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New Constraints on Axionlike Particles with the NEON Detector at a Nuclear Reactor
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We report new constraints on axionlike particles (ALPs) using data from the NEON experiment, which
features 16.7 kg of Nal(T1) target located 23.7 m from a 2.8 GW thermal power nuclear reactor. Analyzing a
total exposure of 3063 kg - day, with 1596 kg - day during reactor-on and 1467 kg - day during reactor-off
periods, we compared energy spectra to search for ALP-induced signals. No significant signal was
observed, enabling us to set exclusion limits at the 95% confidence level. These limits probe previously

unexplored regions of the ALP parameter space, particularly for axion masses (m,) near 1 MeV/c?. For
ALP-photon coupling (g,,), limits reach as low as 6.24 x 107% GeV~! at m, = 3.0 MeV/c?, while for

ALP-electron coupling (g,,), limits reach 4.95 x 1078 at m, = 1.02 MeV//c?. This Letter demonstrates the
potential for future reactor experiments to probe unexplored ALP parameter space.
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Axions were first proposed in 1977 by Peccei and Quinn
[1] to address the strong CP problem in quantum chromo-
dynamics (QCD) [2,3]. Because of their extremely light
mass and weak interactions with ordinary matter, axions are
considered promising candidates for dark matter [4-8].
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Despite numerous experimental searches, axions have
not yet been detected [9—12]. The concept has since been
extended to include axionlike particles (ALPs) in various
models [13,14]. While ALPs share many properties with
axions, making them viable dark matter candidates, they
are not necessarily tied to solving the strong CP problem
[15]. ALPs can span a wide range of masses and coupling
constants, leading to diverse phenomenological implica-
tions in astrophysical and laboratory contexts [14].

ALPs interact with standard model particles, particularly
photons and electrons, motivating extensive experimental
searches [12]. Light ALPs (axion mass, m, < 100 keV/c?)
are typically investigated using solar helioscopes, halo-
scopes, or photon regeneration experiments [16]. In
contrast, heavy ALPs (m, > 100 keV/c?) are probed
using colliders or beam dump experiments [17-19].

Published by the American Physical Society
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Astrophysical observations provide complementary con-
straints on the ALP parameter space [20,21].

A particularly intriguing region of ALP parameter space,
known as the “cosmological triangle” [22,23], spans
masses between 0.3 and 8 MeV/c? with an axion-photon
coupling constant (g,,) ranging from 1.8 X 107% to
5% 107> GeV~!. This region remains largely unexplored
by both direct searches and astrophysical bounds. Although
model-dependent cosmological constraints [24] restrict this
region, they can be evaded under nonstandard cosmological
scenarios [25,26].

Recent supernova-based constraints from Ref. [27]
suggest coverage of this region; however, these results
depend on specific assumptions about the muonic super-
nova core and the Garching supernova model [28,29].
Notably, ALP production and the corresponding constraints
depend strongly on supernova mechanisms and ALP model
parameters. Recent studies suggest that in certain regimes,
loop-induced ALP-photon interactions may dominate
over muonic processes, potentially altering the derived
limits [30].

Growing interest in this region [23] has driven studies
exploring the potential for direct ALP searches with
significantly less model dependence. These include
short-baseline reactor experiments [31,32], the accelera-
tor-based coherent CAPTAIN-Mills (CCM) experiment
with a 10-ton liquid argon target [33], DUNE-like future
neutrino experiments with a 50-ton liquid or gaseous argon
target [22], and a 2-kton liquid scintillator with an intense
proton beam underground [34].

Nuclear reactors are the most intense sources of photons
with energies up to a few MeV. Since ALPs can be
produced via photon-induced scattering [14], reactors offer
a promising avenue for ALP searches in the MeV /c? mass
range. However, only a few reactor-based ALP searches
have been conducted [35,36]. In reactor-based ALP
searches, data collected during reactor operation (reactor-
on data) can be compared to data collected when the reactor
is inactive (reactor-off data) to constrain potential ALP
signals. ALPs are primarily produced via Primakoff or
Compton-like processes and detected through decay or
scattering channels.

In this Letter, we present a direct search for ALPs using
the NEON (neutrino elastic scattering observation with
Nal) experiment [37]. Leveraging the intense ALP pro-
duction from the reactor core, the NEON experiment begins
to probe the unexplored cosmological triangle in a labo-
ratory-based experiment. For axion-electron couplings, this
Letter investigates previously uncharted parameter space
for axion masses between 300 keV/c? and 1 MeV/c?.

The NEON experiment is designed to detect coherent
elastic neutrino-nucleus scattering (CEvNS) using reactor
electron antineutrinos [37]. The detector is located in the
tendon gallery of the 2.8 GW Hanbit nuclear power reactor,
23.7 £ 0.3 m from the center of the reactor core. After an

engineering run in 2021 [37], the detector encapsulation was
upgraded to enhance long-term operational stability [38].

The NEON detector consists of four 8-in. and two 4-in.
long, 3-in. diameter Nal(TI) crystals, with a total mass of
16.7 kg. The six Nal(Tl) modules are submerged in 800 I
of liquid scintillator. This liquid scintillator helps identify
and reduce radioactive backgrounds affecting the Nal(Tl)
crystals [39]. To further reduce external radiation back-
ground, the liquid scintillator is surrounded by shielding
made of lead, borated polyethylene, and high-density
polyethylene [37].

Each Nal(TI) crystal is coupled to two photomultiplier
tubes (PMTs) without quartz windows, optimizing light
collection efficiency [38,40]. The crystal-PMT assemblies
are enclosed in a copper casing to ensure structural integrity
and prevent exposure to external air or liquid scintillator
[38]. Events that satisfy the trigger condition—coincident
photoelectrons detected by both of the crystal’s PMTs
within a 200 ns window—are recorded using 500 MHz
flash analog-to-digital converters (FADCs). These events
are stored as 8 ps waveforms, beginning 2.4 ps before the
trigger [37,41]. The system records two readouts: a high-
gain signal from the anode for the 0—-60 keV energy range
and a low-gain signal from the fifth-stage dynode for the
60-3000 keV range, similar to the setup used in the
COSINE-100 experiment [41]. To reject unwanted phos-
phorescence events from direct muon hits, a 300 ms dead
time is applied for energy deposits exceeding approxi-
mately 3 MeV.

The data analyzed in this Letter were collected between
April 11, 2022 and June 22, 2023, yielding a total live time
exposure of 5702 kg - day. Data collection was generally
stable, although downtime occurred due to unexpected
power outages. To ensure reactor security, the absence of
an online connection extended downtime during summer
2022. Despite these challenges, the data acquisition (DAQ)
system maintained an average efficiency of approximately
70% throughout the data-taking period.

At the start of physics operations, we collected data
while the reactor was operating at full power (reactor-on
data) for 120 day. However, an unexpected power outage
caused the NEON DAQ system to be offline for 38 day
during this period. The reactor was inactive from
September 26, 2022, to February 22, 2023, for regular
maintenance and fuel replacement, during which reactor-
off data were collected for 144 day. After maintenance, the
reactor resumed operation on February 22, 2023. To avoid
complexities arising from changes in photon and ALP
fluxes, data from ramp-down and ramp-up periods were
excluded. Once the reactor restarted, it operated stably at
full power. Data collected through June 22, 2023, added an
additional 117 day of reactor-on exposure.

Various internal and external radiation peaks were used
to calibrate the energy scale and resolution, following
procedures similar to those adopted in the COSINE-100
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experiment [42,43]. Internal and external background
peaks include 31 keV from '?'""Te, 39 and 67 keV from
1251 49 keV from 2'%Pb, 295 keV from 2!“Pb, 609 and
1764 keV from 2'Bi, 1461 keV from “°K, and 2615 keV
from 29%T1. External calibrations were also performed using
radioactive sources, yielding peaks at 60 keV from *'Am
and 511 and 1274 keV from 2*Na [37]. It is well known that
scintillators like Nal(Tl) crystals exhibit a nonproportional
relationship between energy deposition and light output
[44]. The nonproportional response model, characterized
using the COSINE-100 Nal(Tl) crystals [43], was applied
to correct the energy scale used in this analysis.

This analysis focused on events with energies between 3
and 3000 keV. The region below 3 keV was dominated by
PMT-induced noise pulses and afterpulses from energetic
events such as cosmic muons, and inclusion of this region
did not significantly enhance sensitivity to ALP signals.
Therefore, we excluded it from the analysis to ensure
robustness. Above 3 keV, residual noise events were well
rejected using a boosted decision tree (BDT)-based event
selection algorithm [45], with no loss of efficiency.
Although this analysis was not significantly affected by
low-energy noise, the same data quality cuts developed for
low-energy analyses—such as CEvNS and low-mass dark
matter searches [46]—were applied for consistency. Data
quality was monitored by evaluating event rates in the
1-3 keV range after BDT selection. Each 1 h dataset was
classified as “good” if its event rate fell within 3¢ of the
mean event rate distribution; otherwise, it was classified
as “bad.” In total, this analysis utilized 1596 kg - day of
reactor-on data and 1467 kg - day of reactor-off data.

Selected events were further categorized as single-hit
or multiple-hit events. A multiple-hit event was defined as
having accompanying crystal signals with more than four
photoelectrons or a liquid scintillator signal exceeding 80 keV
within a 150 ns time coincidence window. Events that did not
meet these criteria were classified as single-hit samples.

Most background contributions in the Nal(Tl) detectors
remain stable over a 1.2 yr data acquisition period [47].
Although the dominant >'°Pb contamination has a half-life
of 22.3 yr, its variation during the 1.2 yr data period is
negligible. We thus define the effectively time-independent
background components as the “continuum background,”
which includes internal contaminants, surface contamina-
tion, and external radiation, with a half-life equal to or
greater than that of 2!%Pb. In addition to the continuum
background, we identified a few time-dependent back-
grounds. Short-lived cosmogenic contaminants in the Nal
(T1) crystals, introduced by cosmic ray exposure before
installation, were characterized through dedicated analysis
[48]. Seasonal variations in 2?’Rn levels, with higher levels
observed in summer due to temperature changes [49], can
affect the time-dependent background. Dust contamination
introduced during detector upgrades contained long-lived
isotopes, which settled to the bottom of the liquid

scintillator, leading to a gradual decrease in the background
rate over time.

To account for time-dependent backgrounds, we
divided the dataset into seven two-month periods and
extracted contributions from 22?Rn and dust, as detailed
in the Supplemental Material [50] (see also references
[37,38,42,48,49,51-54] therein). This model enables us to
characterize the backgrounds observed in reactor-on (a) and
reactor-off (b) periods, as exemplified in the detector-6
single-hit data shown in Fig. 1. The remaining background
in the reactor-on-minus-off dataset (c) is also modeled.
The measured data are well described by the expected
backgrounds including time-dependent background
components.

Considering the varying event rates across different
energy ranges, we employed dynamic energy bins ranging
from 57 keV (3-60 keV) to 600 keV (2400-3000 keV).
Figure 2 presents the ALP search data from detector-6, based
on the reactor-on-minus-off spectra, in which both single-hit
and multiple-hit channels are used simultaneously.

Intense photons are generated in the nuclear reactor
through nuclear fission, the decay of fission products,
capture processes, decay of capture products, and scattering
[55], with the photon flux approximated from the FRJ-1
research reactor [56]. We consider a generic model in
which an ALP couples to either photons or electrons. For
photon coupling, ALPs can be produced through the
Primakoft process (y + A — a + A), where a photon (y)
interacts with a nucleus (V) to produce an axion (a) [57].
Detection occurs through two-photon decay (a — yy) or
the inverse Primakoff process, with rates depending on the
axion-photon coupling constant (g,,). For electron cou-
pling, ALPs can occur through the Compton-like process
(y+e = a+e") and be detected through electron-
positron pair production (a — e~e™), axioelectric absorp-
tion (a+e” +A — e +A), or inverse Compton-like
process (a + e~ — y + e7). The rate of these processes
depends on the strength of the axion-electron coupling
constant (g,,). To model detector responses, we employ
GEANT4-based simulations. Two benchmark ALP signals,
m, = 1 MeV/c?, g,, =3 x 1075 GeV~! for axion-photon
coupling and m, = 10 keV/c?, g,, = 8 x 107 for axion-
electron coupling, are compared to the measured spectra
in Fig. 2. For ALP-electron couplings, signals typically
deposit energy within a single crystal, while ALP-photon
interactions can produce high-energy photons that Compton
scatter across multiple detectors, leading to multiple-hit
events. We do not consider the ALP production through
the nuclear deexcitation, as studied by the TEXONO experi-
ment [35]. Further details on ALP signal generation in the
NEON detector are provided in Supplemental Material [50]
(see also Refs. [31,32,55-62] therein).

Several sources of systematic uncertainty are included
in our modeling of the reactor-on-minus-off spectra. These
include potential variations in detector responses between
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Single-hit energy spectra of the detector-6 module. The figure shows the normalized energy spectra of single-hit events (black

points) in the detector-6 module, compared with the expected background contributions (blue solid lines) for reactor-on data (a), reactor-off
data (b), and the reactor-on-minus-off spectrum (c). The expected background includes time-independent continuum components and time-
dependent contributions such as cosmogenic activation, 222Rn in the calibration holes, and 233U and 2*?Th from dust contamination in the

liquid scintillator. For the reactor-on-minus-off spectrum (c), only

the reactor-on and the reactor-off periods. The largest
systematic uncertainties are associated with the time-
dependent background modeling of 2?’Rn variation, as
well as uranium and thorium concentrations in the dust.

time-dependent components contribute to the background.

Additionally, possible contamination of *?’Rn into the
liquid scintillator and different locations of the dust also
contribute to systematic uncertainties. Figure 2 indicates
systematic uncertainty bands for the expected background.
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FIG. 2. ALP search data from detector-6 module. This figure presents the reactor-on-minus-off data spectra used for ALP signal

searches in the detector-6 module. The data is shown for both sing

le-hit (a) and multiple-hit (b). The data points (black circles) and the

expected background spectra (blue solid lines) are derived from the models presented in Fig. 1, but with different bin sizes used for this
analysis. The green and yellow bands indicate 68% and 95% confidence level intervals for the background model, respectively. The inset
zooms in the high-energy region for better visibility. Two benchmark ALP signals are overlaid for comparison: m, = 10 keV/c?,
Gae = 8 % 107® (red dashed line) and m, = 1 MeV/c?, g,, =3 x 107> GeV~' (red solid line).

201002-4



PHYSICAL REVIEW LETTERS 134, 201002 (2025)

While the reactor-on-minus-off background rate is allowed
to vary by approximately 20% to account for these effects,
the resulting impact on the exclusion limit is modest: the
sensitivity to the ALP coupling constant changes by less
than 3%, as the signal rate scales with the fourth power of
the coupling constant. Furthermore, we account for a 10%
uncertainty in the reactor photon flux, originating from
differences between the FRJ-1 research reactor model
and the commercial Hanbin reactor, for which no detailed
photon spectrum is publicly available. This 10% variation
leads to an additional 2.4% change in the derived axion-
photon and axion-electron coupling limits.

The NEON data are fitted for each ALP mass and
interaction type. We use various simulated ALP signals
to evaluate their potential contributions to the measured
energy spectra of the reactor-on-minus-off data (shown in
Fig. 2). A y? fit is applied to the measured spectra (both
single-hit and the multiple-hit channels) between 3 and
3000 keV for each ALP signal and various ALP masses.
Each crystal and channel is fitted with a crystal-channel
specific background model and a crystal-channel correlated
ALP signal. The combined fit is achieved by summing the
x? values from the all crystals and channels. No statistically
significant excess of events was found for any of the
considered ALP signals. The posterior probabilities of the
signals are consistent with zero in all cases, and 95%
confidence level limits are determined.

Figure 3(a) presents the 95% confidence level exclusion
limit derived from NEON data for ALPs coupled solely
to photons. This limit is shown in the two-dimensional
parameter space of m, —g,,. For ALP masses below
20 keV/c?, the dominant contribution arises from the
scattering process via the inverse Primakoff process. At
higher ALP masses, the limit is set by the a — yy decay

ete” = vy + invisible
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\.\_\ 1?7@

TT IIIHII

a
3
b
\

\

Cosmological
triangle

SlNl987A

T T TYTTIT

6 i
107 BB Eiiit i BV RE |

process. Since this decay can occur within the 23.7 m flight
path, limits are considered for both lower and higher g,
values. For ALP masses above 3 MeV/c?, sensitivity
declines due to detector saturation effects and the decreas-
ing reactor photon flux at higher energies. However,
signatures of Compton scattering could still allow searches
for higher-mass ALPs. In this process, a high-energy
photon from the ALP interaction deposits a lower-energy
electron or photon within the detectable range. Future
improvements, such as reconstructing saturated events—
similar to techniques employed in the COSINE-100 experi-
ment for boosted dark matter searches [63]—could enhance
sensitivity to higher-mass ALPs.

The exclusion limits shown in Fig. 3(a) extend to
previously unexplored regions of ALP parameter space,
surpassing existing constraints from beam dump experi-
ments and astrophysical and cosmological limits as adapted
from Refs. [75,76]. Notably, this Letter starts to probe the
cosmological triangle, a previously unconstrained region
between beam dump experiments and astrophysical
bounds. A small remaining region of the KSVZ QCD
axion model parameter space [74], corresponding to axion
masses of a few hundred keV/c?, is partially ruled out.
The exclusion limit reaches lower g,, values, down to
6.24 x 107% GeV~! for m, = 3.0 MeV/c?. Compared to a
recent reactor-based ALP search using CsI(Tl) crystals
[36], the NEON experiment significantly improved the
lower bound on g,,, benefiting from a larger exposure and
lower background levels in Nal(TI) crystals. However, the
greater distance from the reactor core to the NEON detector
results in a reduced upper bound. This Letter provides new
experimental constraints from a direct ALP search with
reduced model dependence.
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Exclusion limits of the ALP interactions. The observed 95% confidence level exclusion limit (red solid line) derived from

NEON data for the axion photon (a) and the axion electron (b) are compared with limits from beam dump experiments [17,64—67],
SN1987A [68-70], ete™ — y + invisible states [71], HB stars cooling arguments [25], stellar cooling constraints [72], the NA64
missing energy search [73], and CsI(TIl) exposure in a nuclear reactor [36]. The QCD axion model parameter spaces of the KSVZ [74]
and DFSZ(I) [74] benchmark scenarios for the axion-photon coupling and axion-electron coupling, respectively, are indicated by the

gray dashed lines.
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Figure 3(b) displays the 95% confidence level exclusion
limit for ALPs coupled purely to electrons, presented in
the m, — g,, parameter space. For ALP masses below
1.02 MeV/c?, the limit is primarily set by scattering
processes via the inverse Compton-like process and
axioelectric  absorption. For higher ALP masses
(m, > 1.02 MeV/c?), the limit is dominated by the a —
ete™ decay process, which has a kinematic threshold of
m, > 2m, = 1.02 MeV/c?> (where m, is the electron
mass). Similar to the ALP-photon case, limits are consid-
ered for both upper and lower bounds due to potential ALP
decay during flight.

The NEON data also explore previously examined
regions constrained by stellar cooling arguments [20] for
axion masses below 300 keV/c?, where environmental
effects could allow circumvention of these limits [32]. In
the mass range of 300 keV/c? and 1.02 MeV/c?, scatter-
ing processes probe coupling values down to g, about
3 x 1075, which were previously unexplored by direct
searches or astrophysical and cosmological considerations.
This limit extends into regions predicted by the DFSZ-I
QCD axion model [74]. For ALP masses above the
kinematic limit for a = ete™ (m, > 1.02 MeV/c?), the
NEON data compete with limits from beam dump experi-
ments [65-67]. The exclusion limit reaches lower g,,
values, down to 4.95x 107® for m, = 1.02 MeV/c%
The NEON search for axion-electron coupling is currently
limited to ALP masses below 1.6 MeV/c?> due to the
3 MeV dynamic range of the analysis. Similar to the ALP-
photon case, reconstructing saturated events above 3 MeV
energies could extend the search to higher ALP masses, as
demonstrated in Refs. [32,36].

This Letter reports a direct search for axionlike particles
using the NEON experiment. Leveraging 16.7 kg of Nal(TI)
crystals located 23.7m from a 2.8 GW thermal power reactor
core, NEON has set new exclusion limits for ALPs coupling
to photons and electrons. These results probe previously
inaccessible regions of ALP parameter space, particularly
axion masses around 1 MeV/c?, for both axion-photon
and axion-electron couplings. Future improvements, such
as increased data exposure and advanced reconstruction of
saturated events above 3 MeV, will further enhance NEON’s
sensitivity to ALP searches.
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