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1 Introduction

The measurements of the mass and couplings of the Higgs boson have turned out to be
consistent with the Standard Model (SM) predictions. Using the well-known SM relations,
we can infer the Higgs quartic coupling λ from the measured Higgs mass mH at low energy,
and extrapolate it to higher energies through Renormalization Group (RG) equations. It
has been shown that, within the SM, the running coupling λ(µ) turns negative at high
energies due to the large top Yukawa coupling [1, 2], opening the possibility for a decay of
the electroweak (EW) vacuum towards the true, deeper vacuum. This is at the origin of
the vacuum stability problem in the SM, that might indicate the necessity for threshold
corrections from new physics to appear below the stability scale [3], i.e. the scale where λ(µ)
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turns negative. Therefore, it is important to check how the picture changes in physics Beyond
the Standard Model (BSM) whenever the Higgs sector is extended or extra interactions for
the SM Higgs boson are considered. New physics can impact the stability of the vacuum
mainly in two ways. When new physics appears below the stability scale and it modifies the
running of the couplings, this might even erase the possibility of a vacuum deeper than the
EW one altogether. Even if the EW vacuum remains a false one, the tunneling time of the
EW vacuum can be subject to higher dimensional operators in the UV [4–6].

Recently, the measured values of the muon (g − 2)µ [7, 8] and the W boson mass mW [9]
have both indicated significant deviations from the SM predictions [10], that we will refer
to as the SM anomalies in the following, and have motivated the search for an explanation
within extensions of the SM with extra particles and symmetries. However, it has been
recently shown that the SM prediction for the muon g − 2 based on the lattice results is
consistent with its experimental value [11, 12]. Furthermore, the recent CMD-3 data [13]
shows a sizable deviation from the other e+e− data, which were used to derive the SM
prediction for the muon g − 2 in the dispersive approach taken in ref. [10]. Thus, it is
important to understand the hadronic contributions to the muon g − 2 well within the SM
and there is a need of improvements on the experimental data. Nonetheless, it becomes
of interest to investigate what the impact of new physics on the stability issue is in the
phenomenologically motivated models as discussed above and provide more information from
the complementary tests of new physics.

In this article, we revisit a lepton portal model with an extra U(1)′ gauge symmetry
from this perspective, and perform an RG analysis to investigate on its stability. In this
model, suggested by some of the authors [14], an SU(2)L singlet vector-like lepton charged
under U(1)′ is introduced. The vector-like lepton mixes with the muon through the vacuum
expectation values (VEVs) of an extra Higgs doublet and a dark Higgs field, leading to a
small seesaw mass for the muon. The muon g − 2 can be explained thanks to extra one-loop
corrections coming from the vector-lepton and the Z ′ boson, while the W mass mW can be
increased, at the same time, through a tree-level mixing between the Z boson and the Z ′

boson when the Z ′ is heavier than Z. As the muon g − 2 anomaly favors the U(1)′ breaking
scale to be below about 200GeV, the extra gauge coupling required to increase mW tends to
be large [14], so that it can have a strong impact on the RG flow of the theory. There are
previous analyses of RG equations and Higgs vacuum stability in the extended models with
vector-like leptons and extended Higgs sectors with a motivation to explain the muon g − 2
anomaly [15, 16]. In our work, making a complete study of the one-loop RG equations in our
model, we aim to go beyond the limited discussion on loop corrections done in the previous
work in ref. [14]. As a result, we present new results on the stability and the Landau pole
of the model in the parameter space favored by both the muon g − 2 and W boson mass
anomalies. However, in view of the recent lattice results for the muon g − 2, it is notable
that our RG analysis is not limited to the parameter space for the muon g − 2 anomaly.

Setting the couplings of the Z ′ boson and of the vector-like lepton at low energy to
explain the SM anomalies, we perform the RG analysis of the model. Following [14], we first
consider the alignment limit of the Higgs potential by choosing some particular relations
between the quartic couplings in the extended Higgs sector and identify the Landau pole
and the scale where perturbativity is lost. We then extend the RG analysis to more general
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qL uR dR lL eR H H ′ EL ER ϕ

U(1)′ 0 0 0 0 0 0 +2 −2 −2 −2

Table 1. The U(1)′ charges for the SM and extra fields.

cases with “minimal relations” between the quartic couplings, i.e. imposing only the relations
needed to reproduce the experimental constraints and allowing for a misalignment between
the CP-even neutral components of the Higgs doublets. The results of our analysis allow to
determine a region of parameter space where the SM anomalies can be explained, the Landau
pole of the theory is sufficiently higher than the scales experimentally probed so far, making
it possible for the theory to have a UV cutoff at high enough scales, and the running of the
quartic coupling can be lifted to positive values to (possibly) stabilize the vacuum.

The paper is organized as follows. We present the model setup and the lepton portal
interactions of the vector-like lepton in section 2. We then consider the phenomenological
constraints from the SM anomalies as well as Z ′ searches at the Large Hadron Collider
(LHC) in section 3. Next we provide the analysis of vacuum stability and perturbativity
with the running couplings in the model, focusing on the alignment limit of the extended
Higgs potential and the low-energy inputs from the SM anomalies in section 4. We discuss
the RG analysis for more general cases where the Higgs quartic couplings are deviated from
the alignment limit and more general conditions for decoupling the dark Higgs boson are
considered in section 5. There are two appendices where we present the calculation of the
effective mass matrices for scalars, gauge bosons and fermions in this model and of the RG
equations. Finally, conclusions are drawn.

2 The model

Besides the SM fields, our model consists of an SU(2)L singlet vector-like lepton E, a second
Higgs doublet H ′ and a dark Higgs field ϕ, all charged under a U(1)′ gauge group, whose
gauge boson we denote with Z ′ [14, 17, 18]. The U(1)′ charge assignments are summarized in
table 1. The charges of the BSM fields are taken to be +2 or −2 for simplicity, but different
choices for the charges can be made rescaling the g

Z′ coupling.
The Lagrangian for the electroweak sector, including the new fields we introduce, reads

L =− 1
4W

a
µνW

a µν − 1
4BµνB

µν − 1
4F

′
µνF

′µν − sin ξ
2 F ′

µνB
µν

+ |Dµϕ|2 + |DµH
′|2 + |DµH|2 − V (ϕ,H,H ′) + Lfermions, (2.1)

with

Lfermions =
∑

i=SM,E

iψ̄iγ
µDµψi − ydq̄LdRH − yuq̄LuRH̃ − yl l̄LeRH

−MEĒE − λEϕĒLeR − yE l̄LERH
′ + h.c. . (2.2)
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Here, H̃ = iσ2H∗, F ′
µν is the U(1)′ field strength, and the covariant derivatives for BSM

fields are

Dµϕ =
(
∂µ + 2ig

Z′Z
′
µ

)
ϕ,

DµH
′ =

(
∂µ − 2ig

Z′Z
′
µ − 1

2 igY Bµ − 1
2 igσ

iW i
µ

)
H ′,

DµE =
(
∂µ + 2ig

Z′Z
′
µ + igY Bµ

)
E. (2.3)

In particular, the dark Higgs ϕ is charged only under U(1)′, while the vector-like lepton is
charged under both U(1)′ and U(1)Y , and the second Higgs doublet has the same quantum
numbers as the SM Higgs except for its U(1)′ charge. The potential V (ϕ,H,H ′) is taken as1

V (ϕ,H,H ′) = µ2
1H

†H + µ2
2H

′†H ′ − (µ3ϕH
†H ′ + h.c.)

+λ1(H†H)2 + λ2(H ′†H ′)2 + λ3(H†H)(H ′†H ′) + λ4(H†H ′)(H ′†H)
+µ2

ϕϕ
∗ϕ+ λϕ(ϕ∗ϕ)2 + λHϕH

†Hϕ∗ϕ+ λH′ϕH
′†H ′ϕ∗ϕ. (2.4)

In the “normal” vacuum where the electroweak symmetry and the U(1)′ symmetry are
broken, we take

H = 1√
2

(
0
v1

)
, H ′ = 1√

2

(
0
v2

)
, ϕ = vϕ√

2
. (2.5)

A mass mixing between the Z and Z ′ gauge bosons arises in such a vacuum [14, 17, 18, 20].
The mass matrix for the charged lepton (muon) and the vector-like lepton [14] is defined from

LL,mass = −MEĒE −m0ēe− (mRĒLeR +mLēLER + h.c.)

= −(ēL, ĒL)ML

(
eR

ER

)
+ h.c., (2.6)

with
ML =

(
m0 mL

mR ME

)
. (2.7)

Here, m0 is the bare lepton mass given by m0 = 1√
2ylv1, and mR,mL are the mixing masses,

given by mR = 1√
2λEvϕ and mL = 1√

2yEv2, respectively. In the limit of m0,mR,mL ≪ME ,
the mass eigenvalues for the leptons can be expressed as

ml2 ≃ME , ml1 ≈ m0 −
mRmL

ME
, (2.8)

while the mixing angles for the right-handed and left-handed leptons [14] become

θR ≃ mR

ME
, θL ≃ mL

ME
. (2.9)

Therefore, for m0 ≳ mRmL
ME

we get a seesaw mass contribution for the charged lepton [14]
as mRmL

ME
≃ θRθLME . A similar lepton-portal model with SU(2)D was considered for muon

seesaw mass, muon g − 2 as well as W boson mass [21].
1Other quartic couplings, λ5, λ6 and λ7, in two Higgs doublet models [19], are forbidden by the U(1)′

symmetry under which the second Higgs doublet H ′ transforms.
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3 Phenomenological constraints on Z ′

As will be shown in section 4.5, in order to explain the muon g − 2 experimental anomaly
with our model while avoiding the appearance of a Landau pole at too low energies, a small
gZ′ (correspondingly, a weak-scale Z ′ boson mass) are necessary. For such a scenario, the
LHC searches for additional Z ′ gauge bosons should be taken into account.

3.1 SM anomalies: muon g − 2 and W boson mass

The dominant corrections to the muon g − 2 in our model arise from the one-loop vector-like
lepton and Z ′ gauge boson contributions. In the limit ME ≫ m

Z′ , the correction reads [14]

∆aµ ≃ 1
4π2

g2
Z′m

2
µ

m2
Z′

, (3.1)

with m2
Z′ = 4g2

Z′ (v2
ϕ + v2 sin2 β), so that ∆aµ becomes independent of the value of g

Z′ . When
v2

ϕ ≫ v2 sin2 β, m2
Z′ ≃ 4g2

Z′v
2
ϕ and we only need to fix the VEV of the singlet scalar vϕ to

fit the muon g − 2. On the other hand, the correction to the W boson mass in our model
stems from the tree-level mixing between the Z and Z ′ gauge bosons, and for m

Z′ ≫ mZ

it is approximated by

∆mW ≃ 8
(c2

W
− s2

W
)
g2

Z′ m
2
Z

g2
Y m

2
Z′

sin4 β. (3.2)

From g2
Z′/m

2
Z′ ≃ 1/(4v2

ϕ) it is immediately understood that, in this limit, the correction to the
W boson mass becomes independent of g

Z′ too. As m
Z′ gets closer to mZ , however, the above

approximation breaks down, so the smaller g
Z′ (or m

Z′ ), the smaller the correction to mW .
We comment on how flexible the parameter space is to explain the muon g − 2 and W

boson mass anomalies. In the left plot of figure 1, we depict the one-loop correction to the
muon g − 2 as a function of m

Z′ in our model, with vs = vϕ/
√
2 = 200GeV and 150GeV.

We set the parameters of the vector-like lepton sector to ME = 1TeV, sin θL = sin θR = 0.01,
and choose sin β = 0.18 and λϕ = 0.1 [14]. In the right plot of figure 1, we also show the
tree-level correction to the W boson mass due to the Z-Z ′ mixing as a function of m

Z′ , with
vs = vϕ/

√
2 = 200GeV and 150GeV, making the same choice for the other parameters as in

the previous case. We note that in the case of vs = 200GeV, new contributions to the muon
g − 2 in our model are in tension with the experimental value at 2σ for the SM prediction
based on ref. [10], but they can be consistent with the recent lattice results [12] at 2σ. Thus,
the parameter choices for figure 1 are compatible with the SM predictions appearing in the
literature, so they will be taken for the later analysis on RG equations.

As a result, we find that a smaller value of vs, for instance, vs = 150GeV, is favoured to
explain the muon g − 2 within 1σ or 2σ levels, as shown in the left plot of figure 1. For the
same value of vs, we can explain the W boson mass reported by CDFII for a wide range of
Z ′ boson masses, as shown in the right plot of figure 1. For a larger value of vs, for instance
vs = 200GeV, we can still explain the W boson mass anomaly from CDFII by taking a mild
increase in sin β from 0.18, as far as m

Z′ ≳ 200GeV [14].
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Figure 1. The corrections to the muon g − 2 (left plot) and the W boson mass (right plot) as a
function of m

Z′ . We fixed ME = 1TeV, sin θL = sin θR = 0.01, sin β = 0.18 and λϕ = 0.1. The 1σ
and 2σ contours of the deviation of the muon g− 2 from the combined experimental value of BNL and
FNL 2023 is shown in yellow and green regions, respectively, and the 1σ values of the deviation of the
W boson mass are shown in orange and blue regions for CDFII and PDG world average, respectively.

3.2 Z′ signatures at the LHC

For a relatively light Z ′ boson, i.e. m
Z′ ∼ 200− 500GeV, dilepton final states become crucial

for LHC phenomenology. We show the Z ′ production cross section from pp collisions at
13TeV and the branching fractions of the Z ′ boson for the current LHC constraints and
prospects. We assume the extra Higgs boson and the dark Higgs boson to have large enough
masses so that their production from a Z ′ decay is kinematically forbidden. We employ
MadGraph5_aMC@NLO [22] to calculate the cross sections and branching ratios of the Z ′, while
the model is implemented with FeynRules [23].

We begin by discussing the Z ′ boson decays. The Z − Z ′ mass mixing allows the Z ′ to
decay into states coupled to the Z with a suppression factor determined by the Z−Z ′ mixing
angle sin ζ; the decay width is then suppressed by a factor sin2 ζ. When kinematically allowed,
then, the WW , hZ, and tt channels open. The U(1)′ charge of the second Higgs determines
an additional interaction for hZ final states, i.e. a Z ′-Z-h vertex whose corresponding width
is not suppressed by the Z mass mixing angle, but by a sin4 β factor. The Z ′-Z-h interaction
Lagrangian is

LZ′-Z-h = Z ′µZµhv
sec θW

4
(
sec θW sin 2ζ

(
g2 + 4g2

Z′

(
cos 2β − 2 sin2 β cos 2θW

)
− 4g2

Z′

)
−8gg

Z′ sin2 β cos 2ζ
)
. (3.3)

Here, θW is the Weinberg angle. Figure 2 shows the Z ′ total width scaled by the mass,
Γ

Z′/mZ′ , and the decay branching ratios for the case where only decays to SM particles are
allowed. We take sin β = 0.18 and vs = 150GeV (in the left plot) or vs = 200GeV (in the
right plot) as benchmark points. The qq, ll, and νν channels include five flavors of quarks,
three flavors of leptons, and three flavors of neutrinos, respectively. We see that, in addition to
the dilepton channel, the WW and hZ channels are important (actually, the dominant ones)
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Figure 2. Ratio of Z ′ total width to its mass and Z ′ branching ratios as a function of Z ′ mass,
for the dark Higgs VEV of vs = 150GeV (left) and vs = 200GeV (right), respectively. We take
sin β = 0.18; qq, ll, and νν include five flavors of quarks, three flavors of leptons, and three flavors of
neutrinos, respectively.

when kinematically allowed. The resonance is always very narrow (Γ
Z′/mZ′ < 0.1%), and, as

long as m
Z′ ≲ 2mW , Γ

Z′/mZ′ drops as m
Z′ increases due to the decrease of the Z−Z ′ mixing.

Let us now discuss the Z ′ production and its decay to the dilepton state. The Z ′

production cross sections (left) and Z ′ production cross sections multiplied by the ee and
µµ dilepton branching ratio (right) for pp collision at 13TeV are depicted in figure 3 as
a function of m′

Z
. The opening of the WW and hZ channels is such that the dilepton

production is suppressed strongly for large enough values of m
Z′ , for e.g. it is less than

1 fb for m
Z′ ≳ 300 GeV.

With the results of ATLAS for dilepton final states at the 13TeV LHC run with integrated
luminosity Lint = 139/fb [24], parametric regions with m

Z′ ≳ 300 GeV and sin β = 0.18 are
allowed in our scenario. As we have seen, within this parametric region the WW and hZ

final states are dominant, and these resonant boson productions are safe with respect to the
Lint = 139/fb, 13TeV LHC results [25–28]. As the LHC constraints on dileptons are quite
severe, dilepton final state produced from Z ′ boson resonance around m

Z′ ∼ 300 GeV should
be targeted by the next LHC results. The same considerations hold for WW final states for
m

Z′ ≳ 300 GeV, with the latter being dominant within our scenario.

4 SM anomalies and running couplings

We begin by discussing some conditions that the scalar potential must satisfy at tree level,
and we later consider the one-loop effective potential. Fixing the low-energy parameters to
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Figure 3. Total cross sections for Z ′ productions (left) and for Z ′ productions multiplied by a
branching ratio to dilepton (ee and µµ) (right) at the 13TeV LHC as a function of Z ′ boson mass.
Two choices of vs are considered: 150GeV shown as a red solid line and 200 GeV shown as a blue
dashed line.

explain the SM anomalies and taking the alignment limit for the Higgs quartic couplings,
we undertake the RG analysis of the model, and in particular of the quartic couplings, and
identify the Landau pole and the perturbativity scale.

4.1 Tree-level stability of the potential

The potential V (ϕ,H,H ′) in eq. (2.4) has a rich vacuum structure, with CP-breaking and
charge-breaking minima, besides CP-even and neutral ones (that we will refer to as “normal”
ones from now on). To derive the conditions under which a normal vacuum can develop,
we parametrize the fields in the following way [29]:

|H| = χ1, |H ′| = χ2, H†H ′ = χ1χ2ρe
iθ, ϕ = ϕ1e

iφ. (4.1)

From the inequality |H†H ′| ≤ |H||H ′|, ρ is ρ ∈ [−1, 1]. In terms of this new set of parameters,
the potential (2.4) takes the form

V (χ1, χ2, ϕ1, ρ, θ, φ) = µ2
1χ

2
1 + µ2

2χ
2
2 − 2µ3 cos(φ+ θ)ϕ1ρχ1χ2 + λ1χ

4
1 + λ2χ

4
2 + λ3χ

2
1χ

2
2

+λ4χ
2
1χ

2
2ρ

2 + µ2
ϕϕ

2
1 + λϕϕ

4
1 + λHϕχ

2
1ϕ

2
1 + λH′ϕχ

2
2ϕ

2
1, (4.2)

and its extremization conditions are then

(
µ2

1 + 2λ1χ
2
1 + λ3χ

2
2 + λ4ρ

2χ2
2 + λHϕϕ

2
1
)
χ1 − µ3 cos (φ+ θ) ρϕ1χ2 = 0,(

µ2
2 + 2λ2χ

2
2 + λ3χ

2
1 + λ4ρ

2χ2
1 + λH′ϕϕ

2
1
)
χ2 − µ3 cos (φ+ θ) ρϕ1χ1 = 0,(

µ2
ϕ + 2λϕϕ

2
1 + λHϕχ

2
1 + λH′ϕχ

2
2

)
ϕ1 − µ3 cos (φ+ θ) ρχ1χ2 = 0,

λ4χ
2
1χ

2
2ρ− µ3 cos (φ+ θ)ϕ1χ1χ2 = 0,

sin (φ+ θ)ϕ1ρχ1χ2 = 0.

(4.3)
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When ϕ1, ρ, χ1, χ2 ̸= 0, the last equation is solved by sin (φ+ θ) = 0, from which cos (φ+ θ) =
±1. When µ3ϕ1ρχ1χ2 > 0, the upper sign minimizes the potential and the lower sign
maximizes it. The opposite is true for µ3ϕ1ρχ1χ2 < 0.

Let us now concentrate on the value of ρ that minimizes the potential. We start with the
case µ3ϕ1ρχ1χ2 > 0, and thus cos (φ+ θ) = 1. For a positive λ4, the λ4χ

2
1χ

2
2ρ

2 contribution in
the potential is necessarily positive and contrasts the negative contribution given by µ3. The
value of ρ at the minimum is given by the solution to eq. (4.3)4 (keeping in mind that |ρ| ≤ 1).
On the contrary, when λ4 < 0, the λ4h

2
1h

2
2ρ

2 contribution is necessarily negative. It adds up
with the negative contribution coming from the µ3 term. In this case, the minimum is found
for ρ = ±1, and the solution to (4.3)4 maximizes the potential. When µ3ϕ1ρχ1χ2 < 0, we
should take cos (φ+ θ) = −1. As a consequence, the contribution from µ3 is again negative,
and the same observations as those made in the µ3ϕ1ρχ1χ2 > 0 case apply.

The normal vacuum in eq. (2.5) corresponds to h2
1 = v2

1/2, h2
2 = v2

2/2, ρ = 1, θ = 2πn,
ϕ2

1 = v2
ϕ/2, φ = 2πn. In particular, we have h1, h2, ϕ1, ρ > 0 and cos (φ+ θ) = 1. Then,

from the above discussion, it is immediate to deduce that there are two scenarios where the
configuration for the normal vacuum in eq. (2.5) can appear as a minimum of the potential:
when µ3 > 0 and λ4 < 0, or when µ3 > 0, λ4 > 0 and the solution to (4.3)4 gives ρ = 1. For
this to happen, λ4 must be λ4 =

√
2µ3vϕ/v1v2. As we will see in the following, the values of

µ3, v1, v2 and vϕ that we will be concerned with in our analysis are such that the vacuum
solution with positive λ4 is not of interest, as it would require too large values of λ4.

Our analysis will only be concerned with normal vacua, and, as usually done, we will
parametrize the VEV of the two Higgs doublets as v1 = v cosβ, v2 = v sin β, where v is
the value of the Higgs VEV in the Standard Model. Concerning the other types of vacua
mentioned above, let us remind that, as shown in [30–33], minima of a different nature
cannot simultaneously coexist at tree-level in the 2HDM. Besides the impossibility of having
minima of different nature at tree-level, it is well known that multiple non-degenerate vacua
of the same nature can simultaneously coexist at tree-level in the 2HDM [34]. The parameter
space must then be restricted to those regions where either the potential does not develop
any minimum deeper than the electroweak-like one or, if it does develop such a minimum,
the tunneling time from the electroweak-like vacuum is larger than the age of the Universe,
τ ≥ τU [35]. The benchmark points that will be considered in our analysis do not develop
any minimum different than the SM one at tree-level, and we do not need to worry about
these issues. Stability of the potential will be investigated at the radiative (one-loop) level
in the later discussion.

Tree-level stability of the potential requires that the quartic coupling matrix2 (in the
basis

(
χ2

1, χ
2
2, ϕ

2
1
)
),

Mλ =


λ1

λ3+ρ2λ4
2

λHϕ

2

λ3+ρ2λ4
2 λ2

λH′ϕ

2
λHϕ

2
λH′ϕ

2 λϕ

 , (4.4)

2In the following equations, we keep a generic ρ. For the normal background configurations considered in
this work, ρ is ρ = 1.

– 9 –



J
H
E
P
0
3
(
2
0
2
5
)
1
2
2

is copositive definite [29]. This gives the conditionsλ1 ≥ 0, λ2 ≥ 0, λϕ ≥ 0,
λ3 + ρ2λ4 + 2

√
λ1λ2 ≥ 0, λHϕ + 2

√
λ1λϕ ≥ 0, λH′ϕ + 2

√
λ2λϕ ≥ 0,

(4.5)

and √
λ1λ2λϕ + λ3 + ρ2λ4

2
√
λϕ + λHϕ

2
√
λ2 +

λH′ϕ

2
√
λ1

+ 1
2

√(
λ3 + 2

√
λ1λ2

) (
λHϕ + 2

√
λ1λϕ

) (
λH′ϕ + 2

√
λ2λϕ

)
≥ 0. (4.6)

Having in mind the typical RG improvement of the potential, in the remainder we will
study radiative stability of the potential at the one-loop level by requiring that the above
conditions (4.5), (4.6) are satisfied with the running couplings λi(µ).

4.2 One-loop effective potential

The gauge structure of the model is such that the scalar degrees of freedom can be restricted
from 10 to 6. As we are only interested in a specific type of configurations and want to
study the potential only in the subspace of neutral CP-even scalars, we further restrict the
problem to a 3-field problem.

We parametrize the doublets and the scalar singlet as

H =
(

ϕ+
1

1√
2(h1 + ρ1 + iη1)

)
, (4.7)

H ′ =
(

ϕ+
2

1√
2(h2 + ρ2 + iη2)

)
, (4.8)

ϕ = 1√
2
(s+ ρ3 + iη3) (4.9)

where h1, h2, s are the background fields of which we want to study the potential.3 The
mass matrices obtained in the (h1, h2, s) background (actually, in a slightly more general
background) are easily calculated and are reported in appendix A.

The tree-level potential for h1, h2 and s is obtained straightforwardly from the expansion
of (2.4),

V0(h1, h2, s) =
µ2

1
2 h

2
1 +

µ2
2
2 h

2
2 +

µ2
ϕ

2 s
2 + λ1

4 h
4
1 +

λ2
4 h

4
2 +

λϕ

4 s
4

+ λ3 + λ4
4 h2

1h
2
2 +

λHϕ

4 h2
1s

2 + λH′ϕ

4 h2
2s

2 − µ3√
2
h1h2s. (4.10)

3As discussed in the appendix, to distinguish contributions that renormalize the |H|2|H ′|2 operator
from contributions that renormalize the |H†H ′|2 operator, we need to consider a slightly more complicated
background configuration, where at least one of the doublets develop an upper component. The (h1, h2, s)
background of equations (4.7)–(4.9) can be re-obtained taking the limit for the upper component to vanish
after renormalization is performed and renormalization group equations have been determined.
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Performing the typical loop integral with the mass terms Mi(h1, h2, s) and indicating with Λ
the cutoff of the theory, we obtain in the physically meaningful limit Λ2 ≫M2

i (Mi indicate
the eigenvalues of the mass matrices)

V1l=
∑

i

(−1)δf,ini
Tr
(
M2

i

)
32π2 Λ2+

∑
i

(−1)δf,i ni

64π2TrM
4
i

(
log
(
M2

i

Λ2

)
−1
2

)
+O(Λ−1), (4.11)

where ni = 12 for the top quark, ni = 4 for the VLL-muon fermion mass matrix (A.28),
ni = 3 for the gauge mass matrix (A.25) and ni = 1 for the scalar one (A.5). If we write
the quadratic contribution in Λ as 1

2
(
α1h

2
1 + α2h

2
2 + αϕs

2)Λ2, we have
α1 = 9g2

64π2 + 3g2
Y

64π2 + 3λ1
8π2 + λ3

8π2 + λ4
16π2 + λHϕ

16π2 − y2
l

8π2 − 3y2
t

8π2 ,

α2 = 9g2

64π2 + 3g2
Y

64π2 +
3g2

Z′
4π2 + 3λ2

8π2 + λ3
8π2 + λ4

16π2 + λH′ϕ

16π2 − y2
E

8π2 ,

α3 =
3g2

Z′
4π2 + λϕ

4π2 + λHϕ

8π2 + λH′ϕ

8π2 − λ2
E

8π2 .

(4.12)

In the above equations we kept the contributions from the muon Yukawa coupling yl. The
reason we keep terms proportional to yl in our calculation is that the latter enters in the
mass matrix that describes the mixing between the muon and the vector-like lepton. As
such, it might happen that yl appears in combination with other couplings that enhance
its contribution.

The Renormalization Group Equations (RGEs) are conveniently extracted requiring
independence from Λ of the full effective potential at the one-loop level, V = V0 +V1l, namely,

Λ d

dΛV = 0 →
(
Λ ∂

∂Λ + µ2
i γµ2

i

∂

∂µ2
i

+ βµ3
∂

∂µ3
+ βλi

∂

∂λi
− γiϕi

∂

∂ϕi

)
V = 0 (4.13)

where i runs over h1, h2, s while β and γ indicate the beta functions and anomalous dimensions,
respectively. We show the various RGEs extracted from this equation, together with all
the other necessary RGEs, in appendix B.

To implement the fact that the contribution from a state of running mass m(µ) is
approximately frozen at scales µ below m(µ) [36], we supplement the RGEs found from the
one-loop calculations, and presented in appendix B, with threshold corrections in the form
of the Heaviside theta function θ(µ2 − m2(µ)).

4.3 Conditions from SM anomalies

Taking into account the parameter space motivated by both the muon g− 2 and the W boson
mass in ref. [14], we consider the following set of boundary values at low energy:4

ME = 1TeV,
sin β = 0.18,
sin θL = 0.01 → yE = 0.32,

sin θR = 0.011 →

if vϕ =
√
2× 200GeV → λE = 0.055 ;

if vϕ =
√
2× 150GeV → λE = 0.073,

m
Z′ = 500GeV →

if vϕ =
√
2× 200GeV → g

Z′ = 0.87 ;
if vϕ =

√
2× 150GeV → g

Z′ = 1.15.
4As compared to ref. [14], we use the convention ϕ = (s + iη3)/

√
2. Accordingly, the vacuum value of ϕ, vϕ,

in our work, corresponds to
√

2 times the vacuum value of ϕ in [14].
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Here, we took two cases for the VEV of the singlet scalar, vs = vϕ/
√
2 = 200GeV and

vs = 150GeV. From m2
Z′ = 4g2

Z′

(
v2 sin2 β + v2

ϕ

)
, which is the diagonal term of the neutral

gauge boson mass matrix M2
Z in the Z ′ direction, we can determine g

Z′ for given sin β and
m

Z′ . Moreover, we can also determine λE for seesaw muon mass.
We now list up the procedure for determining the boundary values of the rest of the

parameters in our model. From mW = gv/2, the IR boundary condition for g is the same as in
the SM. Concerning the Z boson, mZ =

√
g2 + g2

Y v/2 is the diagonal term of the M2
Z matrix

in the Z direction. The boundary value for gY is found imposing that the smaller eigenvalue
of M2

Z is the measured Z mass. Finally, since the top and the muon only couple to h1, but
not to h2, the bare mass terms generated by the scalar VEVs for them are mt = ytv1/

√
2 and

ml = ylv1/
√
2, respectively. This means that the boundary conditions for yt and yl are not

the same as in the SM, but are rather magnified by a factor cos−1 β.We note that the seesaw
mass generated by the mixing with the vector-like lepton gives a negative contribution to the
muon mass5 [14], so yl can be larger than the one in the SM. To avoid a significant tuning
for the muon mass, we keep yl of order similar to the SM one, namely yl = y

(SM)
l cos−1 β.

After imposing the above phenomenological constraints, we still have the remaining 11
parameters to fix: µ1, µ2, µϕ, λ1, λ2, λϕ, λ3, λ4, λHϕ, λH′ϕ, µ3. To proceed further, we continue
to follow [14] and take the following steps.

Some of the non-diagonal terms of the scalar mass matrix M2
H (see eq. (A.5) and the

following discussion), namely, M2
H,13 and M2

H,23, can be put to zero in the vacuum (v1, v2, vϕ)
by the convenient choice,

λHϕ = µ3 tan β√
2vϕ

, λH′ϕ = µ3 cotβ√
2vϕ

. (4.14)

These conditions decouple the dark Higgs ϕ from the two Higgs doublets H and H ′. With
this choice, the third minimization condition in (4.3) reads µ2

ϕ + λϕv
2
ϕ = 0, and M2

H,33 gives
rise to the mass eigenvalue for the singlet scalar,

m2
ϕ ≡M2

H,33 = 2λϕv
2
ϕ + µ3

2
√
2
sin(2β)v

2

vϕ
. (4.15)

The 2 × 2 upper matrix of M2
H , that we denote by M̃2

H , can be simplified using the
minimization equations in (4.3). It takes the form

M̃2
H =

 2λ1v
2
1 + µ3√

2 tan β vϕ λ34v1v2 − µ3√
2vϕ

λ34v1v2 − µ3√
2vϕ 2λ2v

2
2 + µ3√

2 cotβ vϕ

 , (4.16)

where we defined λ34 ≡ λ3 + λ4. Taking the tan β-independent solution for the alignment
limit of the two doublets as in [14], that amounts to set the relations

λ1 = λ2 = λ34
2 , (4.17)

5In the seesaw limit, the lowest eigenvalue of the fermion mass matrix is ml1 ∼ m0 − mRmL
ME

. The symbols
m0, mR and mL are defined in appendix A.
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among the quartic couplings, a further simplification arises. With this input, in fact, we
get the eigenvalues of M̃2

H as6

m2
h1 = 2λ1v

2, m2
h2 =

√
2µ3vϕ sin−1(2β). (4.18)

To recover the SM Higgs in the decoupling limit of H ′ and ϕ, we identify the first of these
two physical masses with the SM Higgs mass. Therefore, the boundary value of λ1 (and
consequently that of λ2 and λ34/2) is the same one as the boundary value for the Higgs
quartic coupling in the SM. As first shown in [38] and further stressed in [14], it is interesting
to observe that, when the above condition (4.17) is satisfied, the alignment of the two Higgs
doublets is motivated by the fact that the H-H ′ scale invariant sector of the scalar potential
is maximally symmetric.

The combination of all the relations and conditions described above leaves us with
only three free independent parameters. We can conveniently choose them to be λϕ, µ3
and λ3. In fact, from µ2

ϕ + λϕv
2
ϕ = 0 we see that the choice of λϕ determines the value of

µϕ. The choice of µ3 determines both λHϕ and λH′ϕ from (4.14), and µ1 and µ2 from the
minimization equations (4.3)1 and (4.3)2. Finally, the values of λ3 and λ4 are subject to the
condition λ34 = 2λ1, so that the choice of one fixes the other. As the dependence of the
results on the choice of the couple (λ3, λ4) that realizes the condition λ34 = 2λ1 is absolutely
straightforward, in our investigation we will study the (λϕ, µ3) parameter space and, for
each of the points in it, we will consider the choice (λ3, λ4) = (2λ1, 0). In this respect, we
recall that, for consistency, λ4 should be λ4 ≤ 0, so any other choice would have to be of
the form (λ3, λ4) = (2λ1 + δ,−δ), with δ > 0. It is easily seen that any admissible choice,
that is any choice that keeps the couplings in the perturbative regime at sufficiently low
energies, gives, for all practical reasons, the same results.

4.4 Running couplings from the alignment limit in the IR

Having established the number of independent parameters of the presently considered scenario
in the previous subsection, we now consider some further constraints on the (λϕ, µ3) parameter
space and perform the RG analysis of the running couplings.

A necessary requirement for a BSM theory to be phenomenologically viable is that new
particle states are heavier than the SM ones if they are strongly coupled to the SM. In
the scalar sector of our model, and within the scenario considered thus far, h2 and s are
heavier than the Higgs provided that

µ3 >
√
2λ1 sin(2β) v2

vϕ
,

2λϕv
2
ϕ + µ3

2
√

2 sin(2β)
v2

vϕ
> 2λ1v

2,
(4.19)

respectively. On top of that, perturbativity requires, among others, λϕ, λHϕ, λH′ϕ ≤ 4π and
µ2

3 ≲ 4πm̄2, where m̄ is the heaviest among the physical masses of the scalars h1, h2, and s.
A further restriction on the (λϕ, µ3) parameter space arises from the stability condi-

tions (4.5) of the potential. In fact, from the first line in (4.5), λϕ must be λϕ ≥ 0. The other
inequalities in (4.5), (4.6) are then all trivially respected in this scenario.

6For simplicity, below we use the same symbols as for the interaction eigenstate and indicate the mass
eigenstates with h1 and h2.
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Figure 4. Benchmark points in the parameter space for λϕ vs µ3. We chose vϕ =
√
2× 150GeV on

left panel and vϕ =
√
2× 200GeV on right panel. In both panels, the blue region indicates the portion

of parameter space where the second condition in (4.19) (ms ≥ mh1) is respected. Above the light
green curve, the first condition in (4.19) (mh2 > mh1) is respected. We have ms > mh2 in the orange
region. The points are benchmark points to be presented in table 2 and table 3.

The relevant bounds and the hierarchies between physical masses are shown in figure 4.
In the blue and orange regions, the first condition in (4.19) (mh2 > mh1) and ms > mh2 are
satisfied, respectively. In the region above the light green curve, the first condition in (4.19)
(mh2 > mh1) is respected. However, ms > mh1 and ms > mh2 are not necessary conditions
when the dark Higgs is decoupled from the two doublets. They are rather useful to show
the hierarchy between the masses, from which we deduce the relevant unitarity condition
as µ2

3 ≲ 4πm̄2 where m̄2 is the heaviest of the three masses. On the contrary, mh2 > mh1 is
necessary to get the Higgs couplings consistent with the LHC results and avoid the current
LHC bounds on extra scalars in 2HDMs. We indicated with a red dot the benchmark points
that will be taken later to analyse the running of the parameters in table 2 and table 3.

Performing a numerical investigation of the parameter space, we find as a general feature
that the couplings tend to develop a singularity at unacceptably low scales (perturbativity is
then clearly lost at lower energies). It is easily understood, comparing to analytic solutions
of isolated RGEs for a single coupling, that the singularity encountered by the numerical
algorithm is nothing but the Landau pole of the theory (see below for an example of such a
comparison). The reason for such low Landau poles is explained below.

Except for λ1, the beta functions of the scalar couplings in our model are strongly
unbalanced in favour of the bosonic contributions. The IR boundary values of the additional
fermion couplings are too small to counterbalance them. For instance, the Yukawa couplings
are taken as yE = 0.32 while the IR value of λE varies from λE = 0.073 to λE = 0.055 for
vs = 150GeV and vs = 200GeV, respectively. The IR value of the Z ′ gauge coupling takes
the value g

Z′ = 1.15 and g
Z′ = 0.87 for vs = 150GeV and vs = 200GeV, so it is largely the

dominant one in the RG equations and rapidly drives the scalar couplings to large values.
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Benchmark points in figure 4 (Left): vϕ =
√
2× 150GeV

Point λϕ µ3
(GeV)

Landau
pole (×104 GeV)

Perturbativity
(×103 GeV)

mh2

(GeV)
ms

(GeV)
∆aµ ×
109

∆mW

(MeV)
A 0.1 19 3.09 10.5 127 98 2.25 70.30
B 0.6 19 2.96 10.2 127 234 2.25 70.30
C 1.1 19 2.73 9.69 127 316 2.25 70.30
D 1.6 19 2.40 9.13 127 380 2.25 70.30
E 0.6 50 2.83 9.55 206 236 2.25 70.30
F 1.1 50 2.60 9.08 206 317 2.25 70.30
G 1.6 50 2.28 8.64 206 382 2.25 70.30
H 2.1 50 1.90 7.92 206 437 2.25 70.30
I 0.6 99 2.61 8.59 290 240 2.25 70.30
L 1.1 99 2.37 8.06 290 320 2.25 70.30
M 1.6 99 2.07 7.55 290 384 2.25 70.30
N 2.1 99 1.73 7.00 290 439 2.25 70.30
O 2.6 99 1.40 6.42 290 487 2.25 70.30

Table 2. Landau pole and perturbativity scales for the benchmark points in the left plot of figure 4.
The IR value of the couplings λ3 and λ4 have been fixed to (λ3, λ4)=(2λ1, 0).

On top of that, the greater the value of µ3, the greater the IR values of λH′ϕ and λHϕ, so
that positive bosonic contributions are even more unbalanced as we take larger values of the
cubic coupling µ3. In this respect, it is worth to note that the decoupling condition (4.14)
is such that λH′ϕ ∼ 30λHϕ. For the lowest values of µ3 in agreement with (4.19) and
λϕ = 0.1 (phenomenologically we need even larger values of µ3 for the additional scalars to
be heavy enough), we find a singularity around µ = 31TeV for vs = 150GeV and around
µ = 636TeV for vs = 200GeV.

Table 2 and table 3 below show the scales where the Landau pole appears and perturba-
tivity is lost for the benchmark points in the left and right plots of figure 4, respectively. The
way these scales vary in the (λϕ, µ3) parameter space is easily inferred from the results. As
expected, the smaller the values of λϕ and µ3, the higher these scales are. However, they do
not show a very large sensitivity to changes in the values of λϕ and µ3. As already mentioned,
the sensitivity to the specific choice of the (λ3, λ4) couple is much more suppressed, and is
typically beyond the accuracy of our investigation. Nevertheless, it can be seen that among
all the possible choices that respect the condition λ3 + λ4 = 2λ1 with λ4 ≤ 0, the one we
chose, that is λ3 = 2λ1, λ4 = 0, is the one with the highest Landau pole.

The two cases considered vs = 150GeV and vs = 200GeV correspond to the central value
and the highest possible value found in [14] to fit the muon g − 2 within 2σ, respectively, but
they predict dangerously low scales for Landau pole and perturbativity. As can be easily
inferred from a comparison of table 2 and table 3, models with larger values of vs push the
problematic scales to slightly higher values. This is mainly due to the fact that g

Z′ is inversely
proportional to vs. In fact, we will see in next section that the ∼TeV scale Landau pole is
mainly generated by the too large IR value of g

Z′ considered in [14].
More generally, in the following subsections we will systematically address issues found

that will present themselves in the RG analysis of the benchmark points. This will drive
us to a different and somehow restricted region of the parameter space.
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Benchmark points in figure 4 (Right): vϕ =
√
2× 200GeV

Point λϕ µ3
(GeV)

Landau
pole (×105 GeV)

Perturbativity
(×105 GeV)

mh2

(GeV)
ms

(GeV)
∆aµ ×
109

∆mW

(MeV)
A 0.1 19 6.32 2.22 146 129 1.29 40.64
B 0.6 19 5.37 1.93 146 311 1.29 40.64
C 1.1 19 3.56 1.53 146 420 1.29 40.64
D 1.6 19 1.72 0.870 146 507 1.29 40.64
E 0.6 50 4.81 1.71 238 312 1.29 40.64
F 1.1 50 3.16 1.34 238 421 1.29 40.64
G 1.6 50 1.56 0.79 238 507 1.29 40.64
H 2.1 50 0.616 3.09 238 581 1.29 40.64
I 0.6 100 3.87 1.35 336 314 1.29 40.64
L 1.1 100 2.50 1.04 336 423 1.29 40.64
M 1.6 100 1.28 0.65 336 509 1.29 40.64
N 2.1 100 0.541 0.273 336 582 1.29 40.64
O 2.6 100 0.260 0.131 336 647 1.29 40.64

Table 3. Landau pole and perturbativity scales for benchmark points in the right plot of figure 4.
The same choice has been made for λ3 and λ4.

4.5 Z′ mass dependence of the Landau pole

We advanced in the previous section that the major architect of the low Landau pole is the
large IR value of g

Z′ . The study of the RGEs with m
Z′ < 500GeV, that correspond to lower

values of g
Z′ , confirms this expectation. For instance, taking the parameters given in point A

for vs = 200GeV and m
Z′ = 250GeV, one finds a singularity at 7.89× 1013 GeV: reducing

m
Z′ by a factor 1/2 pushes the singularity (and with it, the perturbativity scale) 8 order of

magnitudes forward. Other representative cases are collected in table 3, where it is seen that,
for vs = 200GeV and λϕ = 0.1, the Landau pole can be brought around the Planck scale by
taking m

Z′ = 200GeV. For vs = 150GeV and λϕ = 0.4, a scenario that is of greater interest
in light of the results shown in figure 1 and of the values of the masses reported in table 2
and table 3, a Planck scale Landau pole cannot be obtained: further decreases of m

Z′ do
not make any improvement on the results displayed for m

Z′ = 200GeV. We will try in the
following to relax some assumptions on the scalar couplings to further increase the pole scale
while still fitting the experimental anomalies. We note that besides the above theoretical
remarks, values for m

Z′ smaller than 250GeV are phenomenologically disfavored by the direct
Z ′ searches at the LHC, as discussed in section 3, and we will not consider them.

Concerning the decrease of the IR value of m
Z′ , it should be noted that the solution to

the W boson mass anomaly presented in [14], that, as recalled above, is based on a tree-level
correction to the W self-energy due to the Z-Z ′ mixing, requires m

Z′ to be sufficiently larger
than mZ . In this case, in fact, BSM physics brings in a positive correction to the mass, and
a region of parameter space where the CDF II measurement can be explained within 1σ
was found [14]. On the contrary, in the opposite limit m

Z′ ≪ mZ , the contribution to the
W boson mass from BSM physics is negative. Clearly, the findings from CDF II cannot be
accommodated with the inverted hierarchy. As can be seen in table 41 (see also figure 1,
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Figure 5. The blue points indicate the Landau pole of the full model, the red ones the Landau pole
of eq. (4.20) for two sets of parameters in table 4: the upper table for the left panel and the lower
table for the right panel.

where a different value for λϕ was taken), the correction ∆aµ to the muon g − 2 and the
correction ∆mW to the W boson mass are still of the right order to fit the experimental
anomalies for m

Z′ ≳ 250GeV, i.e. for values of m
Z′ in agreement with LHC searches for

additional Z bosons and below which the Landau pole does not sensibly increase any more.
A more quantitative estimate of the role of g

Z′ in generating the low scale Landau pole
can be obtained taking the RGE for g

Z′ ,

µ
d

dµ
g

Z′ (µ) =
7

12π2 g
3
Z′ (µ) −→ g

Z′ =
1√

1
g2

Z′ (µIR ) −
7

6π2 log
(

µ
µIR

) , (4.20)

and calculating its Landau pole µL = µIRe
6π2/7g2

Z′ (µIR ) for the different IR values of g
Z′ in

the two sets of the parameters in table 4. The Landau pole of the full model is compared
to µL in figure 5, where it can be seen that the higher the value of m

Z′ (g
Z′ ), the closer

the two are. It is easy to conclude from this plot that, for “high enough” (IR) values of
g

Z′ , the Landau pole is almost fully determined by the gauge coupling, that, through its
contribution in their beta functions, causes the other couplings to diverge at slightly lower
values. Lowering the (IR) value of g

Z′ , the Landau pole of (4.20) becomes considerably higher
than that of the full model. In this region of parameter space, the appearance of the Landau
pole is a more “collective” phenomenon. All the couplings conspire together to generate it,
and the determination of the pole scale from the RG equation of g

Z′ taken in isolation does
not provide a good approximation to the pole scale of the full model any more.

It is worthwhile to make comments on the effects of two-loop corrections in view of the
low scale Landau pole, although a complete two-loop analysis in our model is beyond the
scope of our current work. The RG equation for the extra gauge coupling at the two-loop
level [37] is given by

µ
d

dµ
g

Z′ (µ) =
7

12π2 g
3
Z′ +

1
(4π)4

(
256g5

Z′ − 16g3
Z′ (λ

2
E + 2y2

E)
)
. (4.21)

Then, ignoring the running of the extra Yukawa couplings, λE and yE , we get the approximate
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Figure 6. Running g
Z′ coupling at one-loop and two-loop levels, in black solid and blue dashed

lines, respectively. We considered two benchmark models with (g
Z′ , λE , yE) = (0.87, 0.055, 0.32) and

(1.15, 0.073, 0.32), on the left and right plots, respectively.

solution for the running extra gauge coupling at two-loops as

g
Z′ (µ) ≃

 1
g2

Z′ (µIR)
−

98 log
(

µ
µIR

)
3(28π2 + 3λ2

E + 6y2
E)

−
96 log

(
g

Z′ (µ)
g

Z′ (µIR )

)
28π2 + 3λ2

E + 6y2
E


−1/2

. (4.22)

Then, we get the Landau pole modified to

µL ≃ µIR exp
[ 6π2

7g2
Z′ (µIR)

(
1 + 3λ2

E

28π2 + 3y2
E

14π2

)
− 144

49 log
(
g

Z′ (µL)
g

Z′ (µIR)

)]
. (4.23)

Here, we can take the extra gauge coupling at the Landau pole in the correction term as
g

Z′ (µL) = 4π for which perturbativity breaks down. For instance, for λE = 0.055− 0.073 and
yE = 0.32 in our benchmark models in section 4.3, we find that the scale of the Landau pole
gets reduced sizably at two-loop order due to the two-loop gauge interactions, as compared
to the one-loop results. In the left and right plots in figure 6, we also depict the running g

Z′

for the same benchmark models by the numerical analysis at one-loop and two-loop levels,
in black solid and blue dashed lines, respectively. As a result, we find that the two-loop
corrections are minor far away from the Landau pole, but they become important near the
Landau pole. However, the very existence of the Landau pole at a low scale can be identified
by the one-loop results, indicating the violation of perturbativity, so we can rely on the
one-loop corrections in our RG analysis to extract the meaningful information on the Landau
pole. Similar conclusions can be drawn for the perturbativity and stability of the other
running couplings such as the Higgs quartic couplings in our model, but we postpone the
detailed analysis with two-loop corrections to another work.

When the pole scale is increased above ∼ 108 GeV, the range of the flow is large enough
to see the appearance of an instability of the scalar potential. As in the SM, this is due to the
fact that the Higgs-like quartic coupling λ1(µ) becomes negative while running toward high
energies.7 The scale where such an instability appears is indicated for some representative

7The other stability conditions (4.5), (4.6) are respected with the running couplings for all (admissible)
values of µ.
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Parameter set: vϕ =
√
2× 150GeV, λϕ = 0.4, µ3 = 50GeV, sin β = 0.18

m
Z′ (GeV) → g

Z′ LP (GeV) Pert (GeV) VSB (GeV) ∆aµ × 109 ∆mW (MeV)
500 → 1.15 2.90× 104 9.71× 103 − 2.25 70.30
450 → 1.04 6.51× 104 2.18× 104 − 2.15 70.25
400 → 0.92 2.02× 105 6.86× 104 − 2.06 70.17
350 → 0.81 1.02× 106 3.59× 105 − 1.97 70.01
300 → 0.69 1.09× 107 4.07× 106 − 1.88 69.66
250 → 0.58 3.05× 108 1.36× 108 − 1.80 68.75
200 → 0.46 1.22× 1010 7.83× 109 2.50× 108 1.72 68.61

Parameter set: vϕ =
√
2× 200GeV, λϕ = 0.1, µ3 = 19GeV, sin β = 0.18

m
Z′ (GeV) → g

Z′ LP (GeV) Pert (GeV) VSB (GeV) ∆aµ × 109 ∆mW (MeV)
500 → 0.87 6.32× 105 2.22× 105 − 1.29 40.64
450 → 0.79 2.91× 106 1.04× 106 − 1.23 40.61
400 → 0.70 2.46× 107 9.15× 106 − 1.18 40.56
350 → 0.61 5.32× 108 2.08× 108 1.35× 108 1.13 40.47
300 → 0.52 5.30× 1010 2.23× 1010 1.19× 108 1.08 40.27
250 → 0.44 6.43× 1013 3.10× 1013 1.59× 108 1.03 39.75
200 → 0.35 3.08× 1018 1.82× 1018 2.49× 108 0.99 37.94

Table 4. Landau pole (LP), Perturbativity (Pert) and Vacuum stability (VSB) scales for some
Z ′ masses with two examples for the parameter set. In the last two columns, we also showed the
numerical values of the corrections to the muon g − 2 and the W boson mass in our model.

1000 105 107 109
-0.02
0.00
0.02
0.04
0.06
0.08
0.10
0.12

100 105 108 1011 1014 1017

0.00

0.05

0.10

Figure 7. The blue curve indicates the flow of λ1 for the choice of parameters corresponding to point
A in table 3 and with m

Z′ = 300GeV (left panel) m
Z′ = 200GeV (right panel). The yellow curve

corresponds to the flow of λ1 in the Standard Model.

cases in table 4. This should be compared to the corresponding case of the SM, where, with
our parametrization, λ(µ) = 0 for µ ∼ 1.48 × 108 GeV at the one-loop level.8 The shift in
the IR boundary value of the top coupling caused by the cosβ factor in mt = ytv cosβ/

√
2

competes with the presence of several additional bosonic states in such a way that, with
the IR boundary values chosen in table 4, the instability scale does not change much with
respect to the SM one.

8With our parametrization, the SM quartic coupling vanishes for µ ∼ 1.25 × 1010 GeV at the two-loops.
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In figure 7, a comparison between the flow of λ1(µ) in our model and the flow of λ(µ)
in the SM can be found for vs = 200GeV, λϕ = 0.1, µ3 = 19GeV and m

Z′ = 300GeV
(left panel), m

Z′ = 200GeV (right panel). This choice of parameters allow to have a larger
domain for the RG evolution. The behaviour of λ1(µ) just discussed goes against the naive
expectation that the presence of (several) additional bosonic states automatically improves
stability; there is rather a delicate competition between the enhanced top quark contribution
and the BSM ones. As we will see below, radiative stability of the potential can be realized,
but the positive shift in the top coupling caused by the enlargement of the scalar sector makes
it a not too trivial matter. It should also be noted that, thanks to the additional bosonic
degrees of freedom, after crossing zero λ1(µ) soon stops its descent and starts to grow faster
than in the SM. In the case depicted in figure 72, for instance, the coupling becomes positive
again for µ ≳ 1016 GeV before reaching its Landau pole at µ ∼ 3 × 1018 GeV.

5 General alignment limits in the IR

We extend the RG analysis to the cases where the doublets are not completely decoupled
from the scalar singlet, and their quartic couplings do not necessarily realize alignment.

5.1 Detuning quartic couplings

So far, we followed [14] in the determination of the conditions for alignment. Namely, we
took the condition λ1 = λ2 = λ34/2 for the IR parameters that, as stressed above, was shown
in [38] to correspond to the maximally symmetric configuration for the scale-invariant sector
of the classical potential V (ϕ,H,H ′) in (2.4). As already observed in [14], however, this is
only a particular solution that realizes the alignment of the two Higgs doublets. Below, we
derive the general solution for alignment imposing as a constraint that the lowest eigenvalue
of the 2× 2 mass matrix M̃2

H (4.16) coincides with the physical Higgs boson mass.
Taking M̃2

H , that we rewrite here for the ease of the reader,

M̃2
H =

 2λ1v
2
1 + µ3√

2 tan β vϕ λ34v1v2 − µ3√
2vϕ

λ34v1v2 − µ3√
2vϕ 2λ2v

2
2 + µ3√

2 cotβ vϕ

 ,
and applying a rotation of angle β parametrized by the matrix Sβ, we obtain

M̃2
H, β ≡ S−1

β M̃2
HSβ =

A C

C B

 , (5.1)

with

A = 2
(
λ1 cos4 β + λ34 cos2 β sin2 β + λ2 sin4 β

)
v2, (5.2)

B = 1√
2

µ3vϕ

sin β cosβ + 2 sin2 β cos2 β (λ1 + λ2 − λ34) v2, (5.3)

C =
(
(λ34 − 2λ1) cos3 β sin β + (2λ2 − λ34) sin3 β cosβ

)
v2. (5.4)
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In the following, we denote with h and h′ the two mass eigenstates obtained after diag-
onalization:  h

h′

 = S−1
β

 h1

h2

 . (5.5)

In terms of λ34, the general solution to the equation C = 0 reads

λ34 = 2λ1 − λ2 tan2 β

1− tan2 β
. (5.6)

For later convenience, it is useful to also solve (5.6) in terms of tan β as (this is only well
defined when 2λ2 − λ34 ̸= 0)

tan2 β = 2λ1 − λ34
2λ2 − λ34

. (5.7)

Moreover, for A to be the SM Higgs squared mass m2
h = 2λSMv

2, we need9 λ1 cos4 β +
λ3 cos2 β sin2 β + λ2 sin4 β = λSM, where λSM is the Standard Model Higgs quartic coupling.
In passing, we note that this condition also guarantees that the three and four point vertices
for the Higgs boson h obtained after diagonalization are the same as in the SM. Solving
for λ2, we get

λ2 = λ1 + (λ1 − λSM) cos 2βsin4 β
. (5.8)

Finally, inserting (5.8) in (5.6), the latter becomes

λ34 = 2λ1 − 2 λ1 − λSM
sin2 β

. (5.9)

These last equations are quite interesting, as they tell us how much a detuning of λ1
from λSM affects λ2 and λ34 if we keep the SM Higgs in the alignment limit. It is immediate
to realize that, for small β (as required by the W boson mass as well as LHC bounds), the
coefficient cos 2β/ sin4 β in front of λ1−λSM in (5.8) (the coefficient 1/ sin2 β as well, although
it is obviously smaller) is very large. For instance, for sin β = 0.18 we have cos 2β/ sin4 β ∼ 891
and 1/ sin2 β ∼ 31. Needless to say, “large” values of the scalar couplings are unacceptable,
as they easily result in too low Landau pole scales. For instance, a 0.47% relative detuning
of λ1 with respect to the last example shown in table 42, λ1 − λSM = 0.0006 (we take
λSM = 0.1272 at the top scale mt), results in a 421% relative detuning of λ2, λ2 −λSM = 0.54,
a 14% relative detuning of λ34, λ34 − 2λSM = −0.04, and brings the Landau pole down from
µL ∼ 3 × 1018 GeV to µL ∼ 7 × 107 GeV.

The extreme sensitivity of the couplings, especially of λ2, to the detuning of λ1 from
λSM tells us that the constraint brought by eq. (5.8) is extremely tight. Detuning λ1 to

9For consistency, this should be accompanied by

µ3vϕ√
2 sin β cos β

≥
(

λ1 + λ2 + λ1 − λ2

cos 2β

)
,

otherwise the second Higgs boson h′ is lighter than the SM Higgs.
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larger values λ1 > λSM might stabilize the vacuum, but we see here that it does not come
without cost. For benchmark points as the last one in table 41, one can device a small enough
detuning to shift the λ1(µ) curve all in the upper half plane up to a Landau pole that is
sufficiently far from the SM (one-loop) instability scale µ ∼ 108 GeV, making the indication of
one-loop vacuum stability quite trustable. However, the same cannot be done for benchmarks
of phenomenological interest, such as the m

Z′ ≳ 250GeV ones in table 42. There is in fact
too little a hierarchy between the Landau pole in the tuned scenario and the instability scale
(when it exists) to shift the couplings and obtain truthful indications for stability.

Before closing this section, we should note that (5.8), as well as a slight generalization
of (5.9), is not restricted to the present model, but is of more general validity for 2-Higgs
doublet models. In M̃2

S , in fact, the dark Higgs field ϕ only accounts for the presence
of µ3, from which A and C are independent. More precisely, after a Z2 symmetry H1 →
H1, H2 → −H2 is imposed and a real small breaking parameter µ12 is inserted, the inert
2-Higgs doublet model’s potential reads

V = µ2
1|H1|2 + µ2|H2|2 − µ2

12

(
H†

1H2 + h.c.
)
+ λ1|H1|4 + λ2|H2|4 + λ3|H1|2|H2|2

+ λ4|H†
1H2|2 +

λ5
2
(
(H†

1H2)2 + (H†
2H1)2

)
. (5.10)

Using the minimization conditions, that for a normal vacuum

H1 = 1√
2

 0

v1

 , H2 = 1√
2

 0

v2

 (5.11)

with v2/v1 = tan β, amount toµ2
1 + λ1v

2
1 + λ3+λ4+λ5

2 v2
2 = µ2

12
v2
v1
,

µ2
2 + λ2v

2
2 + λ3+λ4+λ5

2 v2
1 = µ2

12
v1
v2
,

(5.12)

and defining λ345 ≡ λ3 + λ4 + λ5, the neutral CP-even mass matrix reads, in the vacuum,

M2 =

 2λ1v
2
1 + µ2

12 tan β λ345v
2 sin β cosβ − µ2

12

λ345v
2 sin β cosβ − µ2

12 2λ2v
2
2 + µ2

12 cotβ

 .
The above matrix is the same as M̃2

S in (4.16) with µ3vϕ/
√
2 replaced by µ2

12 and λ34
replaced by λ345. A rotation by an angle β would then produce the same matrix as (5.1), with
replacements in A, B and C similar to those discussed above. The equations A = 2λSMv

2

and C = 0 then result in the conditionsλ345 = 2λ1 − 2 λ1−λSM
sin2 β

λ2 = λ1 + (λ1 − λSM) cos 2β
sin4 β

,
(5.13)

that provide only a slight generalization to (5.8) and (5.9). The consequences, of course,
are the same.
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5.2 General decoupling of the singlet scalar

Acceptable values of the additional bosons’ physical masses are obtained only with sufficiently
large values of µ3. As cotβ ∼ 5.5, large values of µ3 can easily results in dangerously
large IR values for λH′ϕ.

The decoupling scenario of [14], where the scalar field s is decoupled from h1 and h2,
can actually be relaxed to a more general scenario, within which large values of µ3 can be
more easily accommodated, and the Landau poles found for vs = 150GeV can be slightly
uplifted. Taking the 3× 3 scalar mass matrix M2

H (A.5) in the vacuum, in fact, we can first
diagonalize its 2× 2 upper part (M̃2

H), which results in the change of basis (h1, h2) → (h, h′),
and then require the scalar s to be decoupled from the physical Higgs boson h. Borrowing
the notation of appendix A for the components of M2

H , after a rotation of angle α in the
(h1, h2) subspace the mass matrix M2

H reads

M2
H =

A B C

B D E

C E F

 , (5.14)

with

A = 1
2
(
M2

H, 11 +M2
H, 22 + (M2

H, 11 −M2
H, 22) cos 2α+ 2M2

H, 12 sin 2α
)
, (5.15)

B = 1
2
(
M2

H, 22 −M2
H, 11

)
sin 2α+M2

H, 12 cos 2α, (5.16)

C =M2
H, 13 cosα+M2

H, 23 sinα, (5.17)

D = 1
2
(
M2

H, 11 +M2
H, 22 − (M2

H, 11 −M2
H, 22) cos 2α− 2M2

H, 12 sin 2α
)
, (5.18)

E =M2
H, 23 cosα−M2

H, 13 sinα, (5.19)
F =M2

H, 33. (5.20)

As it is well-known, the diagonalization condition B = 0 reads

tan 2α = −2
M2

H, 12
M2

H, 22 −M2
H, 11

, (5.21)

and A must be A = m2
h, with mh the Higgs mass. Decoupling the Higgs h from s amounts

to require

M2
H, 13 cosα+M2

H, 23 sinα = 0. (5.22)

Plugging the explicit expressions of M2
H, 13 (A.9) and M2

H, 23 (A.10) in (5.22), we obtain(
λHϕ cosα cosβ + λH′ϕ sinα sin β

)
vϕ = µ3√

2
(cosα sin β + sinα cosβ) . (5.23)

In the alignment limit α = β, the above expression simplifies to(
λHϕ cos2 β + λH′ϕ sin2 β

)
vϕ =

√
2µ3 sin β cosβ. (5.24)

It is immediate to verify that λHϕ = µ3 tan β/(
√
2 vϕ) and λH′ϕ = µ3 cotβ/(

√
2 vϕ) give a

specific solution of (5.24) that also realize E = 0, as it should.
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Figure 8. Comparison between the flow of λ1(µ) (blue curve) and the flow of λ(µ) in the Standard
Model (yellow curve) for the benchmark point with m

Z′ = 250GeV in table 41 in the detuned scenario
with IR boundary values λ1 = 0.12746, λ4 = 0, λH′ϕ = −2

√
λ2λϕ ∼ −0.758, λHϕ =

√
2µ3 tan β

vϕ
−

λH′ϕ tan2 β ∼ 0.086 and λ2, λ3 determined from (5.8) and (5.9), respectively.

With the conditions above, the “semi-diagonalized” matrix becomes
λ− 0 0
0 λ+ M2

H, 23
cos α

0 M2
H, 23

cos α M2
H, 33

 , (5.25)

with

λ±= 1
2

M2
H,11+M2

H,22±
(
M2

H,22−M2
H,11

)√√√√(M2
H,22−M2

H,11)2+4M4
H,12

(M2
H,22−M2

H,11)2

 . (5.26)

As we want the Higgs to be the lightest scalar, we also require λ− < λ+. This is satisfied
when M2

H, 22 > M2
H, 11, in which case the above expressions for λ± easily simplify. Finally,

the eigenvalues of the 2× 2 lower mass matrix will give the physical masses of the additional
scalars as

m2
± = 1

2

λ+ +M2
H, 33 ±

√(
λ+ −M2

H, 33

)2
+ 4

M4
H, 23

cos2 α

 . (5.27)

Using the general solution for decoupling described in this section, we can now study
the RG flow of the parameters from the benchmark point with m

Z′ = 250GeV in table 41
as we take different solutions of eq. (5.24) for λHϕ and λH′ϕ. The numerical investigation
indicate that higher values for the Landau pole are obtained for higher values of λHϕ.
In particular, the highest possible value is found combining eq. (5.24) with the stability
conditions (4.5), (4.6), in particular saturating the inequality λH′ϕ + 2

√
λ2λϕ ≥ 0. For the

(λHϕ, λH′ϕ) couple determined in this way, we find µL ∼ 2.18× 109 GeV and an instability
scale µi ∼ 1.03 × 108 GeV for λ1 = λSM. A detuning of λ1 then allows to find points that
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generate Landau pole scales µL ≲ 109 GeV and a one-loop stable potential up to µL. For
instance, we find µL ∼ 9.69× 108 GeV, with a perturbativity scale µP ∼ 5.47× 108 GeV, and
the flow reported in figure 8 for a 0.2% detuning of λ1 (λ1 = 0.12746). Another convenient
choice for λHϕ and λH′ϕ might be λHϕ = λH′ϕ, for which we find µL ∼ 1.33 × 109 GeV in
the tuned scenario (λ1 = λSM). The differences between the two cases are too small to be
considered as significant ones within our one-loop investigation, whose aim is rather to assess
the viability of our model with respect to its flow towards the UV, to find the approximate
scale at which new physics should complete it, and understand whether it can lead to a
(more) stable potential or not. We will see, in the next section, that the second choice is
actually more interesting as it will leave us more freedom to explore the parameter space
of the theory when the two doublets are not aligned.

5.3 Breaking the alignment

We comment in this section on the possibility of relaxing the assumption that the two
doublets are in the aligned limit. We consider, instead, the (h1, h2) mass matrix M̃2

H to
be diagonalized by a generic angle in the vacuum.

To this end, we perform, as in section 5.2, a rotation of angle α in the (h1, h2) subspace,
and impose the following conditions: (i) the resulting matrix is diagonal in its 2× 2 upper left
component, that is B = 0 in (5.16); (ii) the resulting Higgs field h is decoupled from the dark
Higgs, that is C = 0 in (5.19); and (iii) the (1, 1) component of the matrix obtained after
diagonalization is equal to m2

h, that is A = m2
h in (5.15). The second condition simply gives

eq. (5.23). The other two conditions can be solved for λ2 and λ34, for instance, and give

λ2=λ1
sin2α−cos2αsin2β

sin2αsin2β
+(λ1−λSM) cos2α

sin2αsin2β
+µ3vϕ

4v2
cos2α−cos2β
sin2αsin3βcosβ , (5.28)

λ34=−2v2cotα(λ1−λSM−λ1sin2β)+µ3vϕ(cotαtanβ−1)
v2sinβcosβ . (5.29)

It is immediate to verify that the two equations above reduce to (5.8) and (5.9), respec-
tively, when α = β. Equations (5.28) and (5.29) show an interesting interplay between the
quartic coupling λ1 and the diagonalization angle α. As we will see, a misalignment in
the doublets can be used to tame the enhancement found in (5.8) and (5.9) for detuned
quartic couplings λ1 ̸= λSM.

Fixing all the other couplings to the convenient values (and/or expressions) found in the
previous sections, the only two free parameters are λ1 and α. The two-dimensional space they
span is restricted by theoretical and phenomenological requirements. Specifically, we impose
the tree-level stability conditions (4.5) and (4.6), perturbativity of the couplings, positiveness
of the eigenvalues (5.27) and an upper bound on the misalignment, namely sin2(α− β) ≤ 0.1,
for the latter to be consistent with observations (the precise value of the upper bound is
unimportant and was chosen arbitrarily; it only amounts to a shift of the yellow line in the
plots shown in figure 9). The resulting parameter space is shown in figure 9 (blue region).
The only couplings, other than λ2 and λ34, that depend on λ1 and α when adopting the
procedure outlined above are λH′ϕ and λHϕ, either through the choice λH′ϕ = −2

√
λ2λϕ in
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Figure 9. Two-dimensional section of the parameter space. Left panel: all the couplings other than
α and λ1 are fixed to the values and/or expressions described in the text (in particular, vs = 150GeV,
µ3 = 50GeV, m

Z′ = 250GeV and λϕ = 0.4, as in table 41). In the blue region, tree-level stability and
perturbativity of the couplings are realized. In the yellow region, the lowest eigenvalue m2

− in (5.27)
is positive. Numerical complications arise when it becomes thinner. The yellow line corresponds to
sin2(α − β) = 0.1. The red dot indicates the point of coordinates (α, λ1) = (β, λSM). Right panel:
same plot as in the left panel, the only difference being the choice for λHϕ and λH′ϕ, that here are
taken as the solution with λHϕ = λH′ϕ. The black dots indicate the benchmark points in table 5.

combination with eq. (5.23), or through the choice

λHϕ = λH′ϕ = µ3√
2vϕ

sin(α+ β)
cos(α− β) . (5.30)

In both cases, the stability and perturbativity constraints on these couplings are milder than
those on λ2 and λ34. Nevertheless, the difference between the left panel and the right panel in
figure 9 shows an extreme sensitivity of the sign of m2

− in (5.27) on the specific choice of the
couple (λHϕ, λH′ϕ) that solves (5.23). In the left plot, in fact, the choice λH′ϕ = −2

√
λ2λϕ

leads to a strong constraint on the allowed region of parameter space. In this case, the point
(λ = λSM, α = β) that represents the tuned and aligned scenario is in a tiny allowed region
around which numerical complications arise that make the plot discontinuous. To be certain
that this feature is only a result of numerical difficulties, we checked, for several points nearby
that are not coloured in yellow, that they correctly have m2

− > 0. In the right plot, the
choice λHϕ = λH′ϕ is shown to leave much more freedom to move in the parameter space,
as the blue region is entirely contained in the yellow one. Physically, this means that no
constraint arises from the condition m2

− ≥ 0 in eq. (5.27).
Given the above considerations, we can conclude that, unless specific choices for λHϕ(α, λ1)

and λH′ϕ(α, λ1) that make their dependence on α and λ1 strongly constraining are made, the
shape of the allowed region in parameter space does not depend on them and coincides with
that of the blue region. As suggested by (5.28) and (5.29), the latter depends on µ3, vϕ and
β. To showcase the dependence on the first two parameters, in the left panel of figure 10 we
report the parameter space for a different choice of µ3 and vϕ. In passing, we note that the
above remarks make our results slightly more general and apply, to some extent, to the case
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Figure 10. Left panel: same plot as in the left panel of figure 9 for a different choice of µ3 and vϕ,
namely µ3 = 380GeV and vs = 250GeV. The red dot again indicates the point α = β, λ = λSM.
Right panel: comparison between the allowed region of parameter space in our model with the choice
λHϕ = λH′ϕ (blue region) and the allowed region of parameter space in the corresponding 2HDM
(yellow region).

Figure 11. Left panel: two dimensional section of the parameter space. The parameters have been
chosen in the same way as in the middle panel of figure 9. The curves are the curves of constant λ2.
Right panel: same plot as in the left panel for a different choice of β, namely β = 0.3.

of 2HDMs. A comparison between the parameter space in figure 9 and the one obtained when
the scalar singlet is removed (that is, keeping only the constraints on λ2, λ34 and putting all
the parameters related to the scalar singlet to zero) is shown in figure 10

We performed a numerical investigation of the parameter space with parameters fixed as
in the right panel of figure 9. As a general property, it is easily understood that at fixed λ1
the Landau pole increases and the instability scale decreases as α increases, while at fixed α

the Landau pole decreases and the instability scale increases (or disappear for sufficiently low
Landau poles) as λ1 increases. We found that the competition between these two behaviours
is such that on the lower boundary of the allowed region the Landau pole has only very mild
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variations. This curve of “constant Landau pole”, defined by the equation λ3 + 2
√
λ1λ2 = 0

(we note here that it also approximately corresponds to λ2 = 0 for α ≲ 0.3), maximizes
the Landau pole, and represents the locus of parameter space where the largest hierarchy
between the (in)stability scale and the scale at which perturbation theory becomes unreliable
is realized. Combining these two observations, we can conclude that, as the tuned and aligned
scenario (red point in figure 9) is itself in the vicinity of the lower boundary, the Landau
pole cannot be lifted significantly with respect to that case.

In passing, we also show in figure 11 the curves of constant λ2. These curves give us a
more comprehensive understanding of the strong sensitivity to the detuning of λ1 as a result
of their focusing in the small α regime. The smaller the value of α, the smaller the distance
between the different curves. For α = β, the relative distance between the point where λ2 = 0
and the point where λ2 = 4π is

(
λλ2=4π

1 − λλ2=0
1

)
/λλ2=0

1 = 4π sin4 β/(λSM cos 2β) ≃ 0.11.
This relative difference only depends on the angle β, and thus applies also to the corresponding
2HDM. This can be readily seen in the right panel of figure 10, where the vertical extension
of the allowed region for α = β is the same as in our model. As the distance goes like
sin4 β/ cos 2β, it grows for larger values of β, where the sensitivity to detuning becomes
smaller and smaller. This can be seen, for instance, in the right panel of figure 11. The
relative distance in the general, α ̸= β, case is

δλ ≡ λλ2=4π
1 − λλ2=0

1
λλ2=0

1
= 16πv2 sin2 α sin2 β

cos 2α
(
4λSMv2 − µ3vϕ

sin β cos β

)
+ 2µ3vϕ cot 2β

. (5.31)

The peculiar shape of the allowed region of parameter space shown in figure 9 is easily
understood with the above equation.

We report in table 5 the results obtained for some points on the λ3 + 2
√
λ1λ2 = 0 curve.

The singularity in the running is always found around µL ∼ 1.57 × 109 GeV. A peculiar
feature that can be observed concerns the (in)stability scale. Moving from left to right in the
(α, λ1) parameter space, the flow of λ1(µ) is always positive (that is, for all values of µ up to
the perturbative scale) for α < β. At some point, while α is still α < β, the running coupling
λ1(µ) starts to develop an instability scale, that is, a scale where it crosses zero. The point
(β, λSM) is very close from the “constant Landau pole” boundary, and is in fact found to have
this kind of behaviour. This feature eventually disappears for larger values of α, where λ1(µ)
is again positive throughout its whole running. The results collected in table 5 also seem
to indicate that, when it exists, the instability scale is a convex function of α.

This leads us to the inevitable conclusion that if our model is to explain the muon g − 2
experimental anomaly, and possibly also the W mass one, it must necessarily be accompanied
by new physics that must show up no further than µ ∼ 109 GeV. A more refined analysis
might lead to a more precise definition of the upper bound for the appearance of new physics,
but is not expected to change it much.

6 Conclusions

We presented in this work new results on the RG flow towards high energies in lepton portal
models where both the muon g−2 and the W boson experimental anomalies can be explained
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Benchmark points in figure 9 (right)
α λ1 λ2 λ34 λHϕ mh2

(GeV)
ms

(GeV)
LP
(×109 GeV)

VSB
(×107 GeV)

Pert
(×108 GeV)

0.14 0.1241 ∼ 0 0.3621 0.0526 219.83 178.08 1.57 — 7.22
β 0.1271 ∼ 0 0.2629 0.0590 220.28 178.50 1.57 9.60 7.30
0.22 0.1306 ∼ 0 0.1671 0.0651 220.87 178.95 1.58 6.52 7.35
0.26 0.1351 ∼ 0 0.0672 0.0714 221.65 179.46 1.57 12.3 7.36
0.3 0.1405 0.0022 −0.0352 0.0777 222.64 180.03 1.57 73.7 7.31
0.34 0.1468 0.0035 −0.1401 0.0840 223.84 180.63 1.55 — 7.25
0.38 0.1544 0.0375 −0.2528 0.0905 225.52 181.41 1.48 — 6.76

Table 5. Landau pole, stability scale and perturbativity scale for the benchmark points in the right
plot of figure 9. We chose sin β = 0.18.

simultaneously. We found that the choice of parameters favored by the SM anomalies results
in unacceptably low Landau pole scales at µL ∼ 10− 100TeV in the alignment limit for the
quartic couplings in the extended Higgs sector. Making a thorough analysis in the Higgs
sector with more general relations, we showed that the Landau pole scale µL can be lifted
up to µL ≳ 109 GeV, and identified a preferred region of parameter space that maximizes
µL while still fitting the experimental anomalies. Such a region of parameter space can
potentially ameliorate the stability of the scalar potential. We also showed that, in the
cases considered, stringent constraints arise from the Higgs data for scalar couplings and
parameters in general scenarios that realize a detuning of the Higgs quartic couplings and/or
a misalignment of the two Higgs doublets.

As a by-product if our analysis, we learned that if our model is to explain the experimental
anomalies, it must be accompanied by new physics that must necessarily appear at scales
µ ≲ 109 GeV. Concerning stability, this means that, if it couples strongly enough to the Higgs
doublet H , such new physics could potentially deviate the RG flow of λ1(µ) before the latter
becomes negative. A final verdict on the existence of a vacuum deeper than the EW one in
our model can then only be obtained through the knowledge of its µ ∼ 109 GeV completion.
Our results on the flow of λ1(µ) should thus be taken as indicating regions of parameter
space where the quartic coupling can be lifted to positive values with no need for additional
UV physics to do it. A complete study of stability within our model should also contemplate
other possibilities, such as the possibility that the running coupling is lifted by additional
states, or that the EW vacuum is a metastable one with a sufficiently long lifetime. In both
cases, knowledge of the UV physics completing the model is necessary to draw any conclusion.
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A Mass matrices

We present the effective mass matrices for scalars, gauge bosons and fermions in our model.
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A.1 Scalar masses

The (h1, h2, s) background of (4.7)–(4.9) is unfit to the extraction of Renormalization Group
Equations, as both the operators |H|2|H ′|2 and |H†H ′|2 reduce to h2

1h
2
2 in it, and, when

applying the background field method, there would be no way to differentiate the two. For
the determination of mass matrices and RGEs, it is convenient to consider, for the two Higgs
doublets, the slightly more general background configuration

H = 1√
2

(
0
h1

)
, H ′ = 1√

2

(
h3
h2

)
. (A.1)

On this background, in fact, |H|2|H ′|2 = h2
1(h2

2+h2
3)/4, while |H†H ′| = h2

1h
2
2/4. Contributions

that renormalize the coupling λ3 can then be distinguished from contributions that renormalize
the coupling λ4. At the end of the calculation, that is after Renormalization Group Equations
have been extracted, one is free to consider the simpler background configuration with h3 = 0.

Expanding the potential (2.4) around the (h1, h2, h3, s) background with parametrization

H = 1√
2

(
ϕ1 + iϕ2

h1 + ρ1 + iη1

)
, (A.2)

H ′ = 1√
2

(
h3 + ϕ3 + iϕ4
h2 + ρ2 + iη2

)
, (A.3)

ϕ = 1√
2
(s+ ρ3 + iη3), (A.4)

we find a 10×10 mass matrix. Arranging its entries in the order (ρ1,ρ2,ρ3,η1,η2,η3,ϕ1,ϕ2,ϕ3,ϕ4),
it reads

M2
S =



a b d 0 0 0 α 0 β 0

b c e 0 0 0 γ 0 δ 0

d e f 0 0 0 η 0 θ 0
0 0 0 a′ b′ d′ 0 ζ 0 0

0 0 0 b′ c′ e′ 0 ξ 0 0

0 0 0 d′ e′ f ′ 0 ψ 0 0

α γ η 0 0 0 A 0 C 0

0 0 0 ζ ξ ψ 0 B 0 E

β δ θ 0 0 0 C 0 D 0

0 0 0 0 0 0 0 E 0 F



, (A.5)

with

a = µ2
1 + 3λ1h

2
1 +

λ3
2
(
h2

2 + h2
3

)
+ λ4

2 h
2
2 +

λHϕ

2 s2, (A.6)

b = (λ3 + λ4)h1h2 −
µ3√
2
s, (A.7)

c = µ2
2 + 3λ2h

2
2 + λ2h

2
3 +

λ3 + λ4
2 h2

1 +
λH′ϕ

2 s2, (A.8)
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d = λHϕh1s−
µ3√
2
h2, (A.9)

e = λH′Φh2s−
µ3√
2
h1, (A.10)

f = µ2
ϕ + 3λϕs

2 + λHϕ

2 h2
1 +

λH′ϕ

2
(
h2

2 + h2
3

)
, (A.11)

a′ = µ2
1 + λ1h

2
1 +

λ3
2
(
h2

2 + h2
3

)
+ λ4

2 h
2
2 +

λHϕ

2 s2, (A.12)

b′ = − µ3√
2
s, (A.13)

c′ = µ2
2 + λ2

(
h2

2 + h2
3

)
+ λ3 + λ4

2 h2
1 +

λH′ϕ

2 s2, (A.14)

d′ = − µ3√
2
h2, (A.15)

e′ = µ3√
2
h1, (A.16)

f ′ = µ2
ϕ + λϕs

2 + λHϕ

2 h2
1 +

λH′ϕ

2
(
h2

2 + h2
3

)
, (A.17)

A = µ2
1 + λ1h

2
1 +

λ3
2
(
h2

2 + h2
3

)
+ λ4

2 h
2
3 +

λHϕ

2 s2 = B, (A.18)

C = λ4
2 h1h2 −

µ3√
2
s = E, (A.19)

D = µ2
2 + λ2h

2
2 + 3λ2h

2
3 +

λ3
2 h

2
1 +

λH′ϕ

2 s2, (A.20)

F = µ2
2 + λ2

(
h2

2 + h2
3

)
+ λ3

2 h
2
1 +

λH′ϕ

2 s2, (A.21)

α = λ4
2 h2h3, β = λ3h1h3, γ = λ4

2 h1h3, (A.22)

δ = 2λ2h2h3, η = − µ3√
2
h3, θ = λH′ϕh3s, (A.23)

ζ = λ4
2 h2h3, ξ = −λ4

2 h1h3, ψ = − µ3√
2
h3. (A.24)

When h3 = 0, the Higgs-like, Goldstone-like and charged scalars decouple, and three
different mass matrices can be individuated for each of them, as usual. In the text, we denote
with M2

H the upper 3 × 3 matrix of the Higgs-like excitations.

A.2 Gauge masses

Expanding the covariant derivatives around the background, we find the following 5× 5 mass
matrix in the (W 1

µ ,W
2
µ , Bµ,W

3
µ , Z

′
µ) (in the unitary gauge)

M2
V =



g2

4 h
2
123 0 ggY

2 h2h3 0 2gg
Z′h2h3

0 g2

4 h
2
123 0 0 0

ggY
2 h2h3 0 g2

Y
4 h

2
123

ggY
4
(
h2

3 − h2) gY gZ′

(
h2

2 + h2
3
)

0 0 ggY
4
(
h2

3 − h2) g2

4 h
2
123 gg

Z′

(
h2

3 − h2
2
)

2gg
Z′h2h3 0 gY gZ′

(
h2

2 + h2
3
)
gg

Z′

(
h2

3 − h2
2
)
4g2

Z′(s2 + h2
2 + h2

3)


, (A.25)
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with h2 ≡ h2
1 + h2

2, h2
123 ≡ h2

1 + h2
2 + h2

3. It is immediate to verify that, when h3 = 0, W 1

and W 2 decouple, giving rise to the usual W mass, while the other three components form a
3 × 3 mass matrix that we refer to with the symbol M2

Z in the text.

A.3 Fermion masses

When h3 ̸= 0, a fermion mass matrix for the muon, muon neutrino and the VLL can be written.
The right-handed neutrino serves only to write a 3× 3 matrix and can be safely ignored later,
especially when we deal with the background considered in the text, where h3 = 0.

We consider the mass terms for the lepton doublet and the vector-like lepton as

LL,mass = −MEĒE −m0ēe− (mRĒLeR +mLēLER +mν ν̄lER + h.c.)

= −
(
ν̄L, ēL, ĒL

)
ML

 νR

eR

ER

+ h.c. (A.26)

where

ML =

 0 0 mν

0 m0 mL

0 mR ME

 . (A.27)

Here, m0 is the bare lepton mass m0 = 1√
2ylh1, mR and mL are the mixing masses given

by mR = 1√
2λEs and mL = 1√

2yEh2, respectively, and mν = 1√
2yEh3. The squared mass

matrix is thus

M2
f ≡ M†

LML =

 0 0 0
0 m2

0 +m2
R m0mL +mRME

0 m0mL +mRME m2
ν +m2

L +M2
E

 . (A.28)

Finally, the top quark mass is mt = yt√
2h1.

B Renormalization Group Equations

We present the RG equations for the parameters in the scalar potential, gauge and Yukawa
couplings in the model.

B.1 Extraction of the scalar RGEs from the potential

Inserting the explicit expressions (4.10) and (4.11) in (4.13) we obtain the following system
of equations (k is the running scale, the symbols βλi

and γµi indicate k d
dkλi and k d

dkµi,
respectively, γi are the anomalous dimensions and αi are the coefficients of the quadratically
UV-sensitive terms defined in (4.12)):

µ2
1γµ2

1
−2γ1µ

2
1=−2α1k

2+
6λ1µ

2
1+2(λ3+λ4)µ2

2+λHϕµ
2
ϕ+µ2

3
8π2 , (B.1)

µ2
2γµ2

2
−2γ2µ

2
2=−2α2k

2+
6λ2µ

2
2+2λ3µ

2
1+λ4µ

2
1+λH′ϕµ

2
ϕ+µ2

3−2y2
EM

2
E

8π2 , (B.2)

µ2
ϕγµ2

ϕ
−2γϕµ

2
ϕ=−2α3k

2+
4λϕµ

2
ϕ+2λHϕµ

2
1+2λH′ϕµ

2
2+2µ2

3−2λ2
EM

2
E

8π2 , (B.3)
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βλ1−4γ1λ1=
9g4+6g2g2

Y +3g4
Y

128π2 +3λ2
1

2π2 +
2λ3(λ3+λ4)+λ2

4
16π2 +

λ2
Hϕ

16π2 −
3y4

t +y4
l

8π2 ,

(B.4)

βλ2−4γ2λ2=
9g4+6g2g2

Y +3g4
Y

128π2 +
3g2

Z′ (g2+g2
Y )+24g4

Z′

4π2 +3λ2
2

2π2

+2λ3(λ3+λ4)+λ2
4

16π2 +
λ2

H′ϕ

16π2 −
y4

E

8π2 , (B.5)

βλϕ
−4γϕλϕ=

6g4
Z′

π2 +
5λ2

ϕ

4π2 +
λ2

Hϕ

8π2 +
λ2

H′ϕ

8π2 − λ4
E

8π2 , (B.6)

βλ3−2(γ1+γ2)λ3=
9g4−6g2g2

Y +3g4
Y

64π2 +(λ1+λ2)(6λ3+2λ4)+2λ2
3+λ2

4
8π2 +λHϕλH′ϕ

8π2 ,

(B.7)

βλ4−2(γ1+γ2)λ4=
3g2g2

Y

16π2 +λ4(λ1+λ2+2λ3+λ4)
4π2 −y

2
Ey

2
l

4π2 , (B.8)

βλHϕ
−2(γ1+γϕ)λHϕ=

2λ2
Hϕ+6λ1λHϕ+4λϕλHϕ+2λ3λH′ϕ+λ4λH′ϕ

8π2 −λ
2
Ey

2
l

4π2 , (B.9)

βλH′ϕ
−2(γ2+γϕ)λH′ϕ=

12g4
Z′

π2 +
2λ2

H′ϕ+6λ2λH′ϕ+4λϕλH′ϕ+2λ3λHϕ+λ4λHϕ

8π2 , (B.10)

βµ3−(γ1+γ2+γϕ)µ3=
λ3+2λ4+λHϕ+λH′ϕ

8π2 µ3+
yEλEylME

4π2 . (B.11)

The equations above are Wilsonian RG equations in the UV regime of the flow defined as
k2 ≫ mi(k)2, with mi(k) the physical running masses. Subtracting the terms proportional to
k2 from the first three equations, that corresponds to performing a fine-tuning in perturbation
theory and putting the system close to the critical surface of the Gaussian fixed point in
the broader RG context [36], the usual perturbative RGEs are found.

The anomalous dimensions can be calculated from the two-point functions of h1, h2
and s as

γi = −1
2Λ

∂

∂Λ

(
∂

∂p2Σ(p
2)
)

p2=m2
i

. (B.12)

As it is well-known, the only diagrams that contribute at the one-loop level are fermionic
sunset diagrams and mixed gauge-Goldstone sunset diagrams (pure gauge diagrams can also
give p2 contributions that are however suppressed by powers of Λ, so they do not contribute
to the beta function). The results for anomalous dimensions are

γ1 = − 1
16π2

(
3
4
(
3g2 + g2

Y

)
− 3y2

t − y2
l

)
,

γ2 = − 1
16π2

(
3
4
(
3g2 + g2

Y

)
+ 12g2

Z′ − y2
E

)
,

γϕ = − 1
16π2

(
12g2

Z′ − λ2
E

)
.

(B.13)

B.2 Gauge RGEs

The general equation for the non-abelian gauge RGEs is

βg = − g3

16π3

(11
3 C2(G)−

4
3nfC(r)−

1
3nsC(r)

)
(B.14)

where C2(G) = N and C(r) = 1/2 for SU(N).
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• For SU(3) we have, as in the SM, nf = 6, ns = 0;

• For SU(2) we have the same DOFs as in the SM plus the second Higgs doublet, so that
nf = 6 and ns = 2.

For U(1) groups we have in general

βg = g3

12π2

(∑
i

ni
f (qi

f )2 + 1
4n

i
s(qi

s)2
)
, (B.15)

where qi are the charges under the gauge group.
The straightforward application of these equations to our model leads to the following

RGEs for the gauge couplings 

βgs = − 7
16π2 g

3
s ,

βg = − 3
16π2 g

3,

βg
Y
= 25

48π2 g
3
Y ,

βg
Z′ =

7
12π2 g

3
Z′

(B.16)

where gs is the strong coupling, g the SU(2) coupling, gY the hypercharge one and g
Z′

the U(1)′ one.

B.3 Fermion RGEs

The well-known RGE for the top Yukawa coupling is

βyt =
yt

16π2

(9
2y

2
t − 8g2

3 − 9
4g

2 − 17
12g

′2
)
. (B.17)

Calculating the relevant diagrams, we find for the two other Yukawa couplings the following
set of RGEs 

βyE = yE

16π2

(
5
2y

2
E + y2

l
2 − 15

4 g
2
Y − 9

4g
2 − 12g2

Z′

)
βλE

= λE
16π2

(
2λ2

E + y2
l − 6g2

Y − 12g2
Z′

)
.

The last two equations needed to close the full set of RGEs are those for ME and yl. They
are easily found and read

γM =
3g2

Y +12g2
Z′

8π2

βyl
= yl

16π2

(
y2

E+λ2
E

2 + 3y2
t + 3

2y
2
l − 9

4g
2 − 15

4 g
2
Y

) (B.18)

where γM = k
M

∂M
∂k .
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