
INTRODUCTION

The Forkhead transcription factor (Fox) family in humans 
includes four members belonging to the “O” subclass, spe-
cifically FoxO1, FoxO4, FoxO3a, and FoxO6. FoxO2 serves 
as a homolog of FoxO3, while FoxO5 is found solely in Da-
nio rerio (Eijkelenboom and Burgering, 2013; Lee and Dong, 
2017). Distributed across a variety of organisms, FoxOs are 
crucial for regulating lifespan, cell proliferation, metabolism, 
stress resistance, and apoptosis (Xing et al., 2018; Xu and 
Wang, 2021). 

FoxO1, a member of the FoxO family, possesses signifi-

cant transcriptional regulatory functions (Kandula et al., 2016). 
It is a key regulator of metabolic processes in the liver, adi-
pose tissue, and hypothalamus (Nakae et al., 2008). FoxO1 
modulates hepatic gluconeogenesis and glycogenolysis by 
responding to insulin signaling and stimulating the transcrip-
tion of two vital enzymes, namely G6PC (glucose 6-phos-
phatase) and PEPCK (phosphoenolpyruvate carboxykinase) 
(Peng et al., 2020). In diabetic db/db mice, the inhibition of 
hepatic FoxO1 activity led to decreased expression levels of 
G6PC and PEPCK, thereby reducing hepatic gluconeogene-
sis and fasting hyperglycemia. Moreover, FoxO1 targets apo-
lipoprotein C-3 (ApoC3), a direct participant in plasma lipid 
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FoxO1, a member of the Forkhead transcription factor family subgroup O (FoxO), is expressed in a range of cell types and is 
crucial for various pathophysiological processes, such as apoptosis and inflammation. While FoxO1’s roles in multiple diseases 
have been recognized, the target has remained largely unexplored due to the absence of cost-effective and efficient inhibitors. 
Therefore, there is a need for natural FoxO1 inhibitors with minimal adverse effects. In this study, docking, MMGBSA, and ADMET 
analyses were performed to identify natural compounds that exhibit strong binding affinity to FoxO1. The top candidates were then 
subjected to molecular dynamics (MD) simulations. A natural product library was screened for interaction with FoxO1 (PDB ID-
3CO6) using the Glide module of the Schrödinger suite. In silico ADMET profiling was conducted using SwissADME and pkCSM 
web servers. Binding free energies of the selected compounds were assessed with the Prime-MMGBSA module, while the dynam-
ics of the top hits were analyzed using the Desmond module of the Schrödinger suite. Several natural products demonstrated high 
docking scores with FoxO1, indicating their potential as FoxO1 inhibitors. Specifically, the docking scores of neochlorogenic acid 
and fraxin were both below -6.0. These compounds also exhibit favorable drug-like properties, and a 25 ns MD study revealed a 
stable interaction between fraxin and FoxO1. Our findings highlight the potential of various natural products, particularly fraxin, as 
effective FoxO1 inhibitors with strong binding affinity, dynamic stability, and suitable ADMET profiles. 
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metabolism (Lee et al., 2020). Overexpression of FoxO1 has 
been shown to increase plasma triglyceride levels (Peng et 
al., 2020). It also plays an essential role in muscle develop-
ment and differentiation by modulating glucose and lipid me-
tabolism in skeletal muscle. In particular, FoxO1 enhances the 
activity of PDK4, a key regulator of pyruvate flow during the 
Krebs cycle. Additionally, it controls lipoprotein lipase (LPL) 
activity, allowing muscle cells to utilize fatty acids (Gross et 
al., 2008). FoxO1 is also involved in apoptosis regulation by 
upregulating the transcription of FasL and transactivating Bim, 
a pro-apoptotic member of the Bcl-2 family involved in the 
intrinsic mitochondrial apoptotic pathway. Furthermore, the 
phosphorylation of FoxO1 in the cytoplasm activates cyclin 
D1 and Cdk4 (cyclin-dependent kinase), facilitating the transi-
tion of the cell cycle from the G0 to the G1 phase and initiating 
DNA synthesis (Gan et al., 2009; Yang et al., 2009; Zhang 
et al., 2011). Consequently, its suppression could serve as 
a potential therapeutic target for addressing carcinogenesis, 
metabolic disorders, and skeletal muscle differentiation (Lu 
and Huang, 2011). 

Nevertheless, despite FoxO1’s established role in a wide 
range of cellular functions, the exploration of potential targets 
remains limited. To date, only a few direct FoxO1 inhibitors 
have been identified. For instance, AS1842856 is a small 
molecule that has been shown to bind directly to FoxO1, as 
confirmed through mass spectrometric affinity screening (Zou 
et al., 2014). Additionally, during a cell-based high-throughput 
screening of more than 170,000 small molecules, AS1708727 
emerged as a potent FoxO1 inhibitor (Tanaka et al., 2010). 
Both academic and industrial researchers have expended sig-
nificant time and resources over many years in the search for 
novel FoxO1 inhibitors. Natural products, owing to their unique 
chemical diversity and drug-like properties, have garnered at-
tention as potential sources of inhibitors. These compounds 
have long been used in traditional medicines, particularly as 
active ingredients in herbal treatments, predating the develop-
ment of contemporary chemical pharmacology. In the present 
study, we aimed to identify natural inhibitors of FoxO1 (PDB 
ID-3CO6) utilizing an in silico approach.

MATERIALS AND METHODS

Protein-protein interaction analysis
Protein-protein interactions play a crucial role in the regu-

lation and execution of a protein’s biological activities. The 
STRING 11.0 (Swiss Institute of Bioinformatics, Lausanne, 
Switzerland) database is employed to predict the top ten pro-
teins most likely to interact with the target gene, FoXO1. This 
web-based resource is among the limited platforms capable 
of aggregating and integrating publicly available data on pro-
tein-protein interactions, thereby establishing a comprehen-
sive network of both direct (physical) and indirect (functional) 
protein associations. Predictions are formulated based on the 
expected interactions between proteins, as computed by the 
STRING database (https://string-db.org). The STRING algo-
rithm relies on multiple information sources, including gene 
fusion, co-expression, functional annotations, and experimen-
tal data, to offer insights into the potential interaction partners 
for a specific protein. A scoring system quantifies the level of 
interaction for each protein, assigning values ranging from “0” 
to “1,” where “0” indicates the least likelihood of interaction 

and “1” denotes the maximum likelihood of interaction (Sakle 
et al., 2020).

Molecular docking studies
Ligand preparation: A collection of 550 natural products 

was sourced from the APExBIO database (https://www.
apexbt.com). The natural products library was optimized us-
ing LigPrep (Ver 2021, Schrödinger, LLC, NY, USA) from the 
Schrödinger suite. This optimization employed Epik 2.0 and 
considered a pH range of 7.0 ± 2.0 to generate various ioniza-
tion states, tautomers, and ring conformations for each input 
ligand. A single, energy-minimized, low-energy conformer for 
each molecule was generated using the OPLS 2005 force 
field (John et al., 2016; Sahu et al., 2020).

Protein preparation: The three-dimensional (3D) crystal 
structure of human FoxO1 (PDB 3CO6) was obtained from 
the Protein Data Bank (https://www.rcsb.org/structure/3CO6). 
Subsequent processing of the retrieved protein structure 
was carried out using the Protein Preparation Wizard (Epik,  
Schrödinger, LLC). The initial steps involved the assignment 
of appropriate bond orders, incorporation of hydrogen atoms, 
and establishment of disulfide and zero-order metal bonds. 
Water molecules beyond 5 Å from hetero groups were re-
moved. Various ionization states for the protein structure were 
generated using Epik (Ver 2021, Schrödinger, LLC), and the 
most stable state was selected for further analysis. Missing 
chains and loops were completed using Prime (Ver 2021, 
Schrödinger, LLC) from the Schrödinger suite. Sample water 
orientation was enhanced, and protonation states at pH 7.0 
were generated using PROPKA (Epik,  Schrödinger, LLC). 
Lastly, a controlled reduction was executed to align heavy at-
oms to a root mean square deviation (RMSD) of 0.30, employ-
ing the OPLS3e force field (Sastry et al., 2013; Guan et al., 
2021).

Active site prediction and grid generation
The protein target was subjected to SiteMap analysis (Ver. 

2021, Schrödinger, LLC) to identify potential binding sites. 
Default parameters were utilized for identifying potential drug-
gable sites based on D and site scores. SiteMap conducts 
exhaustive searches to examine the features of binding sites, 
identifying regions conducive to ligand-receptor interactions. A 
minimum requirement of 15 site points was set for the sites. 
The OPLS-3e force field, a standard grid with a resolution of 
1.0, and restricted hydrophobicity specifications were em-
ployed. The grid box was determined based on the centroid 
of the residues identified by SiteMap. Default settings for grid 
generation were used, including a Van der Waals scaling fac-
tor of 1.00, an OPLS-3e force field, and a partial charge cutoff 
value of 0.25 (Halgren, 2009; Gudipati et al., 2018).

Molecular docking
This study utilized molecular docking techniques to exam-

ine the binding affinity of natural compounds to FoxO1. Pre-
processed compounds were docked onto the FoxO1 receptor. 
The extra precision (XP) feature of the Glide module facilitated 
flexible docking within the predefined receptor grid. Ligand-
receptor interactions were not subject to any restrictions. The 
resulting output was configured as a pose viewer file and sub-
sequently visualized using the pose viewer tool (Kalirajan et 
al., 2019).
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Fig. 1. Protein-protein interaction network. The protein-protein interaction network was analyzed using String software. Edges in the dia-
gram represent various types of evidence used to predict associations.

A B C

Fig. 2. Structure of FoxO1 (PDB ID-3CO6). (A) The raw crystal structure of human FoxO1, sourced from the Protein Data Bank. (B) The 
protein after undergoing processing via the Protein Preparation Wizard. (C) The active site identified using SiteMap.
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Binding free analysis
The obtained ligand poses were further validated and re-

scored through MMGBSA, executed via the Prime module in 
the Schrödinger suite (Ver. 2021, Prime, Schrödinger, LLC). 
The XP dock pose viewer file served as the input for these 
calculations. The relative energy of the complexes was evalu-
ated using the OPLS3 force field in conjunction with the VSGB 
solvation method. The binding free energy was calculated us-
ing the following equation (Choudhary et al., 2020).

ΔG bind=E complex (minimized)−E ligand (minimized)−
               E receptor (minimized)                                      (1)

ADMET analysis
The ADMET properties of the selected ligands were as-

sessed using two computational platforms: the SwissADME 
(http://www.swissadme.ch/) web-server, provided by the 
Swiss Institute of Bioinformatics, and pkCSM. SwissADME 
offers predictions for various parameters including physico-
chemical descriptors, ADME attributes, pharmacokinetic prop-
erties, drug-likeness, and medicinal chemistry compatibility of 
small compounds. It utilizes a support vector machine (SVM) 
algorithm for these predictions. For the analysis, molecules 
were input into the SMILES list field based on their distinct 
structures. The calculations were initiated by clicking the run 
button, and the subsequent output featured a comprehensive 
set of values for each molecule, displayed in sequence. The 
data were then exported as a unified CSV file. Additionally, the 
ADMET properties of the chosen ligands were investigated us-
ing the pkCSM web-server, which is available at http://biosig.
unimelb.edu.au/pkcsm/. pkCSM is an open-access machine 
learning platform specialized in analyzing and optimizing 
pharmacokinetics and toxicity characteristics through graph-
based signatures. For this assessment, the SMILES string 
was uploaded to the web-server, and the prediction mode was 
set to ADMET. The computed results were promptly displayed 
in a tabular format, covering all relevant ADMET parameters 
(Pires et al., 2015; Daina et al., 2017; Irfan et al., 2023; Khan 
et al., 2023).

Molecular dynamics (MD) analysis
MD simulations of the two most ADMET-favorable natu-

ral compounds were performed using the Desmond module 
within the Schrödinger suite. The workflow involved sequential 
steps: system building, energy minimization, and molecular 
dynamics simulations. The single point charge (SPC) solvent 
model was employed during system building, with an ortho-
rhombic boundary box. Following this, energy minimization of 
the model system was carried out. Simulations of the corre-
sponding complexes proceeded using the NPT ensemble for 
25 ns. The Nose-Hoover thermostat algorithm and the Marty-
na-Tobias-Klein barostat algorithm were employed to maintain 
a constant pressure of 1 atm and a temperature of 300 K. 
Short-range interactions were evaluated using a cutoff value 
of 9.0 for coulombic interactions (John et al., 2015; Kumar et 
al., 2019).

RESULTS 

Functional protein association network analysis
The current investigation focused on examining the protein 

network related to FoxO1 using the STRING database. Lines Ta
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connecting the protein nodes in this graphical representation 
correspond to distinct evidence types, suggesting their role 
in establishing functional associations. The colors of the con-
necting lines represent various types of evidence. Moreover, 
the distance between nodes represents the confidence level 
of observed associations, which ranged from 0.998 to 0.973 
(Fig. 1).

Virtual screening
The crystal structure of FoxO1 was obtained from the pro-

tein databank and displayed in simple mode (Fig. 2A). The 
downloaded protein was subsequently processed using the 
Protein Preparation Wizard (Fig. 2B). Its active site was iden-
tified with the SiteMap module within the Schrödinger suite 
(Fig. 2C). Previous work by Damayanti et al. (2017) demon-
strated that rutin, xylopine, and anonaine bind to the same 
FoxO1 site.

Docking analysis revealed that over 80 natural products in 
the test library achieved a docking score below –5.0. Further 
investigation was conducted on the nine compounds with the 
most favorable docking scores, namely, cellobiose, scutellar-
in, neochlorogenic acid, chondroitin sulfate, amygdalin, fraxin, 
salvianolic acid A, desacetyl asperulosidic acid, and querci-
trin. These scores ranged from –6.70 to –6.11. The analysis 
also indicated that hydrogen bonding, covalent energy, and 
Van der Waals forces largely contributed to the optimal bind-

ing of these selected compounds (Table 1). Fig. 3 depicts the 
best docking poses and interaction diagrams for the selected 
ligands.

MMGBSA analysis
To provide additional validation, MMGBSA calculations 

were executed on the nine selected natural compounds. 
MMGBSA serves to rank a congeneric series of ligands ac-
cording to their free energies. Table 1 presents the relative 
binding free energies (ΔG bind) for these selected natural 
compounds, as calculated through the Prime module. These 
binding free energies ranged from –35.23 to –54.57 kcal/mol, 
signifying a high affinity toward FoxO1.

ADMET screening of nine top docked natural drugs
The ADMET properties of the nine selected compounds 

were assessed using SwissADME and pkCSM (Table 2).

Molecular docking simulations of best docking poses
MD simulations for neochlorogenic acid and fraxin were un-

dertaken to corroborate our findings. RMSDs were employed 
to gauge the stability of the protein-ligand complexes over 25 
ns MD simulations. For smaller proteins, RMSD fluctuations 
within the range of 1-3 Å are considered acceptable. In our 
study, RMSDs varied between 1.6 and 3.2 Å for the interac-
tions involving neochlorogenic acid and FoxO1. RMSD plots 
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Fig. 3. Docking poses and ligand interactions. (A) 3D docking poses of the nine top-scoring compounds against FoxO1. (B) 2D ligand inter-
action diagram illustrating the various types of contacts between the nine top-scoring compounds and FoxO1.
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indicated that the interactions with neochlorogenic acid stabi-
lized after 15 ns, while interactions with fraxin remained stable 
for the entire duration of the simulation (Fig. 4). Additionally, 
ligand interaction diagrams highlighted that ARG 156, TRP 
160, LYS 171, LYS 200, ASP 199, ALA 159, and TYR 196 
were pivotal in facilitating the interactions between FoxO1 and 
both neochlorogenic acid and fraxin (Fig. 5).

DISCUSSION 

FoxO1 is a multifunctional protein implicated in various 
cellular processes including apoptosis, cell cycle regulation, 
glucose metabolism, muscle growth, and differentiation (Lu 
and Huang, 2011). Previous studies have shown that Akt 
phosphorylates FoxO proteins, leading to their nuclear exclu-
sion and subsequent loss of activity (Gross et al., 2008). Ad-
ditionally, under conditions of oxidative stress, SIRT1 interacts 
with FoxO1 in mice and deacetylates specific lysine residues 
K242, K245, and K262 (Greer and Brunet, 2005). Protein-pro-
tein interaction analyses using STRING have identified the top 
10 functional partners that directly interact with FoxO1. These 
partners include AKT1, SIRT-1, CREBBP, CEBPB, CTNNB1, 
AKT2, EP300, SMAD3, CDKN1B, and CDK2, with confidence 
scores ranging from 0.998 to 0.973.

While substantial data exist on the role of FoxO1 in vari-
ous biological processes, there is limited information on direct 
inhibitors of FoxO1. In our study, we sought to investigate the 
inhibitory potentials of 550 natural products against FoxO1. 
Docking scores for the nine selected compounds—namely, 
cellobiose, scutellarin, neochlorogenic acid, chondroitin sul-
fate, amygdalin, fraxin, salvianolic acid A, desacetyl asperu-
losidic acid, and quercitrin—ranged from –6.70 to 6.11. These 
scores suggest a good binding affinity of the selected com-
pounds with FoxO1, which was further corroborated by MMG-
BSA analysis.

DMPK studies, also referred to as ADMET investigations, 
play a crucial role in drug discovery and development by eluci-
dating drug-likeness properties. Data suggest that nearly 50% 
of drug candidates fail at the clinical trial stage due to insuf-
ficient effectiveness, while approximately 40% fail because of 
unacceptable toxicity. For instance, mibefradil, soruvidine, and 
phenylpropanolamine hydrochloride were removed from the 
market due to adverse drug-drug interactions or toxic effects. 
Recognizing the significance of these metrics, both regulatory 
agencies and pharmaceutical companies have shifted their 
focus to include ADME and Tox evaluations as integral com-
ponents of drug quality assessment and success prediction. 
Consequently, such studies are increasingly being initiated 
earlier in the drug development timeline. Given that conduct-
ing ADMET experiments on a large scale during early devel-
opment phases is often impractical because of logistical and 
financial constraints, in silico ADMET predictions have gained 
prominence. The advent of high-quality in silico ADMET mod-
els facilitates concurrent analysis and optimization of com-
pound efficacy and druggability. In the present study, we uti-
lized free web servers, specifically SwissADME and pkCSM, 
for ADMET profiling. 

The molecular weight of a drug substantially influences its 
oral bioavailability, with a molecular weight of ≤ 500 being op-
timal (Ya’u Ibrahim et al., 2020). In this study, the molecular 
weights of the nine evaluated compounds ranged from 320 to  T
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495, and the number of heavy atoms varied between 23 and 
36. Evaluating blood-brain barrier (BBB) permeability is criti-
cal in drug development, as candidate compounds must tra-
verse this barrier to exert pharmacological effects on the brain. 
Interestingly, none of the studied compounds displayed BBB 
permeability. Additionally, understanding interactions with cy-
tochrome P450 (CYP) is vital, given this isoenzyme’s signifi-
cant role in metabolic drug clearance. Between 50 and 90% 
of contemporary drugs are substrates for CYP isoforms such 
as CYP1A2, CYP2C19, CYP2C9, CYP2D6, and CYP3A4. 
The inhibition of these isoforms can lead to pharmacokinetic-
related drug-drug interactions and potentially toxic or undesir-
able side effects due to impaired drug clearance (Daina et al., 
2017). Notably, none of the chosen compounds demonstrated 
inhibitory activity against CYP2D6 or CYP2C9, suggesting 
a lower risk of side effects. Moreover, synthetic accessibil-
ity (SA) is an important characteristic of drug development, 
as some computer-designed compounds are not feasible for 
synthesis. SA scores range from one (very easy) to ten (ex-
tremely difficult). ADME profiling with SwissADME indicated 
that all nine compounds had SA scores ranging from 3.50 to 
5.86, signifying their potential for synthesis. Human intestinal 
absorption (HIA) is another key ADMET property, given that 
drug absorption by the body is a complex process that pres-
ents challenges for analysis. HIA is a vital step in the delivery 
of drugs to their intended targets (Srivastava et al., 2022). The 
intestine serves as a primary site for the absorption of orally 
administered drugs. Our results revealed that compounds 
such as neochlorogenic acid, fraxin, quercitrin, and dihydro-
myricetin exhibited good intestinal absorption rates of greater 
than 30%. 

P-glycoprotein (P-gp) regulates cellular uptake and trans-

port of xenobiotics and toxins (Amin, 2013), and its inhibition 
has been implicated in multiple clinical drug-drug interactions 
(Keogh, 2012). For instance, clarithromycin interferes with the 
transport of digoxin (a P-gp substrate), resulting in elevated 
plasma levels and diminished renal clearance (Wakasugi et 
al., 1998). In the present study, none of the nine chosen com-
pounds exhibited P-gp inhibitory activity. 

The Ames test, which utilizes the bacterial strain Salmo-
nella typhimurium, assesses the mutagenic potential of drugs. 
pkCSM analysis revealed that none of the selected com-
pounds exhibited Ames toxicity, thereby indicating a lack of 
mutagenic risk. Conversely, human ether-a-go-go-related 
gene (hERG) channels play a critical role in cardiac function. 
Impaired hERG function can extend ventricular action poten-
tials, prolong electrocardiographic QT intervals, and increase 
the risk of lethal ventricular arrhythmias. Importantly, none of 
the selected compounds demonstrated hERG inhibitory activ-
ity, suggesting an absence of cardiotoxic risk. Liver toxicity, 
another major factor contributing to drug development failure, 
was not observed for any of the tested compounds (Wang et 
al., 2019). Additionally, none of the compounds were predicted 
to cause skin sensitization (Bucao and Solidum, 2022). Among 
the nine compounds examined, all displayed negligible toxic-
ity. However, most of them—except for neochlorogenic acid, 
salvianolic acid A, and fraxin—had more than two Lipinski vio-
lations and were therefore excluded from further study. Nota-
bly, salvianolic acid A exhibited intestinal absorption greater 
than 30%. Consequently, only neochlorogenic acid and fraxin 
were selected for subsequent molecular dynamics studies.

MD simulations typically model the motions of atoms us-
ing Newton’s equations, while docking provides a static snap-
shot of a compound’s binding pose within the active site of a 
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Fig. 4. RMSD plots of docked compounds. The RMSD plots show (A) neochlorogenic acid and (B) fraxin over 25 ns simulation runs against 
FoxO1.
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specified protein. To assess the stability of the protein-ligand 
complex, we employed MD simulations, consistent with previ-
ous studies (Choudhary et al., 2020). Our MD simulations con-
firmed that the interaction with fraxin remained stable through-
out the simulation period.

FoxO1 has been implicated in various physiological pro-
cesses, including carcinogenesis, skeletal muscle differen-
tiation, and metabolic disorders. In the present study, we ex-
plored interactions between FoxO1 and other proteins such 
as AKT and SIRT1 to gain preliminary insights into FoxO1’s 
functions. A library of 550 natural products underwent docking 
and MMGBSA analyses. Nine compounds that exhibited the 
highest docking scores (below –6.0) and MMGBSA binding 
energies (below –35 kcal/mol) were selected for further study. 
Among them, neochlorogenic acid and fraxin displayed prom-
ising drug-like properties. Specifically, MD simulations verified 
the stable interaction between fraxin and FoxO1. 
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