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ABSTRACT

This paper proposes an integrated neural network for joint noise suppression and resolution enhancement of inverse synthetic

aperture radar (ISAR) images. Unlike conventional methods that address both challenges separately, we present a unified

framework that can address them simultaneously. To achieve this, we first generate a comprehensive dataset of ISAR images

for various targets under different conditions using a simulation-based method. Subsequently, we develop separate generative

models for noise suppression and resolution enhancement, which are then combined sequentially. This combined network uses a
joint optimization strategy in training process, simultaneously updating the weights of the two networks. The proposed integrated
network achieved an average peak signal-to-noise ratio and structural similarity index measure of 34.69 dB and 0.95, respectively.

It demonstrates that the proposed network effectively achieves both noise suppression and resolution enhancement within a

single network.

1 | Introduction

An inverse synthetic aperture radar (ISAR) is a technique that
generates images of a target by using the movement of a target
relative to a stationary radar platform. Unlike a conventional
synthetic aperture radar that relies on the movement of the
radar platform itself, ISAR is differentiated by its use of the
inherent motion of the target. It has gained widespread adoption
for identifying and classifying low-observable targets that are
difficult to detect optically due to their distance or size, such as
small aerial objects [1].

To improve target classification accuracy in ISAR systems, two
key technologies have recently emerged: noise suppression and
resolution enhancement. ISAR images acquired in practical envi-
ronments often contain noise, which can degrade the accuracy
of target identification [2]. Therefore, effective noise suppression
techniques are essential for isolating the target from background
noise and improving identification capabilities. Moreover, obtain-
ing high-resolution ISAR images is crucial for detailed target
analysis. Traditionally, achieving high resolution requires the use
of a wide frequency bandwidth. However, it can also increase the
system resource consumption and reduce operational efficiency.
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TABLE 1 | Simulation parameters for ISAR image generation.

Parameter Value
Operating band X-band
Pulse repetition frequency (Hz) 10
Frequency samples 256
Observation time (s) 160
Signal-to-noise ratio (dB) —10 to 10
Observation angle (°) 1-180

To overcome this problem, recent research has also focused on
generating high-resolution ISAR images with limited frequency
bandwidths, balancing image quality and resource efficiency [3].

Previous studies have typically treated noise suppression and
resolution enhancement as separate problems. On the other
hand, our study introduces an integrated network that simultane-
ously addresses both objectives to enhance overall image quality
and processing efficiency. Specifically, we propose a unified
network that combines distinct generative models for each task,
integrating them sequentially.

2 | Simulation-Based ISAR Image Generation

Acquiring ISAR images in practical environments is often chal-
lenging due to physical limitations, such as restricted access to
varied target orientations and the extensive resources required
for data collection. These limitations make it difficult to obtain
a diverse and comprehensive dataset. To overcome these con-
straints, we use a simulation-based approach for generating ISAR
images. In this approach, we assume a radar platform commonly
used in ISAR applications. Under this assumption, we focus on
verifying the generalization performance across different targets
and evaluating the robustness of the algorithm against variations
in target characteristics. The simulation process consists of three
steps: target modeling, electromagnetic wave modeling, and ISAR
image generation. In the target modeling process, various targets
such as quadcopter drones, birds, and unmanned aerial vehicles
(UAVs) are represented as three-dimensional (3D) mesh struc-
tures. For target modeling, we define initial parameters such as
position, velocity, and trajectory for each target and calculate the
precise change in position over time. Once the target modeling is
complete, we employ the physical optics (PO) method to calculate
the scattered field from the modeled target [4]. The scattered field
is used to model the electromagnetic waves reflected from the
target, including amplitude, phase, and polarization information.
Operating frequency and observation time are also considered to
accurately model the received signals. Finally, we generate the
ISAR image by applying a two-dimensional fast Fourier transform
to the modeled signals. The specific parameters used in our
simulation are shown in Table 1.

3 | Generating Dataset for Training

We generate datasets that addresses both aspects of noise sup-
pression and resolution enhancement. First, we generate pairs
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FIGURE 1 | Anexample of the targets and their corresponding ISAR
images: (a-c) the 3D mesh-modeled targets, (d-f) the low-resolution
images with noise, (g-i) the low-resolution images without noise, and (j-1)
the high-resolution images without noise.

of ISAR images with and without noise. For the simulation,
we use an additive white Gaussian noise to represent the
background noise. Next, we generate pairs of low-resolution and
high-resolution ISAR images by adjusting the bandwidth. The
low-resolution images are generated using a bandwidth corre-
sponding to 5% of the center frequency, and the high-resolution
images are generated using a bandwidth corresponding to 20%
of the center frequency. Through this process, we generate three
types of ISAR images for each target: low-resolution images
with noise, low-resolution images without bluenoise, and high-
resolution images without noise. A total of 600 images are
generated for each type, and examples of the generated ISAR
images along with their corresponding targets are shown in
Figure 1. The first, second, and third columns in Figure 1 represent
the bird, drone, and UAV images, respectively. Also, the second
and third rows in Figure 1 show images with noise and low-
resolution, respectively. The fourth row shows the ground truth
of high-resolution images without noise, which represents the
ultimate objective of our proposed method for noise suppression
and resolution enhancement.

4 | Network for Noise Suppression
The generator for noise suppression is designed to remove

unwanted artifacts while preserving the essential features of
the target image. To achieve this, our proposed architecture is
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FIGURE 2 | Architecture of the proposed network for noise suppres-
sion: (a) a generator and (b) a discriminator.

based on the U-Net architecture, which follows an encoder-
decoder structure. The encoder consists of two convolution
layers, batch normalization, a rectified linear unit activation
function, and a maxpooling layer. The sequential application of
two convolutional layers enables the network to progressively
extract high-level features while filtering out low-frequency com-
ponents such as noise [5]. These compressed high-level features
are then used to reconstruct the image during the decoding
process. In this process, skip connections are used to directly
transfer feature maps from the encoder to the decoder, thereby
preserving the high-frequency components of the original target.
Next, the structure of our discriminator consists of multiple
convolutional blocks that progressively extract features from the
input image. These extracted features allow the discriminator to
determine whether the input is real or fake. The structures of the
generator and the discriminator for noise suppression are shown
in Figures 2a and 2b, respectively.

5 | Network for Resolution Enhancement

Unlike noise suppression, which preserves the original structure
while removing artifacts, resolution enhancement requires trans-
forming the input image into a new image with spatial details
that are not present in the input image. It involves generating
high-frequency components to reconstruct a higher resolution
image. To accomplish this, our proposed architecture consists
of multiple residual blocks for high-resolution feature learning,
followed by several upsampling blocks to gradually increase the
image size. The residual blocks add input to the output using
skip connections, allowing the network to add newly generated
high-resolution components to the original target data. Subse-
quently, the upsampling blocks physically expand the spatial
dimensions of the feature maps, gradually transforming the
enhanced features into a high-resolution image. The combination
of residual and upsampling blocks allows for both the addition
of high-resolution characteristics and gradual spatial upscaling.

The number of residual blocks = 32
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FIGURE 3 | Architecture of the proposed generator for resolution
enhancement.
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FIGURE 4 | Training loss across epochs for different generative
models.

Consequently, the architecture of the proposed generator for
resolution enhancement is shown in Figure 3.

6 | Proposed integrated network

After developing individual networks for noise suppression and
resolution enhancement, we design an integrated neural network
that achieves both objectives. When designing the integrated
network, several options can be considered for combining the
individual networks. In this paper, we evaluated the performance
of five different combinations: two individual networks, one
parallel combination, and the two serial combinations (i.e.,
noise suppression followed by resolution enhancement, resolu-
tion enhancement followed by noise suppression). As shown
in Figure 4, the serial configuration where noise suppression
precedes resolution enhancement exhibited the lowest loss value
during the learning process. These results indicate that enhancing
resolution before removing noise can amplify unwanted artifacts,
whereas performing noise suppression first enables a more
accurate reconstruction of the target object by eliminating unnec-
essary interference [6]. Based on this consideration, we design
the integrated network by connecting the two networks in series,
with noise suppression preceding resolution enhancement.

For training the integrated network, we first define the loss
functions for each network. Each loss function consists of an
adversarial loss and a content loss, where the content loss differs
depending on the network’s objective. For noise suppression, we
use the mean squared error (MSE) as the content loss, while the
content loss for resolution enhancement incorporates not only
the MSE but also the visual geometry group (VGG) loss. The VGG
loss computes the difference between the feature representations
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FIGURE 5 | Two different training strategies: (a) the sequential
optimization and (b) the joint optimization.
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FIGURE 6 | Training loss across epochs for different training strate-
gies: (a) the loss of first network and (b) the loss of second network.

of the generated and target images, using feature maps extracted
from multiple layers of a pre-trained network. It encourages the
model to focus on high-level perceptual features and textural
details, resulting in images that are not only sharper but also
visually realistic [7]. With these defined loss functions, we explore
two different training strategies: sequential optimization and
joint optimization, as shown in Figure 5. Sequential optimization
involves training each network independently using its respective
loss functions, after which the networks are connected in series.
It allows each network to maintain optimal performance for its
specific task [8]. In contrast, joint optimization combines the
loss functions from both networks into a single unified loss
function, thereby allowing for the simultaneous training of both
networks. It enables mutual adaptation to each other’s output
during training, potentially improving the overall performance of
the integrated network [9].

To determine the most effective approach, we implemented and
evaluated both strategies. As shown in Figure 6, while both
strategies achieved similar loss values for the second network
(i.e., resolution enhancement), the joint optimization strategy
achieved lower loss for the first network (i.e., noise suppression).
Considering these results, we adopt the joint optimization strat-
egy for our final model. Furthermore, we optimize the generator
architecture by analyzing the loss with respect to the number of
layers in each network. The first network achieved the lowest
loss value with 5 U-Net block pairs, and the second network
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FIGURE 7 | Generator structure of the integrated network.

showed similar loss values for configurations with 30 or more
residual blocks. Based on these findings, the proposed generator
architecture of our integrated network is shown in Figure 7.

7 | Performance Evaluation

The training parameters for the integrated network are as follows:
a batch size of 8, adaptive moment estimation as the optimizer, a
learning rate of 0.0002, and a total of 100 epochs we performed
a quantitative evaluation of the generated images using the
peak signal-to-noise ratio (PSNR) and the structural similarity
index measure (SSIM). The PSNR and SSIM metrics for the
sequential strategy were 29.65 dB and 0.72, respectively, while
the joint optimization strategy achieved 34.69 dB and 0.95. It
demonstrated that the joint optimization strategy outperforms
the sequential strategy. The joint optimization approach shows
higher average PSNR and SSIM values compared to the sequential
approach. Also, Figure 8 presents the qualitative results of the
integrated network using the joint optimization strategy. The
first, second, and third columns in Figure 8 show the input test
images, the generated image with noise suppression and reso-
lution enhancement, and the ground truth images, respectively.
It demonstrated that our proposed integrated network effec-
tively achieved both goals of noise suppression and resolution
enhancement simultaneously.

8 | Conclusion

In this paper, we proposed an integrated neural network to simul-
taneously address noise suppression and resolution enhancement
of ISAR images. Among various combination methods including
parallel and serial architectures, we found that a sequential
approach of noise suppression followed by resolution enhance-
ment achieved the lowest loss. Furthermore, within the serial
combination framework, we considered both a sequential opti-
mization strategy and a joint optimization strategy during the
training process. The performance of the proposed network
was evaluated using a comprehensive dataset generated through
simulations. The PSNR and SSIM values for the sequential opti-
mization strategy were 29.65 dB and 0.72, respectively, while the
joint optimization strategy achieved improved values of 34.69 dB
and 0.95. It demonstrated that by using a joint optimization strat-
egy in a serially connected network architecture, the proposed
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FIGURE 8 | Joint noise suppression and resolution enhancement
results for each target: (a—c) a bird, (d-f) a drone, and (g-i) an UAV.

integrated network successfully addressed both noise suppression
and resolution enhancement within a single pipeline.
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