the current 3ν paradigm with any
deviation potentially revealing the influence of new
physics in neutrino oscillations [6].
Atmospheric neutrinos produced by cosmic-ray inter-

actions in Earth’s atmosphere create a natural source
of neutrinos arriving from all directions [7–9] with base-
lines (L) varying from Oð10–10 000Þ km. Events arriving
from below the local horizon, as in the case of the neutrino
data sample considered here, travel sufficient distance for
neutrino oscillations to be observed, providing the strongest
signal, while mitigating dominant downward-going atmos-
pheric muon backgrounds. Vertically up-going Earth-
crossing neutrinos traversing approximately 1.3 × 104 km
result in nearly complete νμ disappearance for energies of
Oð10 GeVÞ.
In this Letter, we present a measurement of Δm2

32 and
sin2ðθ23Þ leveraging the statistical power available with
9.3 years of IceCube DeepCore data. The oscillation signal
extraction follows that applied in [10] where a histogram of
reconstructed detector data is compared to a simulation-
based template histogram that is reweighted based on free
parameters in the fit. Calibration and event selection
improvements reported in [10], applied here, are further
improved by convolutional-neural-network- (CNN) based
reconstruction methods. The previous reconstruction meth-
ods could only be applied to a relatively small subsample of
signal-like events to ensure high-quality reconstruction
performance. In contrast, the CNN-based reconstruction
methods described here provide an approximate 5000×
decrease in the event processing time and robust interpre-
tations of all event types in the evaluated dataset.
A significant increase in neutrino candidates compared
to previous DeepCore oscillation results is realized.
Combined with nearly two additional years of detector
data, this measurement benefits from a nearly sevenfold
increase in statistics compared to the previous most
sensitive oscillation measurement from DeepCore [10].
The increased statistics of the study also allow more precise
constraints to be placed on systematic uncertainties, result-
ing in the most precise measurement of oscillations with
atmospheric neutrinos to date.
The IceCube DeepCore detector—The IceCube Neutrino

Observatory [11] instruments more than a cubic km of the
glacial ice sheet at the geographic South Pole. A total of
5160 digital optical modules (DOMs) [12], each containing
a single 10-in. photomultipier tube [13], are deployed on

86 vertical “strings”within the instrumented volume. These
DOMs detect Cherenkov light resulting from the charged
particles produced by neutrino interactions in the ice.
A primary high-energy array of 78 strings optimized for
detection of events above Oð100 GeVÞ is deployed on an
approximately triangular grid with a string-to-string spac-
ing of 125 m and a vertical DOM spacing of 17 m. The
central region of the detector is more densely instrumented
with eight additional strings creating the DeepCore sub-
array [14]. The DeepCore subarray has an average string-
to-string spacing of Oð50 mÞ and vertical DOM spacing
of 7 m, with the DOMs concentrated below 2100 m where
the ice is the clearest and has the best optical properties.
The 10-Mton DeepCore volume has detection sensitivity to
neutrinos in the (5–100)-GeV energy range where neutrino
oscillations are observable.
Detected Cherenkov photons are converted into digitized

electronic pulses from which charge and timing informa-
tion are extracted. These “hits” are the input data used to
reconstruct the properties of the interacting neutrino, and
discriminate neutrinos from random detector noise and
atmospheric muon backgrounds.
Reconstruction and event selection—A key element in

this measurement is the CNN-based reconstruction [15]
modeled on previously successful image classification and
reconstruction for TeV-scale IceCube events [16]. The new
CNN reconstruction consists of five independent neural
networks optimized for each reconstruction task using
Oð10–100 GeVÞ-scale IceCube DeepCore neutrino events
[17,18]. All networks use the same architecture, with two
parallel branches of eight convolutional layers each, which
combine into a single dense layer that outputs the desired
feature(s). Each of the input branches takes in five summary
variables from all 60 DOMs on either the eight DeepCore
strings or the 19 centermost IceCube strings. While DOMs
with multiple hits per event are rarer at the GeV scale, this
can still occur, particularly in the important region near the
neutrino interaction vertex. Thus, the five summary vari-
ables are the sum of the charge, time of the first hit, time
of the last hit, charge-weighted mean of the times of hits,
and charge-weighted standard deviation of the times of
hits, where a minimum charge of 0.25 photoelectrons is
requested to be considered as a hit. These summary
variables allow the network to account for multiple hits
per DOM per event, with emphasis on the first and last hits,
but also include additional information in the last two
variables to account for the fact that those hits could be
influenced by noise. The variables only use hits within
½−500; 4000� ns of the DeepCore trigger [14] to avoid
noise contamination in the event.
The CNNs are trained separately for neutrino energy,

incoming neutrino angle with respect to the zenith (θzenith),
interaction vertex position (x, y, z), particle identification
(PID) based on event shape, and classifying atmospheric
muons. Each network is trained on a specifically designed
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sample that is independent of the analysis sample. Each
sample is optimized to have a flat distribution across the
target regression variables or equal sample sizes between
the binary classification labels. In addition, no physical
weights were used, such that the training is not biased by
the expected distribution or physics models. Monte Carlo
(MC) datasets for training are simulated using the sameMC
models applied in the analysis. The energy, zenith, and
vertex CNNs are trained on simulated νμ charged-current
(CC) tracklike events since these are the most important for
the oscillation measurement. The network for reconstruct-
ing the zenith angle is trained on a sample of approximately
5 × 106 νμ CC MC events with a flat true zenith angle
distribution, true neutrino energies between 5 and 300 GeV,
and with starting and ending points within the near-
DeepCore region (a depth of −495 to −225 m in detector
coordinates and radius within 200 m relative to the center-
most IceCube string). The networks for reconstructing
neutrino energy and interaction vertex are trained on a
larger νμ CC dataset of 9 × 106 events with a flat simulated
energy distribution below 200 GeV, and moderately
extended to higher energies with a falling shoulder.
Events that have hits on fewer than seven DOMs are
excluded from the training samples. After training on the
specifically designed training samples, the performance
was evaluated on other event types (such as νe CC events)
with realistic, physical spectrum to demonstrate acceptable
performance. Figure 1 provides the resultant zenith and

energy resolutions of the trained CNN reconstructions for
νμ CC and νe CC analysis-level events.
The PID and atmospheric muon classifiers are trained

using MC neutrino events with true neutrino energy
between 5 and 200 GeV for the best performance in the
low-energy region. The PID discriminator is trained on a
sample of balanced tracklike (νμ CC) and cascadelike
[νe CC, νe neutral current (NC), and νμ NC] events using
a total of 5 × 106 events for training. The atmospheric
muon classifier, for which all events are required to have
hits on at least four DOMs, is trained on a subsample of the
neutrino MC used for the PID network and an additional
2.8 × 106 muon events. The ratio of atmospheric νe∶νμ∶μ
of this training sample is 1∶2∶2. To optimize the rejection
of misreconstructed muon events (see Ref. [20]), a
boosted decision tree (BDT) is trained on the events
after a cut on reconstructed zenith angle that requires
cosðθzenithÞ ≤ 0.3 using the CNN atmospheric muon
classifier along with other reconstructed variables
describing positional information of neutrino candidates
as input. These variables include the depth (z) and radius
(relative to the central IceCube string) of the CNN-
reconstructed event interaction vertex, a low-level muon
BDT classifier (see Fig. 7 of [10]), and the z coordinate of
the deepest corridor hit (see Fig. 2 of [10]).
The applied data and MC sample of this analysis begins

with the DeepCore Common Data Sample described in
Sec. III of [10], which reduces the atmospheric muon
background and detector noise to achieve a neutrino-
dominated sample. The CNN reconstructions are then
applied to the DeepCore Common Data Sample, along
with a few additional final level cuts. Events are only
selected if the following containment cuts are satisfied: the
reconstructed neutrino interaction vertex is contained in
DeepCore, the reconstructed energy is between 5 and
100 GeV, and the reconstructed cosðθzenithÞ is below
0.04, indicating that the incoming neutrino arrived from
near or below the horizon. To remove independent muon
events that occur coincidentally in the same time window,
we require no recorded hit in the top 15 layers of IceCube
DOMs and no more than seven detected hits in the
outermost IceCube strings. Maintaining that at least three
DOMs observe direct hits from unscattered photons [21]
effectively filters random coincidences of radioactive decay
noise and events with poor reconstruction performance. To
achieve the best performance of the CNNs, we keep only
the events with at least seven hits on DOMs in and near
DeepCore. Finally, applying the BDT classifier described
above for a score ≥ 0.8 provides a final rate for the
atmospheric muon background that is well below 1% of
the entire sample (see Table I). We achieve a neutrino-rich
sample with good reconstruction resolution in the region
sensitive to oscillation parameter measurements.
A kernel density estimator [10] is ultimately employed

to smooth the expected atmospheric muon background

FIG. 1. Reconstruction resolution of cosðθzenithÞ (top) and
neutrino energy (bottom) compared to the true neutrino energy.
For νμ CC events (blue) and νe CC events (orange), the median is
indicated by the solid curve, and the 1σ region is shown as a
shaded band. The observed resolutions are similar to those
realized in traditional log-likelihood methods [19].
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distribution in the final MC sample due to the low statistics
in most analysis bins.
The selected sample is binned (see Fig. 2) by recon-

structed energy in ten logarithmically spaced bins from 5 to
100 GeV, eight linear-spaced bins of cosðθzenithÞ between
½−; 0.04�, and three PID bins with bin edges of [0, 0.25,
0.55, 1]. As indicated in Eq. (1), the probability of
oscillation is dependent on the neutrino’s distance traveled
(calculated from zenith angle) and energy. Thus, deficits
from muon neutrino oscillation should be visible when the
counts are plotted as a function of the energy and baseline.
Here, νμ CC events largely occupy the tracklike bin, and
other types of neutrino interactions, mostly classified as
cascadelike, have quite different detector response, and
cross sections [22]. Applying the PID binning, where the
highest score indicates the most tracklike or νμ CC events,
divides the sample by flavor (see Ref. [20]). The νμ CC

disappearance signature due to oscillations is strongest in
the last PID bin, which has the highest νμ CC purity (see
Figs. 2 and 3).
Analysis—Models of the systematic uncertainties largely

follow those presented in [10]. A summary of the system-
atic uncertainties is provided in the End Matter section,
with further details in [20]. The sample used in [10]
includes only the most tracklike events divided into two
PID bins, and it did not include the cascadelike events. This
analysis retains all neutrino flavor and interaction types
and therefore contains more cascadelike events than [10].
This additional off-signal region is useful for constraining
systematic uncertainties, along with including energies
above where oscillations are expected (see Ref. [20]).
Identified nuisance parameters of the analysis are fit

together with the oscillation parameters to the data using a
log-likelihood (LLH) as the test statistic of the form:

LLH ¼
X
i∈ bins

log

�
nnoi e−ni

no!

�
−
1

2

X
j∈ syst

ðŝj − sjÞ2
σ2j

: ð2Þ

Here the first term is a Poisson likelihood where ni (no) is
the number of expected (observed) events in bin i, and the
second term serves as a penalty term for the systematic
parameters j which have Gaussian priors σj. The results of
the fitted nuisance parameters to their priors are shown in
End Matter Appendix A (and [20]) and discussed next.
Results and conclusion—An atmospheric neutrino data-

set obtained over 3,387 days between 2012 and 2021, with
a total of 150 257 neutrino candidates, has been used in this

TABLE I. The expected MC events (integer values) compared
to the data sample, for the best fit to the data considering neutrino
interaction type and atmospheric muons.

Neventsð9.3 yrÞ % of MC sample

νμ CC 88 306 58.8
νe CC 35 296 23.5
ντ CC 8772 5.8
ν NC 16 981 11.3
Atmospheric μ 917 0.6
Total MC 150 272 …

Data 150 257 …

FIG. 2. The nominal MC distributions for the analysis sample binned logarithmically in reconstructed energy and linearly in cosine of
the reconstructed zenith angle. Each histogram represents one PID bin selected by the range of the event PID score (from left to right):
0–0.25 (cascadelike), 0.25–0.55 (cascadelike and tracklike), and 0.55–1.0 (track-like). At lower energies, νμ CC events produce shorter
tracks that are more challenging to identify, resulting in these events populating the center panel and a peak of those events at lower
energies. Similarly at higher energies, these events produce longer muon tracks that are more readily identified, placing these events
in the right panel and peaking at higher energies. The oscillation signature region is observable in this distribution via the dark
diagonal band. The left panel contains both event types, causing the distribution to peak at intermediate energies. The total number
of events are taken from Table 1 with a ratio of 22 991∶99 931∶27 350. Bins containing very low statistics in data or MC are not used
in the analysis.
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analysis. The most tracklike bin has highest purity of νμ CC
events and shows the most distinctive disappearance
signature. We obtain a goodness-of-fit p value of 19.2%.
All nuisance parameters fitted to values well within their
expected ranges (see Ref. [20]).
To determine the confidence intervals for the oscillation

parameters, the Feldman-Cousins’s unified approach
[23,24] is used for all errors and plots by sampling
pseudo-data trials from the best-fit values with Poisson
fluctuation applied to each analysis bin. We report the

parameters and 1σ errors of Δm2
32 ¼ 2.40þ0.05

−0.04 × 10−3 eV2

and sin2ðθ23Þ ¼ 0.54þ0.04
−0.03 in the normal neutrino mass

ordering. The 90% confidence level (CL) contour of
sin2ðθ23Þ and Δm2

32 for the normal neutrino mass ordering
(m3 > m2 > m1) of this result, compared with the results
from the other experiments, is shown in Fig. 4. It is
noted that results for the inverted mass ordering case are
provided in [25].
This result presents an important transition for IceCube

DeepCore atmospheric neutrino oscillation measurements
to a systematics-uncertainty-dominated regime [20]. The
reported precision is similar to and consistent with mea-
surements from accelerator and reactor [31] neutrino
experiments while uniquely using neutrinos of much
higher energy over longer baselines, supporting the
standard 3ν paradigm of neutrino mixing. The upcoming
IceCube Upgrade [32] next-generation detector imple-
menting a denser configuration of next-generation detec-
tor modules and advanced calibration instrumentation
will enable significant improvements to this measurement
in the coming decade.
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End Matter

Appendix A: Systematic uncertainties—The models to
describe the sources of systematic uncertainty draw from
[10], with some modifications. Uncertainty in the photon
detection efficiency is characterized by an absolute
DOM efficiency scale and two relative efficiencies based
on the photon incidence angle with respect to the DOMs
(“Relative efficiency p0,” “Relative efficiency p1”)
that account for the local properties of the refrozen ice
near the sensors following installation [33]. Uncertainty
in the “scattering” and “absorption” properties of the

undisturbed bulk glacial ice are also included.
Furthermore, a new calibration model accounting for the
birefringent polycrystalline microstructure of the ice [34]
has been introduced to describe the azimuthal anisotropy
observed in the ice. We employed a new systematic
parameter (“BFR eff.”) in this analysis that interpolates
between this new model and the previous baseline
model where the anisotropy was accounted for by an
empirical model (SPICE-3.2.1 [35]).
Conservative uncertainties in the atmospheric neutrino

flux as defined in [36] were adopted with their impact
evaluated using the MCEq software package [37].
Two (three) effective parameters describing kaon (pion)
production during cosmic-ray interactions with nuclei in
the atmosphere are varied in the analysis, in addition to an
overall uncertainty in the power law spectral index (Δγν).
The overall normalization of both the neutrino (“Aeff
scale”) and muon (“atmospheric μ scale”) rates are also
fit parameters, meaning the oscillation parameter measure-
ment is independent of the absolute atmospheric flux.
Uncertainties in the neutrino-ice cross section due to axial
currents in the quasielastic and resonance channels
(“MCCQE=RES

A ”) are included, and interpolation is done
between the GENIE [22] (low-energy) and CSMS [38]
(high-energy) deep inelastic scattering (DIS) cross-section
models in the analysis energy range (“DIS CSMS”).
Additional information about the 17 systematic param-

eters that are included as nuisance parameters in the fit is
provided in Fig. 5 and in Table II. Each parameter has a

FIG. 5. Showing the pulls for the systematic uncertainty
parameters compared with the ranges of their priors of the data
analysis.
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nominal value that the fit starts at, a prior which can either
be Gaussian with the given width or uniform, and the
resulting best-fit value. For the parameters that have a
Gaussian prior, the pulls (in units of σ) indicate how far the
best-fit value is from the nominal value.

Appendix B: Results goodness of fit—The goodness of
fit of the result is evaluated utilizing 1000 fits to pseudo-
data trials generated via Poisson fluctuating the expected
events within the analysis bin given best-fit values of the
resultant oscillation parameters. Figure 6 shows the
expected and observed results for sin2 θ23 and Δm2

32

overlaying the pseudo-data trials test statistic distribution.
The observed contours are found to agree well with the
anticipated 1σ fluctuations of the trials. Also shown are
the Feldman-Cousins [24] corrected contours.

FIG. 6. Comparison of the observed (solid) results compared to
the expectation (dashed blue) and the 68% and 90%distributions
of 1000 pseudo-data trials (bands) produced at the best-fit point
of the analysis for the atmospheric mixing angle (top) and mass
splitting (bottom). The dashed red lines show the Feldman-
Cousins [24] corrected contours.

TABLE II. The systematic uncertainty parameters included as
nuisance parameters in the data analysis, along with their
associated priors. The priors on parameters can either be
Gaussian (in which case, the value corresponding to �1σ is
listed) or uniform (in which case, the allowed range is listed).

Parameter Nominal Prior width Fit valuePull (σ)

Detector:
DOM efficiency þ0% �10% þ1.8% 0.18
Ice absorption þ0% �5% −3.5% −0.71
Ice scattering þ5% �10% þ1.8% −0.32
Relative efficiency p0 0.10 [−0.6, 0.5] −0.14 …
Relative efficiency p1 −0.05 [−0.2, 0.2] −0.07 …
BFR efficiency 0.0 [0, 1] 0.48 …

Atmospheric flux:
Δγν 0.0 �0.1 −0.011 −0.11
Δπ� yields I 0.0 �61% þ42% 0.68
Δπ� yields G 0.0 �30% −4.2% −0.14
Δπ� yields H 0.0 �15% −12% −0.81
ΔKþ yields W 0.0 �40% þ4.2% 0.11
ΔKþ yields Y 0.0 �30% −6.9% −0.23

Cross section:
MCCQE

A
0.99 GeV þ25%

−15% −4.5% −0.30
MCCRES

A 1.12 GeV �20% −3.9% −0.20
DIS CSMS 0.0 �1.0 0.12 0.12

Normalization:
Aeff scale þ0% [−90%,

þ100%]
−10% …

Atmospheric muons:
Atmospheric μ scale þ0% �40% −3.8% −0.10
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