

pISSN: 2384-3799 eISSN: 2466-1899 Int J Thyroidol 2025 May 18(1): 30-64 https://doi.org/10.11106/ijt.2025.18.1.30

2025 대한갑상선학회 저위험 갑상선유두암 적극적 관찰 진료권고안

국립암센터 갑상선암센터 내과¹, 분당서울대학교병원 내과², 충북대학교병원 이비인후과³, 충남대학교병원 이비인후과⁴, 아주대학교 의과대학 직업환경의학교실⁵, 부산대학교병원 내과⁶, 서울대학교병원 영상의학과⁷, 한양대학교병원 내과⁸, 중앙대학교광명병원 외과⁹, 서울특별시보라매병원 내과¹⁰, 중앙대학교병원 외과¹¹, 내과¹², 세종충남대학교병원 이비인후과¹³, 단국대학교병원 내과¹⁴, 여의도성모병원 영상의학과¹⁵, 은평성모병원 내과¹⁶, 노원을지대학교병원 내과¹⁷, 서울성모병원 병리과¹⁸, 순천향대학교부천병원 내과¹⁹, 서울성모병원 내과²⁰, 삼성서울병원 내과²¹, 서울대학교병원 내과²², 강릉아산병원 영상의학과²³, 삼성서울병원 외과²⁴

구본석 4 , 김경식 5 , 김미진 6 , 김보현 6 , 김지훈 7 , 문신제 8 , 백교림 9 , 원호룬 13 , 유원상 14 , 이민경 15 , 이정민 16 , 이지예 7 , 정경연 17 ,

2025 Korean Thyroid Association Clinical Management Guideline on Active Surveillance for Low-Risk Papillary Thyroid Carcinoma

Eun Kyung Lee^{1*}, Min Joo Kim^{2*}, Seung Heon Kang³, Bon Seok Koo⁴, Kyungsik Kim⁵, Mijin Kim⁶, Bo Hyun Kim⁶, Ji-hoon Kim⁷, Shin Je Moon⁸, Kyorim Back⁹, Young Shin Song¹⁰, Jong-hyuk Ahn¹¹, Hwa Young Ahn¹², Ho-Ryun Won¹³, Won Sang Yoo¹⁴, Min Kyoung Lee¹⁵, Jeongmin Lee¹⁶, Ji Ye Lee⁷, Kyong Yeun Jung¹⁷, Chan Kwon Jung¹⁸, Yoon Young Cho¹⁹, Dong-Jun Lim²⁰, Sun Wook Kim²¹, Young Joo Park²², Dong Gyu Na²³ and Jee Soo Kim²⁴

Department of Internal Medicine, Center for Thyroid Cancer, National Cancer Center¹, Goyang, Department of Internal Medicine, Bundang Seoul National University Hospital², Seongnam, Department of Otolaryngology, Chungbuk National University Hospital³, Cheongju, Department of Otolaryngology-Head and Neck Surgery, Chungnam National University Hospital⁴, Daejeon, Department of Occupational and Environmental Medicine, Ajou University School of Medicine⁵, Suwon, Department of Internal Medicine, Pusan National University Hospital, Pusan National University School of Medicine⁶, Busan, Department of Radiology, Seoul National University Hospital, Department of Internal Medicine, Hanyang University Hospital⁸, Seoul, Department of Surgery, Chung-Ang University Gwangmyeong Hospital⁹, Gwangmyeong, Department of Internal Medicine, Seoul Metropolitan Government Seoul National University Boramae Medical Center¹⁰, Departments of Surgery¹¹, Internal Medicine¹², Chung-Ang University Hospital, Chung-Ang University College of Medicine, Seoul, Department of Otolaryngology-Head and Neck Surgery, Chungnam National University Sejong Hospital¹³, Sejong, Department of Internal Medicine, Dankook University Hospital¹⁴, Cheonan, Department of Radiology, Yeouido St. Mary's Hospital¹⁵, Department of Internal Medicine, Eunpyeong St. Mary's Hospital¹⁶, Department of Internal Medicine, Nowon Eulji Medical Center, Eulji University¹⁷, Department of Hospital Pathology, Seoul St. Mary's Hospital¹⁸, Seoul, Department of Internal Medicine, Soonchunhyang University Hospital¹⁹, Bucheon, Department of Internal Medicine, Seoul St. Mary's Hospital²⁰, Department of Internal Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine²¹, Department of Internal Medicine, Seoul National University Hospital²², Seoul, Department of Radiology, Gangneung Asan Hospital, Ulsan University College of Medicine²³, Gangneung, Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine²⁴, Seoul, Korea

Received April 30, 2025 / Accepted May 4, 2025

Correspondence: Young Joo Park, MD, PhD, Department of Internal Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul 03080, Korea

Tel: 82-2-2072-4183, Fax: 82-2-762-2292, E-mail: yjparkmd@snu.ac.kr

Copyright © the Korean Thyroid Association. All rights reserved.

This is an open-access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creative-commons.org/licenses/by-nc/4.0/), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

^{*}These two authors contributed equally to this work.

The increasing detection of papillary thyroid microcarcinoma (PTMC) has raised concerns about overtreatment. For low-risk PTMC, either immediate surgery or active surveillance (AS) can be considered. To support AS implementation, the Korean Thyroid Association convened a multidisciplinary panel and developed the first Korean guideline. AS is recommended to adults with pathologically proven Bethesda V-VI PTMC without clinical evidence of lymph node or distant metastasis, gross extrathyroidal extension, tracheal or recurrent laryngeal nerve invasion, or aggressive histology. Baseline assessment requires high-resolution cervical ultrasound by experienced operators to rule out extrathyroidal extension, tracheal or recurrent laryngeal nerve invasion, and lymph node metastasis; contrast-enhanced neck computed tomography is optional. Patient characteristics such as age, comorbidities, and capacity for long-term follow-up should be assessed. Shared decision-making should weigh the benefits and risks of surgery and AS, expected oncologic outcomes, complications, quality of life, anxiety, medical cost, and patient preference. Follow-up includes cervical ultrasound and thyroid function test every six months for two years, then annually. Disease progression, defined as significant tumor growth or newly detected nodal or distant metastasis, warrants surgery. Despite remaining uncertainties, this guideline offers a framework to ensure oncologic safety and support patient-centered active surveillance.

Key Words: Active surveillance, Guideline, Korean, Papillary thyroid microcarcinoma, Thyroid neoplasms

서 롯

갑상선암은 전세계적으로 2000년대 초반부터 급격하 게 증가하여,¹⁾ 2022년 기준 전세계 발생률 10만명 당 9.1 명으로 전체 암종 중 7번째로 흔히 발생하는 암이다.2 우 리나라의 발생률은 이보다 훨씬 높아서 2022년 기준 10 만 명당 48.4명으로 전체 암종 중 1위를 차지하고 있다.3)

우리나라의 갑상선암 발생률은 고해상도 초음파의 보 급과 건강검진의 보편화로 2005년 10만 명당 24.1명에서 2012년 74.8명까지 급격히 증가하였다.^{3,4)} 이후 감소 추 세를 보여주고 있으나 진단된 갑상선암 중 약 35%가 1 cm 이하의 미세갑상선유두암으로,⁵⁾ 갑상선암에 대한 과 잉진단(over-diagnosis)과 과잉치료(over-treatment)에 대 한 사회적 우려가 지속되고 있다. 6,7)

갑상선분화암의 치료 목표는 환자의 생존율을 향상시 키고, 질병의 잔존이나 재발의 위험도는 낮추는 한편, 치 료 관련 부작용과 불필요한 치료를 최소화하는 것이다.⁸⁾ 그런데, 미세갑상선유두암은 질병특이사망률이 0.1% 미 만이고 재발률도 3% 정도로 장기 예후가 양호하다. 9 비 록 9-42%는 진단 당시부터 임상적으로 확인되는 림프절 전이가 동반되어 있지만, 10-13) 그 외에 전이 혹은 갑상선 외부침범 소견이 없는 경우가 다수이며, 이 경우 예후가 매우 좋다. 그러므로 미세갑상선유두암이 발견되면 전이 또는 갑상선외부침범 동반 여부를 확인하여, 임상적으로 이러한 소견이 없는 경우에는 추적 관찰을 하다가 질병 이 진행하는 경우에 한하여 수술하는 것이 이상적일 수 있다. 이러한 개념에서, 저위험 미세갑상선유두암의 관 리 방침으로서 수술적 치료뿐 아니라 적극적 관찰(active surveillance)이 적용 가능한 방안으로 제안되었다. 14)

적극적 관찰이란 미세갑상선유두암이 저위험으로 확 인된 경우 진단 즉시 수술하지 않고 주기적으로 초음파 검사로 경과를 추적하는 방법으로, 추적 중 질병이 진행 하는 경우 수술을 시행한다. 적극적 관찰은 1993년 일본 에서 시작되어 2003년 그 결과가 처음 발표되었고,14) 2011년 일본 진료권고안에서 이를 처음으로 도입하였 다. 15) 이후 여러 나라에서 발표된 연구 결과를 바탕으로, 다수의 진료권고안에서 적극적 관찰을 저위험 미세갑상 선유두암의 치료 방침의 하나로 권고하고 있다. 16 국내 에서도 2016년부터 전향적인 코호트 연구들이 시작되었 고 17,18) 여러 전향적 및 후향적 임상연구 결과가 발표되 었다.^{19,20)}

대한갑상선학회는 2016년 진료권고안에서 적극적 관 찰의 적용 가능성과 제한점에 대해 기술하였고²¹⁾ 이후 축 적된 임상연구결과에 근거하여²²⁾ 2023년 갑상선결절 진 료권고안과 2024년 갑상선분화암 진료권고안에서 적극적 관찰을 저위험 미세갑상선유두암의 관리 전략 중 하나로 포함하였다.^{8,23)} 다만 적극적 관찰을 실제 진료현장에 적 용하기 위해서는, 1) 적극적 관찰이 가능한 대상을 선별 하고, 2) 적절한 검사방법과 간격으로 추적하여, 3) 수술 이 필요한 시점을 판별하는 것이 중요하다. 이러한 요구 에 따라 본 진료권고안에서는 해당 내용에 대해 체계적 문헌고찰을 거쳐 권고문을 도출하였다. 각 부문에서 중요 한 내용들은 틀 안에 권고문과 권고수준으로 기술하였으 며, 대한갑상선학회 저위험 갑상선유두암 적극적 관찰 진 료권고안으로 대한갑상선학회의 공식 학술지인 대한갑상 선학회지(International Journal of Thyroidology)와 홈페이 지(www.thyroid.kr)에 게시하였다.

대한갑상선학회 적극적 관찰 진료권고안 제정 과정

권고안 개발위원회의 구성과 개발 목적

대한갑상선학회 저위험 갑상선유두암 적극적 관찰 권고안은 대한갑상선학회의 유관 학회 추천 위원으로 구성된 '대한갑상선학회 갑상선결절 및 암 진료지침 제정위원회'에서 개발하였으며, 개발위원회는 내과, 병리과, 영상의학과, 외과, 이비인후과, 예방의학과 위원으로 구성되었다. 자문위원회는 6개 유관학회(대한내분비학회, 대한내분비외과학회, 대한두경부외과학회, 대한핵의학회, 대한갑상선영상의학회 및 대한병리학회)에서 추천한 위원과 대한갑상선학회 2023-2025년도 이사회의 내과, 병리과, 영상의학과, 외과, 이비인후과 및 핵의학과위원으로 구성되었다.

본 권고안 개발의 대상 질환은 19세 이상의 성인에서 진단된 미세갑상선유두암으로, 병리진단검사 후 악성의 심 또는 악성(Bethesda 범주 V 또는 VI)으로 진단된 1 cm 이하 크기의 결절로 정의한다. 최근 여러 나라에서 적극적 관찰 적용 대상을 1 cm 이하 크기의 미세갑상선유두암에 국한하지 않고 1.5 cm 또는 2 cm 이하이면서 저위혐인 갑상선유두암까지 확대하려는 임상연구들이 진행되고 있다.²⁴⁻²⁸⁾ 그러나 아직 실제 임상에서 일반적으로 적용하기에는 근거가 부족하므로, 본 권고안에서는 1 cm 이하의 미세갑상선유두암으로 대상을 국한하였다.

개발 범위는 미세갑상선유두암으로 진단받은 성인 환자 집단(population)을 대상으로 의료기관(healthcare setting)에서 갑상선암 환자를 진료하는 의사들(professionals)이 저위험 미세갑상선유두암에 대한 수술 또는 적극적 관찰의 치료 방침을 선택하고 추적할 때 도움을 주고자 하는 목적으로 제정되었다. 본 권고안은 진료의 표준이 될수는 없으며, 갑상선암 환자를 진료하는 데 있어 논란이 많은 부분들에 중점을 둔 현재 시점에서의 권고안임을 분명하게 밝혀둔다.

권고문 도출 과정

2024년 1월 대한갑상선학회의 회원을 대상으로 저위험 갑상선암의 치료에 대한 온라인 설문조사와 적극적관찰의 영상학적 적응증에 대한 의견 조사를 시행하였다. ²⁹⁾ 설문 조사에서 응답자의 36%는 질병 진행에 대한환자의 민원이나 법적 문제 발생을 가장 우려하였으며,다음으로는 질병에 대한 환자의 걱정 및 불안감(26%),

질병 진행으로 인한 치료 범위 증가(24%)를 우려하였다. 299 또한, 응답자의 88%는 불안감이 심한 환자를 위한심리적 지원과 장기 추적에 필요한 초음파검사에 대한건강보험 급여 적용이 필요하다고 응답하였으며, 85%는환자 대상으로 제공되는 정보와 교육 자료가 부족하다고 인식하였다.

이러한 설문을 바탕으로 본 권고안에서는 저위험 갑상 선유두암의 진단과 치료, 적극적 관찰의 대상 선정, 추적 검사 및 평가방법에 대해 다루었으며, 그 중 체계적 문헌 고찰이 필요한 5개의 항목을 선정하였다. 핵심질문들은 적극적 관찰의 임상적 유용성을 확인하기 위해 Agency for Healthcare Research and Quality (AHRQ) Effective Health Care Program에서 권고하는 진료권고안 개발틀 (framework)을 참고하여³⁰⁾ 개발위원들의 의견에 따라 5 개의 핵심질문들을 발굴, 체계적 문헌고찰을 수행하였다.

문헌검색은 방법론 전문가와 각 핵심질문을 담당한 개발 위원의 논의를 통해 일차 검색어를 도출하여 MEDLINE, EMBASE, Cochrane을 통해 검색식을 수립하였고, 수기 검색으로 검색 결과를 보완하였다. 문헌의 포함/배제기 준은 각 핵심질문별로 대상(Population), 중재(Intervention), 비교중재(Comparator), 결과(이득과 위해, Outcome) 의 형식으로 적용하였고, 근거의 합성 방법은 양적 합성 (메타분석)과 질적 합성을 모두 포함하였다. 핵심질문외의 부분은 대한갑상선학회 갑상선분화암 진료권고안 2024 (part I. 2장 갑상선분화암의 적절한 초기 수술)⁸⁾과 2024 대한갑상선영상의학회의 합의안³¹⁾을 수용하고, 일본과 남미 등의 적극적 관찰 권고안^{32,33)}과 체계적 문헌고찰 등의 결과를 참조하여 작성하였다.

본 권고안은 '대한갑상선학회 갑상선결절 및 암 진료 권고안 제정위원회'의 내과, 병리과, 영상의학과, 예방의 학과 위원이 작성하고, 외과, 이비인후과 위원의 검토과 정을 거쳐 초안을 작성하였다. 2025년 3월 대한갑상선학 회 춘계 학술대회에서 공청회를 개최하였으며, 개발위원 회와 자문위원회의 의견을 수렴하고, 핵심질문에 대한 권고문에 대해서는 델파이협의를 진행하였다. 이후 대한 갑상선학회 홈페이지에서 대한갑상선학회 회원의 의견 을 수렴하고 6개 유관학회의 승인을 거쳐 확정하였다.

권고수준 및 권고안 요약

각 부문에서 중요한 내용들을 Table 1의 권고수준으로 권고안으로 기술하였다. Table 2에 권고안이 요약되어 있다.

Table 1. 대한갑상선학회 진료권고안의 권고 수준

권고수준	정의
1	강력히 권고함/강력히 권고하지 않음(strong for/against recommend): 권고한 행위를 하였을 때 중요한 건강상의 이득 또는 손실이 있다는 충분하고도 객관적인 근거가 있는 경우
2	일반적으로 권고함/일반적으로 권고하지 않음(conditional for/against recommend): 권고한 행위를 하였을 때 중요한 건강상의 이득 또는 손실이 있다는 근거가 있지만, 근거가 확실하지 않아 일률적으로 행하라고 권고하기 어렵거나 근거가 간접적인 경우
3	전문가 합의 권고(expert consensus): 임상적 근거는 부족하지만 환자의 상황과 전문가의 합의(expert consensus)에 따라 권고하는 사항
4	권고 보류(inconclusive): 권고한 행위를 하였을 때 중요한 건강상의 이득 또는 손실이 있다는 근거가 없거나 이견이 많아서, 해당 행위를 하는 것에 대해 찬성도 반대도 하지 않음

- Table 2. 대한갑상선학회 적극적 관찰 진료권고안 요약 1. 미세갑상선유두암의 진단과 치료 1.1. 미세갑상선유두암의 진단 1.2. 미세갑상선유두암의 치료 방침 1.2.A. 미세갑상선유두암이 진단된 경우, 영상검사 및 병리진단검사 결과를 면밀하게 검토하여 저위험에 해당하는지 평가해야 한다. 권고수준 1 1.2.B. 저위험 미세갑상선유두암으로 진단된 성인 환자(19세 이상)는 적극적 관찰을 고려한다. 권고수준 2 [임상적 고려사항] 19세 미만의 미세갑상선유두암은 위험도와 무관하게 수술을 권고한다. 1.2.C. 저위험이 아닌 미세갑상선유두암은 수술을 권고한다. 권고수준 1 1.2.D. 미세갑상선유두암의 수술범위는 대한갑상선학회 갑상선분화암 진료권고안을 따른다. 권고수준 1 2. 적극적 관찰의 대상 선정 2.1. 적극적 관찰이 가능한 종양 2.1.A 적극적 관찰을 고려할 수 있는 저위험 미세갑상선유두암은 다음과 같다. 권고수준 1 병리진단검사에서 병리진단범주 V 또는 VI으로 진단된 1 cm 이하의 결절로 (1) 임상적으로 림프절전이 또는 원격전이가 의심되지 않고 (2) 임상적으로 종양의 띠근육, 기관(trachea) 또는 되돌이후두신경(recurrent laryngeal nerve)에 육안적 갑상선외부침범 이 없고 (3) 임상적으로 기관 또는 되돌이후두신경 침범이 의심 또는 우려되지 않고 (4) 갑상선유두암의 공격적인 조직아형(긴세포, 원주세포, Hobnail 아형의 고위험 아형과 고형 아형과 미만성 경화 아형)이
 - 관찰되지 않는 경우 2.2. 종양의 위험도 평가를 위한 검사
 - 2.2.A. 저위험 미세갑상선유두암에서 적극적 관찰을 결정하기 위해서는 갑상선과 경부 림프절을 평가할 수 있는 적절한 영상검사 를 시행해야 한다. 권고수준 1
 - 2.2.B. 갑상선과 경부 림프절에 대한 평가를 위해 숙련된 의사에 의해 고해상도 초음파가 시행되어야 한다. 권고수준 1
 - 2.2.C. 경부 림프절에 대한 평가를 위해 초음파 외에 조영증강 경부 전산화단층촬영을 추가적으로 시행할 수 있다. 권고수준 2
 - 2.2.D. 경부 림프절전이가 의심되는 경우 림프절의 초음파 유도하 병리진단검사와 흡인액의 갑상선글로불린검사를 시행한다. 권고수준 1
 - 2.2.E. 폐전이를 평가하기 위해 흉부 전산화단층촬영을 일률적으로 시행하는 것은 권고하지 않는다. 권고수준 3
 - 2.2.F. 병리진단검사에서 갑상선유두암의 공격적인 아형이 의심되는 경우 병리판독지에 해당 내용을 기술한다. 권고수준 3
 - 2.2.G. 고위험 유전자변이가 확인되거나 두 개 이상의 유전자변이가 동반된 경우 수술을 권고한다. 권고수준 3
 - [임상적 고려사항] 수술 전 유전자패널검사를 미세갑상선유두암의 진행 및 예후를 예측하기 위해 시행하여야 하는가에 대한 임상적 유용성은 아직까지 근거가 충분하지 않으나, 검사결과가 존재하는 경우에는 그 결과를 참고한다.
 - 2.3. 종양의 위험도 평가를 위한 영상검사 소견
 - 2.3.A. 피막하(전방, 후방내측, 후방외측) 종양과 기관주위 종양은 육안적 갑상선외부침범 여부를 면밀하게 평가해야 한다. 권고 수준 1
 - 2.3.B. 띠근육 대체 소견을 동반한 전방 피막하 종양, 기관과 90도 이상의 각도를 이루는 기관주위 종양, 정상 갑상선 실질 없이 기관에 접촉한 후방내측 피막하 종양. 또는 돌출된 후방외측 피막하 종양은 육안적 갑상선외부침범 가능성이 높으므 로, 즉각적인 수술을 권고한다. 권고수준 2
 - 2.3.C. 회색조 초음파와 색조 도플러 초음파를 통해 중앙경부와 측경부를 포함한 림프절의 전이 여부를 면밀하게 평가해야 한다. 권고수준 2
 - 2.3.D. 림프절전이가 확인되면 수술을 권고한다. 권고수준 1
 - Table 2.3.A. 갑상선암 환자에서 림프절 평가를 위한 영상 기반 분류와 병리진단검사 기준
 - Fig. 2.3.A. 저위험 미세갑상선유두암의 적극적 관찰을 위한 영상 기반 적합도 모식도

- 2.4. 적극적 관찰이 가능한 환자의 특성
 - 2.4.A. 적극적 관찰을 고려할 경우, 종양의 특성과 함께 건강상태와 나이, 주기적 추적 가능성 등과 같은 환자의 특성을 종합적으로 평가해야 한다. 권고수준 1
- 2.4.B. 나이가 많거나 종양의 크기가 작은 경우 적극적 관찰을 우선적으로 고려할 수 있다 권고수준 2
- 2.4.C. 적극적 관찰과 즉시 수술을 비교한 질병의 예후(진행 또는 재발), 합병증, 삶의 질과 불안감, 의료사회비용 등에 대한 환자의 선호도를 고려한다. 권고수준 2
- 2.5. 적극적 관찰의 적합성 평가
 - 2.5.A. 적극적 관찰의 적합성 평가는 종양의 고위험 소견에 대한 초음파 특성 평가가 가능한 전문가에 의해 주의 깊게 이루어져야한다. 권고수준 3
 - 2.5.B. 적극적 관찰의 적합성은 종양 자체(크기, 위치, 병리, 림프절전이 여부 등)와 환자(연령, 선호도, 동반 질환, 추적 가능성 등)의 특성을 종합하여 이상적(ideal), 적합(appropriate), 부적합(inappropriate)한 경우로 구분한다. 권고수준 3 [임상적 고려사항] 이상적인 경우와 적합한 경우가 적극적 관찰이 가능한 대상이 되며, 질병이 진행(크기 증가, 림프절전이

발생 등)하여 부적합한 대상으로 변화하면, 수술을 권고하여야 한다.

Table 2.5.A. 미세갑상선유두암으로 진단된 환자에서 적극적 관찰의 적합성 분류

- 3. 저위험 미세갑상선유두암의 치료 방침 결정시 고려할 점
 - 3.A. 저위험 미세갑상선유두암으로 진단된 성인 환자에게 수술과 적극적 관찰의 이득과 위해에 대해 충분한 정보를 제공한다. 권고수준 3
 - 3.B. 공유의사결정을 통하여 저위험 미세갑상선유두암의 치료 방침을 결정한다. 권고수준 3
 - 3.1 수술과 적극적 관찰의 장단점 및 치료 방법의 선택
 - 3.2. 저위험 미세갑상선유두암의 자연 경과
 - 3.3. 즉시 수술과 지연 수술의 예후와 합병증
 - 3.3.A. 저위험 미세갑상선유두암 환자에서, 즉시 수술을 시행한 경우에 비해 적극적 관찰 중 지연 수술을 시행한 경우 일시적인 수술합병증 위험은 증가할 수 있지만, 영구적인 수술합병증이나 재발 위험은 증가하지 않으므로, 적극적 관찰을 고려할 수 있다. 권고수준 2
- 3.4. 즉시 수술과 적극적 관찰의 비용 평가
 - 3.4.A. 저위험 미세갑상선유두암 환자에서 치료 방법에 따라 장기 비용과 단기 비용에 차이가 있으므로, 치료 방침을 결정할 때 사회의료비용을 종합적으로 고려해야 한다. 권고수준 3

[임상적 고려사항] 사회의료비용은 직접비용 및 간접비용을 고려한 비용으로, 개인 고용상태, 의료기관까지 거리, 생산성 손실 수준에 따라 개인별로 다를 수 있으므로 포괄적인 평가가 필요하다.

- 3.5. 즉시 수술과 적극적 관찰의 삶의 질 비교
 - 3.5.A. 저위험 미세갑상선유두암 환자에서 치료법에 따른 삶의 질을 직접적으로 비교한 연구는 부족하지만, 치료 방침을 결정할 때 환자보고결과가 있는 경우 이를 고려해야 한다. 권고수준 3

[임상적 고려사항] 환자보고결과(Patient-Reported Outcome, PRO)는 삶의 질, 불안, 우울 등과 같은 환자 스스로가 주관적으로 인지하는 건강 상태를 평가한 정보를 의미한다.

- 4. 적극적 관찰 중 추적검사
 - Fig. 4.A. 적극적 관찰 중 추적 알고리즘
 - 4.A. 적극적 관찰 중인 경우 경부 림프절을 포함한 갑상선 초음파검사로 종양의 진행 여부를 주기적으로 면밀하게 평가해야 한다. 권고수준 1
 - 4.B. 적극적 관찰 중인 경우 주기적으로 갑상선기능검사를 시행한다. 권고수준 3

[임상적 고려사항] 환자의 동반 질환 및 선호도 등 환자의 특성을 함께 평가하여 치료 방침 변경의 필요성을 확인한다.

- 4.1. 갑상선 초음파검사
 - 4.1.A. 적극적 관찰 중인 경우 질병 진행을 평가하기 위해 진단 후 1-2년간은 매 6개월마다 초음파를 시행하고, 질병 진행이 확인되지 않았다면 이후로는 연 1회 초음파를 시행한다. 권고수준 1

[임상적 고려사항] 종양의 진행 여부는 지속적으로 동일한 방법으로 평가해야 하며, 추적 간격은 초음파검사에서 관찰된 성장 패턴에 따라 조정할 수 있다.

- 4.1.B. 적극적 관찰 중인 경우 초음파검사를 통해 종양 크기, 갑상선외부침범, 림프절전이를 평가해야 한다. 권고수준 1
- 4.1.C. 적극적 관찰 중인 경우 초음파검사에서 종양 크기는 3 축에서 평가한다. 권고수준 1
- 4.1.D. 림프절전이가 의심되는 경우 초음파 유도하 세침흡인검사를 시행하며, 세침흡인세척액-갑상선글로불린의 측정을 함께 시행한다. 권고수준 1
- 4.2. 갑상선기능 평가
- 4.3. 환자 특성의 변화
- 5. 적극적 관찰 중 질병 상태 평가
- 5.1 질병 진행의 기준
 - 5.1.A. 적극적 관찰 도중 질병 진행은 다음 소견 중 한 가지 이상이 발견된 경우로 정의한다.
 - (1) 종양 크기가 증가한 경우로서 종양 최대 직경이 3 mm 이상 증가하거나 두 차원에서 직경 2개 이상이 2 mm 이상 증가한 경우. 권고수준 3
 - (2) 임상적으로 종양의 갑상선외부침범 소견이나 림프절 또는 원격전이가 새롭게 보이는 경우. 권고수준 1

- 5.2. 적극적 관찰 중 수술을 시행하여야 하는 경우
 - 5.2.A. 적극적 관찰 중 다음 소견 중 한 가지 이상이 발견되면 수술을 권고한다.
 - (1) 종양의 최대 직경이 13 mm 이상이거나 두 차원에서 직경 2개 이상이 12 mm 이상인 경우. 권고수준 3
 - (2) 초음파상 부적합한 소견(*Fig. 2.3.A*)이 새로 발생한 경우. 권고수준 1
 - (3) 림프절 또는 원격전이가 새로이 확인되거나 의심되는 경우. 권고수준 1
 - (4) 환자가 수술을 원하는 경우. 권고수준 1
- 5.2.B. 수술적 절제의 범위는 대한갑상선학회 갑상선분화암 진료권고안을 따른다. 권고수준 1
- 6. 향후 해결해야 할 점
 - 6.1. 장기 예후에 대한 근거
 - 6.2. 질병 진행 예측 인자
 - 6.3. 질병 진행 예방 치료
 - 6.4. 영상 유도하 최소 침습 치료법
 - 6.5. 병리진단검사 없이 시행하는 적극적 관찰 연구의 필요성

권고문 본문

1. 미세갑상선유두암의 진단과 치료

1.1. 미세갑상선유두암의 진단

갑상선암의 병리진단검사는 다음과 같이 2021년 대한 갑상선영상의학회와 2024년 대한갑상선학회의 권고안을 따라 시행한다. 34,35) 초음파로 갑상선결절의 암위험도를 평가하여 Korean Thyroid Imaging Reporting and Data System (K-TIRADS) 높은의심(K-TIRADS 5)으로 확인되 면 크기가 1 cm 보다 큰 경우에 병리진단검사(세침흡인 검사 혹은 중심바늘생검)를 시행한다. 34,35) 다만, 1) 경부 림프절전이 의심, 2) 명백한 주변 구조물로의 갑상선외부 침범(기도, 후두, 인두, 되돌이후두신경, 또는 갑상선 주 위 혈관), 3) 확인된 원격전이, 또는 4) 갑상선수질암 의 심 등의 불량한 예후 인자를 가진 경우에는 결절의 크기 와 무관하게 가장 의심스러운 결절에서 병리진단검사를 시행한다. 또한 5) 크기가 작은(>0.5 cm 및 ≤1 cm) 높은 의심 결절에서 되돌이후두신경의 경로를 따라 기도 또는 후방내측 피막에 접촉하는 경우 수술이 필요한 고위험 갑상선암일 수 있어 병리진단검사가 권고된다.

초음파에서 높은의심 소견이지만 크기가 작은(>0.5 cm 및 ≤1 cm) 결절에서 임상적 고위험 특성이 동반되지 않았다면, 병리진단검사를 시행하지 않고 초음파검사만 으로 추적할 수 있다. 이 경우, 저위험 미세갑상선유두암 의 적극적 관찰과 동일하게 주기적인 추적검사를 시행하 며 진행 소견이 발견되면 병리진단검사를 고려한다. 국 소 갑상선염과 감별이 되지 않는 결절의 경우에도 병리 진단검사 없이 초음파검사로 추적할 수 있는데, 이 경우 추적 시 사라질 수 있다. 다만, 6) 이와 같이 크기가 작은 (>0.5 cm 및 ≤1 cm) 높은의심 결절이 임상적으로 고위 험 특성을 동반하지 않더라도 적극적 관찰 등의 치료 계

획 수립에 필요하다면, 병리진단검사를 고려할 수 있다. 한편, 여러 나라의 권고안에서는 초음파상 악성이 의 심되는 높은의심 결절의 크기가 1 cm 미만인 경우에는 병리진단검사 없이 적극적 관찰을 권고하고 있다. 36,37) 2015년 미국갑상선학회는 초음파상 악성의심 결절 중 크 기가 1 cm 이상일 경우에만 세침흡인검사를 권고하였 고,³⁸⁾ 2023년 유럽갑상선학회는 0.5-1 cm 크기의 악성의 심 결절 중에서 림프절전이 의심 소견, 갑상선외부침범, 또는 기관이나 되돌이후두신경과 인접한 경우와 같이 고 위험 소견이 동반된 경우에 한해 세침흡인검사를 권고하 였다.³⁶⁾ 이와 같은 현황과 저위험 갑상선유두암의 양호한 예후를 고려하여, 2024년 대한갑상선영상의학회 합의문 에서는 초음파에서 높은의심(K-TIRADS 5) 소견을 보인 크기가 작은(>0.5 cm 및 ≤1 cm) 결절에 대해서 임상적 고위험의 특성이 없다면 환자의 선호도에 따라 병리진단 검사 없이 적극적 관찰을 고려할 수 있음을 권고문에 추 가하여 강조하였다. 31) 다만, 7) 소아의 경우에는 성인과 달리 고위험 특성이 동반되지 않은 경우에도, 임상적인 소견을 고려하여 크기가 작은(>0.5 cm 및 ≤1 cm) 높은 의심 결절에서도 병리진단검사를 시행해야 한다. 35)

1.2. 미세갑상선유두암의 치료 방침

- 1.2.A. 미세갑상선유두암이 진단된 경우, 영상검사 및 병리진단검사 결과를 면밀하게 검토하여 저위 험에 해당하는지 평가해야 한다. 권고수준 1
- 1.2.B. 저위험 미세갑상선유두암으로 진단된 성인 환 자(19세 이상)는 적극적 관찰을 고려한다. 권고 수준 2

[임상적 고려사항] 19세 미만의 미세갑상선유두암 은 위험도와 무관하게 수술을 권고한다.

- 1.2.C. 저위험이 아닌 미세갑상선유두암은 수술을 권고한다. 권고수준 1
- 1.2.D. 미세갑상선유두암의 수술범위는 대한갑상선 학회 갑상선분화암 진료권고안을 따른다. 권고 수준 1

저위험 미세갑상선유두암은 양호한 자연경과를 보이므로,²²⁾ 치료 방침으로 수술과 함께 적극적 관찰을 고려할 수 있다. 그러므로 병리진단검사에서 미세갑상선유두암으로 확인된 경우 저위험 여부에 대한 적절한 선별과정이 필요하다.

진단된 미세갑상선유두암이 저위험에 해당한다면 적 극적 관찰과 수술을 모두 고려할 수 있지만, 저위험이 아닌 경우에는 수술을 권고한다. 미세갑상선유두암의 수술범위는 2024년 대한갑상선학회 갑상선분화암 진료 권고안("Part I. 2장 갑상선분화암의 적절한 초기 수술") 을 따른다. 특히 저위험인 경우, 권고안에서는 두경부 방 사선조사의 과거력이 없고 가족성 갑상선암이 아닌 경 우, 반대쪽 엽을 절제해야 하는 분명한 이유가 없는 한 갑상선엽절제술을 시행하도록 하였다.⁸⁾ 이는 저위험 미 세갑상선유두암에서 갑상선전절제술과 엽절제술 후 장 기 생존율에 차이가 없었고, 갑상선전절제술이 반대측 엽에서의 재발을 줄일 수 있지만 실제 엽절제술 후 재발 률 자체가 상당히 낮기 때문이다.³⁹⁾ 또한 갑상선전절제 술이 상대적으로 엽절제술보다 수술 후 합병증의 위험 이 높으며, 재발되더라도 재치료가 효과적이므로 재발 률이 약간 높아지더라도 초기치료 시에는 보존적인 수 술방법을 선택한다.

저위험 미세갑상선유두암에 대한 적극적 관찰은 19세이상의 성인 환자에 국한하여 고려되어야 한다. 이는 소아나 청소년에서 적극적 관찰의 안전성에 대한 근거가 여전히 부족하고, 여러 연구에서 나이가 젊을수록 질병 진행 위험이 높은 것으로 보고되었기 때문이다. 일본 연구에 따르면 10년간 질병 진행률이 20-30대에서는 13-36%, 40-50대에서는 5-14%, 60-70대에서는 3-6%였다. 40)

요약하면, 미세갑상선유두암으로 진단된 성인에서는 치료 방침을 결정하기 전에 종양이 저위험에 해당하는 지 평가해야 하며, 저위험에 해당한다면 환자에게 수술 과 적극적 관찰의 장단점을 알린 후 환자의 선호도를 반 영한 공유의사결정을 통해 치료 방침을 결정하여야 한 다.

2. 적극적 관찰의 대상 선정

미세갑상선유두암 환자가 적극적 관찰의 대상이 되는 지를 확인하기 위해서는, 초음파를 포함한 영상 소견과 병리진단검사를 검토하여 저위험에 해당하는지를 주의 깊게 평가하는 것이 중요하다.

2.1. 적극적 관찰이 가능한 종양

2.1.A 적극적 관찰을 고려할 수 있는 저위험 미세갑상 선유두암은 다음과 같다. 권고수준 1 병리진단검사에서 병리진단범주 V 또는 VI으로 진단 된 1 cm 이하의 결절로

- (1) 임상적으로 림프절전이 또는 원격전이가 의심되지 않고
- (2) 임상적으로 종양의 띠근육, 기관(trachea) 또는 되돌이후두신경(recurrent laryngeal nerve)에 육 안적 갑상선외부침범이 없고
- (3) 임상적으로 기관 또는 되돌이후두신경 침범이 의심 또는 우려되지 않고
- (4) 갑상선유두암의 공격적인 조직아형(긴세포, 원 주세포, Hobnail 아형의 고위험 아형과 고형 아 형과 미만성 경화 아형)이 관찰되지 않는 경우

미세갑상선유두암은 일반적으로 종양 성장 속도가 느리고 예후가 좋아서 질병과 관련된 사망률은 0.1% 미만, 재발률은 3%로 보고된다." 그러나 공격적인 조직아형 (긴세포, 원주세포, Hobnail 아형의 고위험 아형과 고형 및 미만성 경화 아형)인 경우 종양 성장 속도가 상대적으로 빨라 수술적 절제가 권고된다. 또한 기관(trachea)이나 되돌이후두신경(recurrent laryngeal nerve, RLN)으로 침범한 경우에는 수술 시 완전절제를 하기 어려워 수술 후 재발률이 높다. 아울러 임상적으로 림프절전이가 의심되지 않았던 미세갑상선유두암은 재발률은 22%에 불과하지만, 림프절전이가 의심된 경우 재발률은 22%에 답하다. 41)

이러한 결과들을 바탕으로 일본의 한 전향적 연구에서는 미세갑상선유두암 중에서 림프절전이가 의심되거나 기관 또는 되돌이후두신경 침범이 우려되거나, 공격적인 조직아형인 경우 예후가 나쁠 것으로 예상하고 적극적 관찰 대상에서 제외하였다. [4] 2015년 미국갑상선학회 갑상선결절 및 갑상선암 진료권고안에서도 임상적으로 전이가 없고, 국소 침범이 없으며, 공격적인 조직아형이 아닌 저위힘 미세갑상선유두암에서만 적극적 관찰을

고려하고 있다.38)

2024년 대한갑상선학회 진료권고안에서도 미세갑상 선유두암 중에서 (1) 임상적으로 림프절전이 또는 원격 전이가 의심되지 않고, (2) 임상적으로 종양의 육안적 갑 상선외부침범이 없고, 기관 또는 되돌이후두신경 침범 이 의심 또는 우려되지 않고, (3) 갑상선유두암의 공격적 인 조직아형(긴세포, 원주세포, Hobnail 아형 등)이 관찰 되지 않는 경우에만 적극적 관찰을 권고하였다. 본 권고 안에서도 동일한 정의를 수용하였으나, 2024년 대한갑상 선영상의학회의 세부적인 영상 적합도 기준을 반영하 여, 주변 구조물에 대한 갑상선외부침범이 명확한 경우 (띠근육 포함)와 의심 또는 우려되는 경우(띠근육 불포 함)를 구분하여 기술하였으며, 대상이 되지 않는 조직아 형에 고형 아형과 미만성 경화 아형을 추가하였다.

2.2. 종양의 위험도 평가를 위한 검사

미세갑상선유두암이 저위험인지 평가하기 위해서는 영상검사에서 림프절전이, 원격전이, 육안적 갑상선외부 침범 여부를 평가하고, 병리진단검사에서 갑상선유두암 의 공격적인 조직아형 여부를 확인하여야 한다.

- 2.2.A. 저위험 미세갑상선유두암에서 적극적 관찰을 결정하기 위해서는 갑상선과 경부 림프절을 평가할 수 있는 적절한 영상검사를 시행해야 한다. 권고수준 1
- 2.2.B. 갑상선과 경부 림프절에 대한 평가를 위해 숙 련된 의사에 의해 고해상도 초음파가 시행되 어야 한다. 권고수준 1
- 2.2.C. 경부 림프절에 대한 평가를 위해 초음파 외에 조영증강 경부 전산화단층촬영(computed tomography, CT)을 추가적으로 시행할 수 있 다. 권고수준 2
- 2.2.D. 경부 림프절전이가 의심되는 경우 림프절의 초음파 유도하 병리진단검사와 흡인액의 갑상 선글로불린검사를 시행한다. 권고수준 1
- 2.2.E. 폐전이를 평가하기 위해 흉부 전산화단층촬영 을 일률적으로 시행하는 것은 권고하지 않는 다. 권고수준 3
- 2.2.F. 병리진단검사에서 갑상선유두암의 공격적인 아형이 의심되는 경우 병리판독지에 해당 내 용을 기술한다. 권고수준 3

2.2.G. 고위험 유전자변이가 확인되거나 두 개 이상 의 유전자변이가 동반된 경우 수술을 권고한 다. 권고수준 3

[임상적 고려사항] 수술 전 유전자패널검사를 미 세갑상선유두암의 진행 및 예후를 예측하기 위해 시행하여야 하는가에 대한 임상적 유용성은 아직 까지 근거가 충분하지 않으나, 검사결과가 존재하 는 경우에는 그 결과를 참고한다.

(1) 갑상선초음파

초음파는 갑상선결절의 암위험도를 평가하는 데 가장 중요한 영상 기법이며⁴²⁻⁴⁴⁾ 적극적 관찰 대상을 선정하고 추적할 때도 중요한 수단이다. 초음파를 이용하여 갑상 선암의 크기를 측정할 수 있고, 갑상선외부침범(띠근육, 기관 또는 되돌이후두신경 침범)과 경부 림프절전이를 평가할 수 있다.⁴³⁾ 이 때 고해상도(high resolution) 초음 파와 고주파 탐촉자(10-15 MHz)는 필수적이다. 45 특히 초음파를 이용한 전이 림프절의 진단은 시행자의 경험 정도에 따라 그 진단 정확도의 차이가 현저할 수 있어 수술 전 숙련된 의사에 의해 시행하는 것이 권고된다. 중앙구획(central compartment, level 6)과 측경부구획 (lateral compartment, level 1-5)을 모두 반드시 포함시켜 평가해야 한다.

(2) 경부 전산화단층촬영

핵심질문 1. 적극적 관찰을 고려할 수 있는 갑상선유 두암 환자에서 경부 전산화단층촬영검 사가 위험도 평가에 도움이 되는가?

림프절전이는 주로 중앙경부구역에서 많이 발생하는 데, 초음파검사의 경우 중앙경부 림프절전이에 대한 민 감도가 다소 낮다.⁴⁶⁻⁴⁹⁾ 따라서 조영증강 경부 전산화단 층촬영을 보조적으로 시행할 수 있다. 34,43,44) 본 위원회에 서 시행한 체계적 문헌고찰 결과 전산화단층촬영과 초 음파를 동시에 시행하여 미세갑상선유두암의 림프절전 이에 대해 평가한 논문은 4건으로, 초음파의 민감도 48%, 특이도 83%에 비해 전산화단층촬영을 추가할 경우 민감도 64%, 특이도 75%로 확인되었다. 경부 초음파만 시행한 경우보다 경부 전산화단층촬영을 추가한 경우 림프절전이를 높은 민감도로 찾을 수 있었으나, 특이도 는 증가하지 않았다.

여러 연구에 따르면 초음파와 더불어 전산화단층촬영

검사를 시행하면 중앙경부와 측경부 모두에서 림프절전이를 보다 민감하게 발견할 수 있다. ⁴⁶⁻⁴⁹⁾ 전산화단층촬영검사는 초음파에서 양성이나 미결정으로 보이는 림프절전이 식별을 돕고, ^{50,51)} 종격동이나 후인두와 같이 초음파에서 놓친 구획에 있는 림프절전이를 찾아주며, ⁴⁹⁾ 이는 환자 치료 방침 결정에 중요한 영향을 미칠 수 있다. ⁵²⁾ 미세갑상선유두암에서 경부 전산화단층촬영의 진단 성능에 대한 근거는 아직까지 제한적이지만, 최근 국내연구에서 미세갑상선유두암 환자에서 전산화단층촬영검사가림프절전이를 발견하는데 추가적인 이점이 있음을 보고하였다. ⁵³⁾ 그러므로 저위험 미세갑상선유두암에서 초음파외에 추가적인 조영증강 경부 전산화단층촬영을 시행하는 것이 경부림프절전이를 발견하는데 도움이 될 수 있다.

(3) 림프절의 초음파 유도하 병리진단검사

경부 초음파 또는 전산화단층촬영에서 의심스러운 림 프절이 발견되면 초음파 유도하에 병리진단검사를 시행하여야 한다. 대한갑상선영상의학회 진료권고안에서는 갑상선암 수술 전에 단경이 3-5 mm보다 큰 의심스러운 림프절이 있거나 단경이 5 mm보다 큰 미결정 림프절이 있으면 세침흡인검사를 권고한다.^{34,54)} 초음파 유도하 세침흡인검사는 림프절전이를 진단하는 데 있어 유용한 검사이지만, 그 크기가 작거나 낭성 림프절인 경우 비진단적 결과나 위음성 결과를 얻을 수 있다.⁵⁵⁻⁵⁷⁾ 따라서 민감도를 높이기 위해 세침흡인세척액에서 갑상선글로불린(thyroglobulin)을 측정하도록 권고한다.^{34,38)}

수술 전 림프절의 세침흡인세척액-갑상선글로불린 값 은 혈청 갑상선글로불린 값보다 높은 경우 전이림프절로 판정할 수 있다. ⁵⁸⁻⁶⁰⁾ 혈청 갑상선글로불린 음성의 기준은 정립되어 있지 않으나 림프절의 세침흡인세척액-갑상선글로불린 값이 2-10 ng/mL 보다 상승되어 있는 경우 전이림프절의 가능성을 고려할 수 있다(민감도 88.5-95.0%, 특이도 93.1-96.3%). ^{57,61-63)} 초음파에서는 의심스러운 소견이나 세침흡인검사와 세침흡인세척액-갑상선글로불린 결과가 음성인 경우, 위음성 결과일 가능성을 고려하여 재검이 필요하다. ⁵⁷⁾

(4) 흥부 전산화단층촬영

페는 갑상선분화암에서 림프절 다음으로 두번째로 흔한 전이부위이다. 다만 미세갑상선유두암에서 원격전이는 매우 드물어서, 국내 연구에서는 0.1% 정도로 보고되었다.⁶⁴⁾ 미세갑상선유두암 환자 1000명을 분석한 한 일본 연구에서는 폐전이가 한 사례도 확인되지 않았고⁶⁵⁾

일본의 다른 연구에서는 30년간 5646명 중에서 2명에서 폐전이가 보고되었으며, 모두 적극적 관찰 또는 수술 후 12년이 지나 발견되었다. 이와 같이 미세갑상선유두암에서 폐전이는 매우 드물고 갑상선외부침범이나 림프절전이가 없는 미세갑상선유두암에서의 폐전이는 더욱 드물기 때문에, 저위험 미세갑상선유두암 환자에서 일률적으로 흉부 전산화단층촬영을 시행하는 것은 권장하지않는다.

(5) 병리 아형 평가

병리진단검사에서 유두암의 공격적인 아형을 선별하 는 것은 위험도 분류에 도움이 되며 환자의 치료 방침 수립 시 중요하다. 그러나 세침흡인검사로 아형을 분류 하는 것은 신뢰성이 낮고 어려운 경우가 많다. 유두암은 다양한 조직학적 성장 패턴과 세포 형태가 혼재하는 경 우가 많아, 채취된 검체가 대표성을 갖지 못할 가능성이 높기 때문이다. 아울러 특정 세포형태학적 특징에 대한 양성 예측도는 대부분 후향적 연구를 기반으로 기술되 었고 해당 아형의 발생률에 따라 예측도가 달라질 수 있 기 때문에 신뢰성이 낮다. 67,68) 그럼에도 불구하고, 일반 적인 유두암과 뚜렷하게 구별되는 형태학적 및 세포학 적 특징이 세침흡인검사에서 관찰되는 경우 공격적인 아형을 구분할 수 있다. 즉, 세침흡인검사에서 유두암 아 형을 구분하는 것은 일반적으로 어렵지만, 긴세포 아형 과 같은 일부 아형의 특징적 소견이 확인될 경우 감별하 여 제시할 수 있다.^{67,69-71)}

중심바늘생검은 세침흡인검사에 비해 더 많은 양의 조직을 얻을 수 있으며, 조직 현미경학적 특징을 볼 수 있기 때문에 유두암의 아형을 구분하는 데 이점이 있다. 그러나 긴세포 아형은 종양의 30% 이상에서 긴세포가 관찰되어야 하기 때문에 병리진단검사만으로 정확히 진 단할 수는 없고, 긴세포 아형의 가능성만 제시할 수 있 다. 따라서, 세침흡인검사나 중심바늘생검과 같은 병리 진단검사에서 유두암 아형 진단은 임상적, 영상학적 소 견과 함께 종합적으로 고려되어야 한다.

유두암에서 Ki-67 면역염색은 수술 후 환자의 예후와 관련성이 있다. 유두암의 수술조직에서 Ki-67 지수가 5% 이상인 경우 상대적으로 재발률이 높고 예후가 불량하다. ⁷²⁾ 병리진단검사에서 Ki-67 면역염색의 임상적 유용성에 대해서는 추가적인 연구가 필요하지만, Ki-67 지수가 5% 이상으로 높게 나올 경우 공격적인 유두암이나 예후가 안 좋은 유형일 가능성을 염두에 두어야 한다.

(6) 분자 표지자 평가

분자병리검사는 병리진단검사에서 비정형 혹은 여포 종양으로 진단되었을 경우 갑상선암 진단 정확도를 높이 기 위해 일차적으로 사용된다. 또한, 유두암이 의심되거 나 혹은 확진된 경우에도 유전자변이 분석을 통해 공격 적인 유두암의 가능성을 평가하는 데 도움이 될 수 있다.

BRAF V600E 유전자변이는 유두암에서 발생 빈도가 높 고, RAS 유전자변이는 다양한 종류의 갑상선암 뿐만 아 니라 양성 종양에서도 발견되기 때문에 BRAF V600E와 RAS 유전자 단독으로는 유두암의 예후 예측능이 크지 않다.73,74)

TERT 프로모터, TP53, PIK3CA 유전자변이는 종양의 진행과정의 중간 혹은 후기에 발생하는 변이로서 원격전 이, 방사성요오드 치료 내성, 재발과 관련성이 높아 고위 험 유전자변이로 분류된다.^{75,76)} TERT 프로모터 유전자 변이가 확인된 갑상선암 환자는 일반적으로 고령이며, 림프절전이 및 워격전이를 일으킬 가능성이 높고 방사성 요오드 치료에 내성을 보인다.⁷⁷⁾ 특히 BRAF^{V600E}혹은 RAS 유전자변이에 동반될 경우 임상 경과가 더욱 나빠 져 중요한 예후인자로 활용된다.⁷⁷⁾ 그러나, 국내 유두암 환자 대상 후향적 연구에 따르면, TERT 프로모터 유전 자변이의 발생 빈도는 종양 크기가 1 cm를 초과하는 경 우 5.6% 였던 반면, 1 cm 이하에서는 1.3%로 현저히 낮았 다. 78-82) 또한 수술 전 유전자패널검사는 우리나라에서 일 반적으로 시행되는 검사가 아니며, 아직까지 미세갑상선 유두암의 예후를 예측하기 위한 유용성에 대한 근거가 부족하므로, 수술 전 유전자패널검사를 시행하도록 권고 하지는 않는다. 그러나 환자에게 유전자패널검사가 시행 되어 두 개 이상의 유전자변이 등 고위험과 연관된 유전 자변이나 유전자발현 양상이 확인된 경우에는 저위험으 로 분류하지 않으며, 따라서 수술을 권고한다.

2.3. 종양의 위험도 평가를 위한 영상검사 소견 (1) 종양의 육안적 갑상선외부침범 평가

- 2.3.A. 피막하(전방, 후방내측, 후방외측) 종양과 기관 주위 종양은 육안적 갑상선외부침범 여부를 면 밀하게 평가해야 한다. 권고수준 1
- 2.3.B. 띠근육 대체 소견을 동반한 전방 피막하 종양, 기관과 90도 이상의 각도를 이루는 기관주위 종 양, 정상 갑상선 실질 없이 기관에 접촉한 후방 내측 피막하 종양, 또는 돌출된 후방외측 피막 하 종양은 육안적 갑상선외부침범 가능성이 높 으므로, 즉각적인 수술을 권고한다. 권고수준 2

갑상선외부침범(extrathyroidal extension)은 갑상선원 발암이 직접적으로 갑상선 주변 구조물을 침범하는 것 을 의미하며, 조직검사에서만 확인되는 경미한(minor) 갑상선외부침범과 수술 전이나 수술 중에 확인되는 육 안적(gross) 갑상선외부침범으로 나눈다. 갑상선외부침 범의 존재는 American Joint Committee on Cancer (AJCC) 암 병기 시스템에서 중요한 예후 인자로 규정되 었는데, 제8판에서는 경미한 갑상선외부침범은 환자의 예후에 미치는 영향이 미미하며 병리적 진단이 주관적 이고 어려움이 존재한다는 이유로 병기 시스템에서 제 외되었다. 반면 띠근육에 대한 육안적 갑상선외부침범 은 T3b로, 주요 경부 구조물에 대한 갑상선외부침범은 T4로 분류된다. 83) 주요 경부 구조물의 침범 가능성이 높 은 암은 미세암일지라도 고위험 갑상선암으로 간주되어 야 하며, 즉각적 수술이 권고된다. 또한, 적극적 관찰 도 중에 육안적 갑상선외부침범 소견이 새로 발생하는 경 우, 이는 종양 진행으로 간주되어 수술로의 전환이 권고 된다.31) 그러므로 적극적 관찰을 시행할 때에는 진단 당 시뿐만 아니라 추적 관찰 중에도 초음파를 이용한 육안 적 갑상선외부침범의 정확한 평가가 중요하다.

대한갑상선영상의학회에서는 2024년 미세갑상선유두 암의 적극적 관찰 시 영상학적 평가 방법에 대한 권고안 을 출판하였다. 본 위원회는 해당 권고안에서 제시한 갑 상선외부침범에 대한 초음파 평가 기준을 수용, 동일하 게 권고하였다.31) 갑상선외부침범에 대한 평가가 필요한 종양은 그 위치에 따라 피막하(subcapsular) 종양과 기관 주위(paratracheal) 종양으로 나눈다(Fig. 2.3.A). 31) 피막하 종양은 갑상선 앞 또는 뒤쪽 피막에 접해 있는 종양을 의미한다. 앞쪽 갑상선 피막은 갑상선 피막의 앞부분으 로 띠근육과 접촉하는 부위이며, 앞쪽 피막에 접한 종양 은 전방 피막하 종양으로 기술한다. 뒤쪽 갑상선 피막은 띠근육과 접촉하지 않는 갑상선 피막의 뒷부분을 의미 하고, 뒤쪽 피막에 접한 종양은 후방 피막하 종양으로 분류하며, 다시 내측과 외측으로 나눈다. 기관주위 종양 은 기관과 접해 있는 종양을 의미한다.

피막하 또는 기관주위 종양에서 임상적으로 육안적 갑상선외부침범이 있는 경우를 시사하는 초음파 소견이 관찰되는 경우, 즉 띠근육 대체 소격을 동반한 전방 피막 하 종양, 기관과 90도 이상의 각도를 이루는 기관주위 종양, 정상 갑상선 실질 없이 기관에 접촉한 후방내측 피막하 종양, 또는 돌출된 후방외측 피막하 종양은 적극 적 관찰에 부적합한 대상으로 수술을 권고하였다. 특히, 기관이나 되돌이후두신경 침범 소견은 나쁜 예후와 연 관이 있고, 해당 부위까지 절제하는 광범위한 수술을 시 행하는 경우 환자의 이환율(morbidity) 증가 및 삶의 질 저하와 관련되므로, 이러한 소견을 보이는 종양에서는 즉각적인 수술이 권고된다.³⁸⁾ 아울러 이러한 잠재적 위 험을 고려할 때 기관이나 되돌이후두신경으로의 갑상선 외부침범이 의심되는 경우 명백하지 않더라도 수술이 권고된다.

ㄱ. 전방 피막하 종양(anterior subcapsular tumor)

전방 피막하 종양의 경우, 띠근육에 대한 육안적 갑상 선외부침범의 가능성을 평가해야 한다. 종양과 띠근육의 관계를 유추할 수 있는 초음파 소견으로 피막 접촉 (contact), 소실(disruption), 돌출(protrusion), 띠근육의 대체(replacement of strap muscle) 소견이 있는데, 그 중 띠근육 대체 소견이 띠근육의 육안적 침범을 시사한다. 34,833 일본 내분비외과학회 권고안에서는 띠근육의 육안적 침범에 의한 예후 변화가 크지 않고 띠근육을 포함하여 절제해도 환자의 삶의 질에 미치는 영향이 크지 않음을 고려할 때 띠근육 침범이 있어도 반드시 즉각적인수술이 필요한 것은 아니라고 제안하였다. 321 그러나 본 권고안에서는 띠근육의 육안적 침범이 질환의 예후에 영향을 미칠 수 있음을 고려하여, 34,833 띠근육의 대체 소견을 보이는 미세갑상선유두암은 적극적 관찰에 부적합한 종양으로 분류하였다.

ㄴ. 후방외측 피막하 종양(posterolateral subcapsular tumor)

후방외측 피막하 종양 중 후방외측 피막 침범이 의심되는 경우 접촉(contact)과 돌출(protrusion) 소견으로 나눌수 있으며, 돌출 소견을 보이는 경우 육안적 갑상선외부침범 가능성이 높다. 후방외측 피막하 종양에서 인접 연부조직으로 침범하는 경우 현재 AJCC 병기 체계에서육안적 갑상선외부침범으로 간주하지는 않지만, 최근연구에서 림프관-혈관 침범(lymphovascular invasion) 및측경부 림프절전이의 위험을 높일 수 있다고 보고되었다. 841 그러므로 본 권고안에서는 후방외측 피막하 종양이 돌출 소견을 보이는 경우는 적극적 관찰에 부적합한종양으로 정하였고, 접촉 소견을 보이는 경우는 적극적관찰에 적합한 대상으로 정하였다. 311

다. 기관주위 종양(paratracheal tumor)

기관주위 종양의 경우 갑상선암의 기관으로의 육안적 침범 가능성과 위험도를 평가해야 한다. 기관 침범의 위 험도는 종양과 기관연골 사이에 형성된 각도에 따라 평 가되는데, 종양과 기관이 90도보다 큰 둔각을 형성한 경 우 가장 민감하고 정확하게 기관침범을 진단할 수 있다. 83,85) 그런데, 초음파 평가 시 직각과 둔각을 구분하는 것은 다소 주관적이고 평가자간 편차가 클 수 있다. 그러 므로, 적극적 관찰 중에 종양이 기관을 침범할 경우 그 위험이 큰 점을 고려하여, 본 권고안에서는 기관과 종양이 90도 이상의 각도를 형성하며 닿아 있는 경우(직각과 둔각)에는 적극적 관찰에 부적합한 대상으로 정하였다. 31)

리. 후방내측 피막하 종양(posteromedial subcapsular tumor)

후방내측 피막하 종양의 경우 되돌이후두신경으로의육안적 침범 가능성과 위험도를 평가해야 한다. 되돌이후두신경 침범은 종양과 기관식도고랑(tracheoesophageal groove, TEG) 사이에 정상 갑상선 실질의 존재 여부를 기준으로 평가하며, 종양과 기관식도고랑 사이에 정상 갑상선 실질이 소실되어 있는 경우 침범 가능성이 높다고 판단한다. ^{12,83,85)} 본 권고안에서는 후방내측 피막하 종양에서 종양과 기관식도고랑 사이에 정상 갑상선 실질이 소실되어 있는 경우는 되돌이후두신경 침범의 위험도를 고려하여 적극적 관찰에 부적합한 종양으로 정하였다.

(2) 경부 림프절 평가

- 2.3.C. 회색조 초음파와 색조 도플러 초음파를 통해 중 앙경부와 측경부를 포함한 림프절의 전이 여부 를 면밀하게 평가해야 한다. 권고수준 2
- 2.3.D. 림프절전이가 확인되면 수술을 권고한다. 권고 수준 1

초음파는 N 병기의 결정을 위해 시행할 수 있는 일차적인 검사 방법이며, 회색조 초음파를 통해 림프절의 크기나 모양, 내부구조의 형태를 관찰하고, 색조 도플러 초음파를 통해 림프절 내 혈관분포의 특성을 확인해야 한다. 34,43) 갑상선암 환자에서 보일 수 있는 림프절의 초음파 소견을 암 위험도에 따라 분류할 수 있으며, 각 나라의 진료권고안에 따라 평가 기준의 차이가 있다.86)

대한갑상선영상의학회 진료권고안에서는 림프절을 초음파 소견에 따라 의심스러운(suspicious) 림프절(암위험도 73-88%), 미결정(indeterminate) 림프절(암위험도 20%), 양성추정(probably benign) 림프절(암위험도 < 3%)의 세단계로 분류한다.³⁴⁾ 양성추정 림프절은 초음파상에서 의심스러운 림프절 소견이 없고, 림프절 내부에 고에코의

문(echogenic hilum) 혹은 도플러 상에서 문 주위로 혈관 분포(hilar vascularity)가 관찰되는 림프절이다. 반면, 전 이림프절 진단 시 특이도가 높은 1) 림프절 피질의 고에 코(국소 혹은 미만형), 2) 고에코 병소(석회화, echogenic foci), 3) 낭성 변화(cystic change), 4) 색조 도플러 초음파 영상에서 보이는 비정상적인 혈류(abnormal vascularity; diffuse or peripheral)의 네 가지 소견 중 하나의 소견이 라도 있으면 의심스러운 림프절로 분류한다. 구형 모양 (round shape), 또는 문의 소실(loss of hilar echogenicity) 소견은 단독으로 존재할 경우 전이 림프절의 진단 특이 도가 낮으며,87 문의 소실이 보이면서 의심스러운 소견 이 동반되어 있지 않은 경우 미결정 림프절로 분류한다 (Table 2.3.A).⁴³⁾

림프절의 전산화단층촬영 소견도 초음파와 동일하게 세 단계로 나누는데, 암 위험도에 따라 의심스러운 림프절 (암위험도 73-88%), 미결정 림프절(암위험도 20%), 양성추 정 림프절(암위험도 <3%)로 구분한다(Table 2.3.A).³⁴⁾

갑상선유두암은 약 20-50%에서 경부 림프절전이가 동 반되며, 미세갑상선유두암의 경우에도 수술 전에 약 9-42%에서 초음파나 전산화단층촬영검사 등에서 임상 적인 림프절전이가 발견된다. 10-13) 특히 수술 전 임상적 으로 림프절전이가 없었더라도 예방적 중앙경부 림프절 절제술을 시행하면 약 33% 가량에서 림프절전이가 발견 된다.⁸⁸⁾ 림프절전이가 있는 경우 국소 재발의 위험이 높 기 때문에 41) 임상적으로 경부 림프절전이가 발견되면 적 극적 관찰의 대상에서 제외하고, 갑상선전절제술과 림 프절절제술을 시행해야 한다.⁸⁾

이처럼 림프절전이 여부는 수술 결정에 중요한 역할 을 하기 때문에 적극적 관찰을 결정하기 전에 중앙경부 와 측경부 림프절을 모두 포함하여 세심하게 평가하여 야 한다.

(3) 영상검사 소견에 따른 적극적 관찰의 적합도 평가

갑상선외부침범과 림프절전이에 대한 영상 평가가 완 료되면, 진단된 갑상선암이 적극적 관찰에 적합한지 종 합적으로 평가해야 하며, 이 과정에서 체크리스트를 사 용하는 것이 좋다. 31,89) 종양의 갑상선외부침범 소견은 초 음파에서 명확하게 판정하기 어려운 경우가 많으나, 2024년 대한갑상선영상의학회에서는 그동안의 임상연 구 결과를 바탕으로 미세갑상선유두암의 적극적 관찰에 대한 초음파 소견 기반 적합성 기준을 마련하였다(Fig. 2.3.A). 종양의 영상적 특성을 이상적(ideal), 적합(appropriate), 부적합(inappropriate)으로 구분하였는데,³¹⁾ 이 중 '이상적'과 '적합'으로 분류된 종양은 적극적 관찰의 대 상이며, '부적합'으로 분류된 경우는 저위험 미세갑상선 유두암에 해당하지 않으므로, 적극적 관찰이 부적합한 대상으로 수술이 권고된다.

이상적인(ideal) 적극적 관찰 대상은 적극적 관찰에 이

Table 2.3.A. 갑상선암 환자에서 림프절 평가를 위한 영상 기반 분류와 병리진단검사 기준

카테고리	초음파	전산화단층촬영	병리진단검사 기준
의심 림프절 (suspicious) ^a	네 개의 의심 소견 중 하나라도 존재하는 경우(any of four suspicious features) - 낭성 변화(cystic change) - 국소 고에코 병변(석회화) (echogenic foci (calcifications))	세 개의 의심 소견 중 하나라도 존재하는 경우(any of three suspicious features) - 낭성 변화(cystic change) - 석회화(calcification)	>3-5 mm
	 - 피질의 고에코 변화(국소성/미만성) (cortical hyperechogenicity (focal/diffuse)) - 비정상 혈류 패턴(abnormal vascularity (peripheral/diffuse)) 	- 강하거나 이질성을 보이는 조영증강 패턴 (국소성/미만성) (strong (focal/diffuse) or heterogeneous enhancement)	
미결정 림프절 (indeterminate) ^b	고에코의 림프절 문과 정상 문양 혈류 패턴의 소실(loss of echogenic hilum and hilar vascularity)	지방성분의 림프절 문과 정상 문양 혈관의 조영증강의 소실(loss of hilar fat and vessel enhancement)	>5 mm
양성 추정 림프절 (probably benign) ^c	고에코의 림프절 문과 정상 문양 혈류 패턴이 유지되어 있음(echogenic hilum or hilar vascularity)	지방성분의 림프절문 또는 문양 혈관 조영증강이 유지되어 있음(presence of hilar fat or vessel enhancement and no suspicious CT features)	해당 없음

CT: computed tomography

[°]이 범주에는 양성 추정이나 미결정 림프절 소견 유무와 관계없이 의심스러운 영상 특징이 있는 모든 림프절을 포함함. ▷의심스러운 림프절 이나 양성 추정 림프절 범주에 포함되지 않는 림프절. [©]의심스러운 림프절 소견이 없으면서 지방문이나 혈관문이 관찰되는 경우 양성 추정 림프절로 분류함. [©]초음파 또는 전산화단층촬영에서의 단경.³

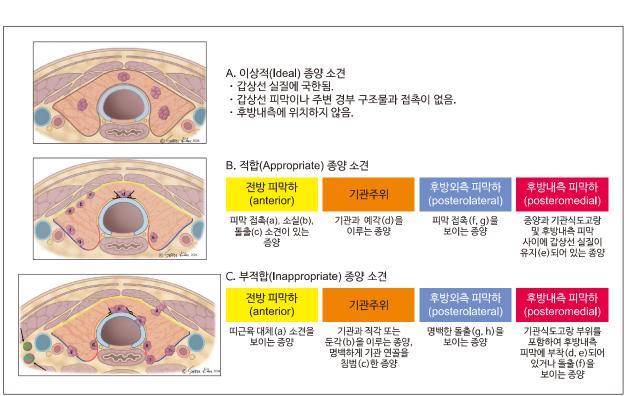


Fig. 2.3.A. 초음파 소견에 따른 미세갑상선유두암의 적극적 관찰 적합도 기준. 피막하 종양(subcapsular tumors)은 갑상선의 앞쪽 또는 뒤쪽 피막(경계)에 접하는 종양으로 정의됨. 전방 갑상선 피막(노란 선)에 접촉하는 피막하 종양은 전방 피막하 종양으로 분류되며, 후방 내측(붉은 선) 또는 후방 외측(푸른 선) 갑상선 피막에 접촉하는 경우에는 각각 후방 내측 피막하 종양 또는 후방 외측 피막하 종양으로 분류된다. (Modified from Korean J Radiol. 2024 Nov;25(11):942-958 with permission)

상적인 종양을 가진 경우이다. 종양이 갑상선 내부(실 질)에 국한되어 있으며, 갑상선 피막이나 주변 장기와 접촉하지 않고, 림프절전이나 원격전이의 의심 소견이 없는 경우이다.

적합한(appropriate) 적극적 관찰 대상은 이상적인 종양에 비해 병변을 평가하기 어렵게 하는 특성을 가지고 있거나 주변 구조물에 대한 명확한 갑상선외부침범의 증거 없이 피막에 접촉한 종양을 가진 경우이다. 이런 경우 종양 진행 후 치료하더라도 임상 결과가 우수할 것으로 예상되어 적극적 관찰이 권장된다. 구체적으로는 1) 전방 피막하 종양 중 피막 접촉, 피막 소실, 또는 돌출소견이 있는 경우, 2) 기관과 90도 미만의 각도(예각, acute angle)를 이루는 기관주위 종양, 3) 피막에 접촉한 후방외측 피막하 종양, 또는 4) 종양과 피막 사이에 정상 갑상선 실질이 존재하는 후방내측 피막하 종양이 이에 해당한다. 또한 5) 종양이 주변 구조물과 접촉하지는 않았으나 불분명한 경계(ill-defined margin)를 보이는 경우 추적 관찰 시 병변 평가가 어려울 수 있어 '적합 (appropriate)'한 적극적 관찰 대상으로 분류하였다.

반면, 부적합(inappropriate)한 적극적 관찰 대상은 초 기 진단 시 육안적 갑상선외부침범이 의심되거나 명백 한 경우, 림프절 또는 원격전이가 있는 경우, 적극적 관찰 중 종양의 육안적 갑상선외부침범의 의심 또는 확인소견이나 림프절 또는 원격전이가 새롭게 보이는 경우이다. 이런 경우 즉각적인 수술이 더 유익함이 입증되었거나 종양 진행이 환자의 이환율로 이어지거나 수술 후재발 위험이 증가하는 것으로 예상되어 즉각적인 수술이 권장된다. 구체적으로는 1) 띠근육을 침범하는 전방피막하 종양, 2) 기관과 90도 이상의 각도(직각 혹은 둔각, right or broad angle)를 이루는 기관주위 종양, 3) 피막에 접촉하면서 종양과 피막 사이에 정상 갑상선 실질이 존재하지 않거나 뚜렷하게 돌출된 후방내측 피막하종양, 4) 뚜렷한 돌출을 보이는 후방외측 피막하종양이다.

(4) 영상 평가에 영향을 미칠 수 있는 종양의 특성

2 cm 미만의 갑상선암은 대부분 갑상선 실질에 비해에코가 낮은 경계가 분명한 결절로 나타나지만, 하시모 토 갑상선염(Hashimoto's thyroiditis) 또는 그레이브스병(Graves' disease) 등으로 인해 미만성 갑상선 질환(diffuse thyroid disease)이 동반된 경우 갑상선 전반 또는 일부의 에코가 감소한다. 이 경우 결절 경계가 명확하지

않아 갑상선결절의 정확한 크기 측정이 어려울 수 있 다. 90) 특히, 검사자, 검사시기 혹은 사용한 초음파 기종 에 따른 오차도 함께 고려해야 한다.

또한 결절에 거대석회화(macrocalcification)가 동반되 어 강한 후방 음향 음영(posterior acoustic shadowing)이 있는 경우에도 결절의 크기뿐만 아니라 후방 경계 평가 가 제한될 수 있다. 특히 적극적 관찰 시 이러한 후방 음영이 크기 측정을 위한 캘리퍼(caliper)의 위치를 결정 하기 어렵게 하기 때문에 정확하고 일관적인 크기 측정 에 장애를 줄 수 있다. 그러나 미만성 갑상선 질환이나 후방 음영을 동반한 석회화 자체가 적극적 관찰의 금기 사항이 되지는 않는다. 32)

2.4. 적극적 관찰이 가능한 환자의 특성

- 2.4.A. 적극적 관찰을 고려할 경우, 종양의 특성과 함께 건강상태와 나이, 주기적 추적 가능성 등과 같은 환자의 특성을 종합적으로 평가해야 한다. 권고 수준 1
- 2.4.B. 나이가 많거나 종양의 크기가 작은 경우 적극적 관찰을 우선적으로 고려할 수 있다. 권고수준 2
- 2.4.C. 적극적 관찰과 즉시 수술을 비교한 질병의 예후 (진행 또는 재발), 합병증, 삶의 질과 불안감, 의 료사회비용 등에 대한 환자의 선호도를 고려한 다. 권고수준 2

종양이 저위험 미세갑상선유두암에 해당한다면, 환자 의 특성이 적극적 관찰을 하기 적합한지 평가해야 한다. 2024년 대한갑상선학회 진료권고안에서는 다음의 경우 적극적 관찰을 우선적으로 고려하였다.

- 가. 동반된 다른 질환으로 인해 수술의 위험도가 큰 경우
- 나. 남은 여생이 짧을 것으로 예상되는 경우(심한 심 혈관계 질환, 다른 악성 종양, 고령인 경우 등)
- 다. 갑상선 수술 전에 해결되어야 할 내과적 또는 외 과적 질환이 동반된 경우

본 위원회에서는 적극적 관찰이 가능한 환자의 특성 을 확인하기 위하여 핵심질문을 정하고 연령, 성별, 종양 의 크기가 질병 진행예측과 연관이 있는지에 대한 체계 적 문헌고찰을 시행하였으며, 그 외 환자 및 의료기관의 특성에 대한 문헌 조사를 시행하였다. 적극적 관찰 중 갑상선암 진행의 기준은 연구마다 다소 차이가 있으나, 대체로 종양의 최대 직경이 3 mm 이상 증가하거나 새로 운 경부 림프절이나 원격전이 또는 갑상선외부침범이 관찰된 경우로 정의된다.

핵심질문 2. 적극적 관찰 중인 저위험 갑상선암 환자에 서 특정 임상인자(연령, 성별, 종양의 크 기)가 질병 진행 예측에 도움이 되는가?

(1) 연령

6개 코호트 연구에 따르면 고연령층 환자에서 갑상선암 진행 위험비가 0.35 (p<0.001)로 유의하게 낮았다. 19,24,91-94) 4편의 후향적 단면 연구에서도 고연령층에서 갑상선암 진행 오즈비(Odds ratio, OR)가 0.34 (p<0.001)로 낮았으 며, 28,95-97) 국내에서 수행된 3편의 코호트 연구들에서도 고연령층에서의 진행 위험비(Hazard ratio, HR)가 0.26-0.46으로 낮았다. 19,91,93) 즉, 젊은 연령층보다 비교적 높은 연령층에서는 질병 진행의 위험이 낮았다.

연령대별 질병 진행 비율에 대해서는 다양한 연령 기 준으로 보고되었는데, 미국의 한 연구에서는 50세를 기준 으로 분석하였고 5년간 3 mm 이상의 종양 크기 증가 비 율이 50세 미만에서 27.3%, 50세 이상에서 4.6%로 보고하 였다.²⁴⁾ 일본의 코호트 연구에서도 연령대별 3 mm 이상 의 종양 크기 증가 확률이 40세 미만에서 5년 7.1%, 10년 12.2%, 15년 16.2%로 나타난 반면 40-59세의 환자에서는 5년 2.7%, 10년 4.7%, 15년 5.2%, 60세 이상 환자에서는 5년 2.7%, 10년 4.4%, 15년 4.4%로 보고되었다. 4 즉 40-60세보 다 높은 연령에서는 5년 질병 진행률이 10% 미만으로, 적 극적 관찰이 상대적으로 안전하게 고려될 수 있다. 다만, 정확한 연령 기준에 대해서는 추가적인 연구가 필요하다.

(2) 성별

남성이 여성보다 갑상선암의 예후가 좋지 않다는 기 존 연구들을 바탕으로 적극적 관찰 시 성별에 따른 갑상 선암의 진행 위험성 차이는 여러 연구에서 검토되었다. 본 위원회에서는 5편의 코호트 연구19,24,92,94,98)와 4편의 후향적 단면 연구를 선정하여 메타분석하였다. 연구결 과간 일관성이 부족하였고, 남성과 여성 간의 질병 진행 위험도도 통계적으로 유의한 차이가 없었다. 28,95-97) 국내 에서 수행된 한 코호트 연구에서는 남성과 여성 간에 질 병 진행 위험도의 유의한 차이가 관찰되지 않았으나, 국 내 다기관 코호트 연구에서는 남성에서 위험비(HR)가 유의하게 상승하였다. 따라서, 저위험 갑상선유두암 환 자에서 성별이 질병 진행 위험 요인으로 고려할 수 있는 가에 대한 근거는 불충분하며, 특정 성별이 적극적 관찰의 금기가 되지는 않는다.

(3) 종양의 크기

기저 종양의 크기는 저위험 갑상선유두암 환자에서 적극적 관찰을 적용할지 여부를 판단하는 데 있어 가장 중요한 요소이다. 4편의 코호트 연구^{19,24,92,94)}와 3편의 후 향적 단면연구^{28,96,97)}에 대해 메타분석 결과 기저종양의 크기 0.9-1.0 cm 기준으로 크기가 작은 종양이 0.3 cm 이상 커질 위험도가 44-48% 낮았다. 4편의 코호트 연구를 통합하였을 때, 기저 종양의 크기가 작은 경우 갑상선 암의 진행 위험비(HR)가 0.54 (p=0.001)로 통계적으로 유의하게 낮았으며, 세 편의 후향적 단면 연구를 통합하였을 때 역시 질병 진행 위험이 유의하게 낮았다(OR 0.48, 95% 신뢰구간 0.26-0.89).

크기 기준은 연구마다 다양하게 보고되었는데, 한 국내 코호트에서는 0.5 cm 미만인 경우 갑상선암이 0.3 cm 이상 커지거나 림프절전이가 발생할 위험이 10년간 9.5%로, 0.5 cm 이상에서의 비율 13.7%에 비해 낮았고, 위험도는 30% 낮았다. 국내 다기관 코호트 연구에서는 0.6 cm 미만일 경우 0.6 cm 이상과 비교하여 갑상선암의 0.3 cm 이상 증가 또는 림프절전이 위험도가 52% 낮았다. 이는 0.6 cm 보다 작은 크기는 초음파상 높은의심 결절이라 하더라도 고위험 소견이 없다면 병리진단검사를 시행하지 않도록 하는 권고안을 뒷받침하고 있다. 즉, 진단된 종양의 크기가 0.5 cm 이하에서는 적극적 관찰을 보다 안전하게 고려할 수 있으므로 고위험의 특성을 보이지 않는 경우 병리진단검사를 시행하지 않는다.

(4) 다발성(Multifocality)

다발성 병변이 적극적 관찰의 배제 요인이 되는가에 대해서는 진료권고안마다 차이가 있다. 32,999 또한 일본에서 진행된 2개의 대규모 코호트 연구에서는 다발성 병변이 있을 경우 종양의 크기가 커지거나 새로운 림프절전이가 발생하는 경향을 보였으나, 통계적으로 유의한 결과를 보이지는 못하였다. 92,941

(5) 자가면역 갑상선염의 동반

자가면역 갑상선염이 동반된 미세갑상선유두암의 질병 진행위험에 대해서는 연구결과 간 일관성이 부족하였다. 미국의 한 연구에서는 질병 진행군에서 자가면역 갑상선염의 유병률이 높았다.²⁴⁾ 일본의 연구에서는 자가면역 갑상선염 환자에서 10년 질병 진행률은 17.7%로 자가면역성 갑상선염이 없는 경우의 10년 진행률 10.3%보다

높았으나, 통계적으로 유의하지는 않았다. "3" 또다른 일본의 대규모 코호트 연구에서는 만성 갑상선염은 질병진행위험과 유의한 연관성을 보이지 않았다고 보고하였다. "4" 국내 연구에서도 질병 진행군과 비진행군에서 자가면역갑상선염의 유병률이 비슷하였다. "3" 일부 진료권고안에서는 자가면역성 갑상선염은 적극적 관찰의 금기는 아니라고 제시한 바 있다. 32,1000 본 권고안에서도 자가면역 갑상선염은 적극적 관찰의 금기로 구분하지 않았다.

(6) 가족력

가족력을 적극적 관찰 시 고려해야 하는가에 대해서 는 진료권고안마다 차이가 있다. 유럽종양학회(European Society for Medical Oncology, ESMO) 진료권고안에서는 갑상선암의 가족력이 없는 환자에서 적극적 관찰을 권 고한 반면, 99 일본 내분비외과학회(Japanese Association of Endocrine Surgeons, JAES) 합의문에서는 가족력이 있 는 환자도 적극적 관찰을 할 수 있다고 제시하였다. 32) 일본의 한 연구에서는 가족력이 적극적 관찰 환자군에 서 질병 진행의 유의한 위험 인자가 아니라고 보고하였 지만 아직 연구 결과는 부족한 상황이다. % 참고로 가족 력과 갑상선암의 진행에 대한 역학 연구에 따르면, 가족 성 갑상선분화암은 산발성 분화 갑상선암에 비해 다발 성 발생, 림프절전이, 재발률이 더 높았으나, 질병특이사 망률 및 전체 사망률은 산발성 갑상선분화암과 유의한 차이가 없었다. 101-103) 따라서 본 권고안에서는 가족력은 적극적 관찰의 금기로 구분하지 않았다.

(7) 임신

임신은 갑상선결절 및 암의 크기를 증가시킬 수 있는 잠재적 위험 요소일 수 있지만 장기 추적 결과에서는 유의한 차이가 없었다. 104,105) 그러나 일본의 코호트 연구에 따르면 적극적 관찰 중 임신한 환자 50명 중 대부분 (92%)의 경우 임신 중에도 종양 크기의 변화가 없었다. 106) 4명(8%)에서 종양 크기가 3 mm 이상 증가하였으나 림프절전이는 관찰되지 않았다. 106) 이 중 2명은 출산후 수술을 시행하였고 재발은 없었으며, 나머지 2명은 적극적 관찰을 지속하였고 이후 종양 크기 증가는 관찰되지 않았다. 또한 임신 중 갑상선암으로 진단된 환자에서 암의 유의한 진행은 관찰되지 않았다는 보고들도 있다. 107,108) 따라서 임신은 적극적 관찰의 금기는 아니며, 적극적 관찰 중 임신을 제한할 필요도 없다.

아울러 임신 초기에 새로 진단된 갑상선유두암은 초음파로 추적 관찰하고, 임신 24-26주 전에 갑상선암이 진행하면 수술을 고려하며, 임신 24-26주까지 진행하지 않

거나 임신 20주 이후에 갑상선유두암이 진단된 경우에 는 출산 이후에 수술을 고려하는 기존의 권고안을 따르 도록 한다.109)

(8) 동반 질환

갑상선암에서 적극적 관찰을 고려할 때, 환자의 전반 적인 의학적 상태는 중요한 고려사항이다. 미국갑상선 학회 진료권고안에서는 중증의 심폐 질환, 다른 악성종 양, 혹은 고령 등으로 기대 수명이 짧고, 수술의 위험이 높은 환자에서는 적극적 관찰을 고려할 수 있다고 권고 하였다. 38) 또한, 갑상선 수술보다 먼저 치료가 필요한 다 른 의학적 또는 외과적 문제가 있는 환자들도 적극적 관 찰의 대상이 될 수 있다.³⁸⁾ 한편, 2019 유럽종양학회 (ESMO) 진료권고안은 소아 청소년기에 방사선 노출 이 력이 없는 환자들에게 적극적 관찰을 권고하였으나 901 근 거는 제한적이다.

이상을 종합하였을 때, 고연령층 또는 종양 크기가 작 은 환자에서는 적극적 관찰을 보다 적극적으로 고려할 수 있다. 하지만 적극적 관찰이 선호되는 경우라 하더라 도, 정기적인 추적검사의 시행 가능성이 낮은 환자에서 는 적절한 치료 시기를 놓칠 위험을 방지하기 위해 수술 적 치료를 우선적으로 고려해야 한다.

반면, 젊은 연령층에서는 질병 진행 위험도가 상대적 으로 높음을 고려하여 치료 방침을 결정할 필요가 있다. 특히 추적 관찰 기간이 길어짐에 따라 질병 진행 가능성 및 그에 따른 수술의 위험의 증가, 지속적인 검사로 인한 비용 부담 및 삶의 질 저하의 가능성 등의 요소를 종합 적으로 고려해야 한다.

2.5. 적극적 관찰의 적합성 평가

- 2.5.A. 적극적 관찰의 적합성 평가는 종양의 고위험 소 견에 대한 초음파 특성 평가가 가능한 전문가에 의해 주의 깊게 이루어져야 한다. 권고수준 3
- 2.5.B. 적극적 관찰의 적합성은 종양 자체(크기, 위치, 병리, 림프절전이 여부 등)와 환자(연령, 선호도, 동반 질환, 추적 가능성 등)의 특성을 종합하여 이상적(ideal), 적합(appropriate), 부적합(inappropriate)한 경우로 구분한다. 권고수준 3

[임상적 고려사항] 적극적 관찰이 가능한 대상은 이 상적인 경우와 적합한 경우이며, 질병이 진행(크기 증가, 림프절전이 발생 등)하여 부적합한 대상으로 변화하면, 수술을 권고하여야 한다.

적극적 관찰이 가능한지 평가하기 위해서는 종양의 특성 이외에도 환자의 특성에 대한 다각적인 평가가 필 요하다(Table 2.5.A).⁸⁹⁾ 즉, 적극적 관찰의 적합성은 크기, 위치, 분자병리학적 특징, 림프절전이 여부 등의 종양의 특성과 연령, 선호도, 동반 질환, 추적 가능성 등과 같은 환자의 특성을 종합하여 평가한다.

이상적(ideal), 적합(appropriate), 부적합(inappropriate) 한 대상군으로 구분하는데, 그 중 적극적 관찰이 가능한 대상은 이상적인 경우와 적합한 경우이다. 질병 진행의 위험도가 매우 낮은 특성을 보이는 경우는 이상적인 대 상군으로, 비록 진행 위험도는 낮지만 이상적인 경우보 다는 그 위험도가 높은 경우는 적합한 대상군으로 분류 하며, 적극적 관찰 중이더라도 부적합한 대상군으로 진 행하면, 즉시 수술이 필요하다.

초음파에서 종양의 특성이 "적합"한 경우는 "이상적" 인 경우에 비해 질병의 진행 시 부적합한 대상군으로의 진행할 가능성이 높다. 종양의 초음파 소견에 따른 적극 적 관찰의 적합성에 대해서는 Fig. 2.3.A에 상세히 기술 되어 있다. 병리진단검사에서 종양이 고위험 아형일 가 능성이 시사되거나, 유전자변이검사에서 고위험 유전자 변이가 확인되거나 두 개 이상의 유전자변이가 동반된 경우에도 예후가 불량할 가능성이 높으므로 수술적 치 료를 우선적으로 고려해야 한다.

연령이나 동반질환과 같은 환자의 특성도 고려되어야 한다. 19세 미만의 환자에서는 적극적 관찰이 부적합하 므로 수술적 치료가 권고된다. 반면, 19세 이상 성인에서 는 적극적 관찰이 가능하며, 특히 질환의 진행률만을 고 려하면 40-60세 이상의 높은 연령층은 이상적인 적극적 관찰 대상자이다. 본 권고안에서는 기대수명에 따른 추 적 기간까지 고려하여 60세 이상을 이상적인 대상군으 로 정의하였다. 그 외에도 환자가 동반 질환으로 인해 수술 위험도가 큰 경우, 남은 여생이 짧은 경우, 갑상선 수술 전에 해결되어야 하는 동반 질환이 있는 경우에도 적극적 관찰을 적용하기에 이상적인 상황이다. 환자의 선호도 또한 치료 방침 결정에 중요한 요소이다. 환자가 적극적 관찰을 선호하는 경우 적극적 관찰이 이상적이 겠고, 환자가 수술을 선호하는 경우는 적극적 관찰에 부 적합하다.

종합적으로, 적극적 관찰의 이상적이거나 적합한 대 상자라고 판단되는 경우 다음 장에 기술된 저위험 미세 갑상선유두암의 치료 방침 결정시 고려 사항에 대해 환 자에게 충분히 설명하고, 의사와 환자가 공유의사결정 을 통해 최종 치료 방침을 선택할 수 있도록 해야 한다. 한편, 적극적 관찰의 적절한 시행을 위해서는 의료진

Table 2.5.A. 미세갑상선유두암으로 진단된 환자에서 적극적 관찰의 적합성 분류

1abio 2.0.A. 의제법이라#무료프로 한잔한 현재에서 ㅋㅋㅋ 한글의 ㅋ밥이 한#						
	이상적(ideal) ^a	적합(appropriate)	부적합(inappropriate) ^b			
종양 초음파소견						
종양 경계(margin)	매끈한(smooth) 또는 불균일(irregular) 경계	불분명한 경계(ill-defined margin)				
종양의 위치 (location)						
- 전방(anterior) 피막하	갑상선 피막이나 주요 구조물과 접촉이 없이 실질이 유지됨	피막 접촉(abutment), 소실(disruption), 돌출(protrusion) 소견을 보임	띠근육 대체(replacement) 소견을 보임			
- 기관주위	상동	기관과 예각을 이룸	기관과 직각 또는 둔각을 이룸			
- 후방외측 (posterolateral) 피막하	상동	피막 접촉을 보임	명백한 돌출을 보임			
- 후방내측 (posteromedial) 피막하	해당 없음	종양과 기관식도고랑 및 후방내측 피막 사이에 갑상선 실질이 유지됨	기관식도고랑 부위를 포함하여 후방내측 피막에 접촉하거나 돌출을 보임(실질이 없음)			
림프절	림프절이나 원격전이 의심 소견 없음.		병리진단검사로 확인되거나 임상적으로 의심되는 림프절 또는 원격전이			
갑상선유두암의 조직아형			긴세포, 원주세포, Hobnail 아형의 고위험 아형과 고형 아형과 미만성 경화 아형			
유전자변이 [°]			고위험 유전자변이가 확인되거나 두 개 이상의 유전자변이가 동반된 경우			
연령	60세 이상 ^d	19-60세	19세 미만			
동반 질환	동반 질환으로 인해 수술 위험도가 큰 경우 남은 여생이 짧은 경우 갑상선 수술 전에 해결되어야 하는 동반 질환이 있는 경우					
환자 선호도 정기 추적 관찰의 가능성	적극적 관찰을 원하는 경우 정기적인 추적 관찰이 가능하며, 이에 대한 환자의 순응도와 의지가 확인된 경우		수술을 원하는 경우 정기적인 추적 관찰이 어렵거나 이에 대한 환자의 의지가 부족한 경우			

⁸아래의 모든 조건을 충족하는 경우 이상적으로 판단. ^b아래 조건 중 하나라도 해당하면 부적합으로 판단. ⁶유전자패널검사를 일률적으로 권고하지는 않으나 유전자패널검사가 시행된 경우에 해당함. ^d40-60세 환자도 60세 이상과 비교하여 갑상선암 진행 위험은 유사한 것으로 보고되고 있으나, 추적 관찰 기간이 더 길어야 한다는 점에서 이상적인 대상은 60세 이상으로 함.

의 역량 또한 고려되어야 한다. 특히 종양의 특성 평가는 육안적 갑상선외부침범 및 림프절전이 여부를 시사하는 초음파 소견을 평가할 수 있는 전문가에 의해 주의 깊게 이루어져야 한다. 적극적 관찰은 해당 전략에 익숙하고 경험이 풍부한 전문가로 구성된 의료팀에서 시행될 때 보다 안전하고 효과적으로 수행될 수 있다. 수술과 적극 적 관찰의 이점과 잠재적 위험에 대해 균형 있게 설명하고, 환자에게 충분한 정보를 제공할 수 있는 의료진이 필요하다. 또한, 고해상도 초음파 장비를 갖추고 있으며, 이를 통해 갑상선과 경부 림프절을 자세하게 평가할 수 있는 숙련된 의사가 필요하다. 더불어, 환자가 정기적인 추적 진료에서 이탈하지 않고 정기적인 추적 관찰이 안 정적으로 이루어질 수 있는 의료환경이 중요하다.

3. 저위험 미세갑상선유두암의 치료 방침 결정시 고려할 점

- 3.A. 저위험 미세갑상선유두암으로 진단된 성인 환자에 게 수술과 적극적 관찰의 이득과 위해에 대해 충분 한 정보를 제공한다. 권고수준 3
- 3.B. 공유의사결정을 통하여 저위험 미세갑상선유두암 의 치료 방침을 결정한다. 권고수준 3

저위험 미세갑상선유두암 환자에서는 수술과 적극적 관찰의 두 가지 치료 방침이 모두 가능하다. 따라서 의사 는 수술과 적극적 관찰의 이득과 위해에 대한 정보를 환 자에게 충분히 제공하고, 환자가 자율적으로 결정을 할 수 있도록 도와야 한다. 본 권고안에서는 저위험 미세갑 상선유두암의 자연경과를 비롯한 환자에게 필요한 최신 정보들을 요약 정리하였다. 그 중 지연수술과 즉시수술 의 예후, 수술 또는 적극적 관찰에 따른 의료비용 및 삶 의 질 차이에 대한 3개의 핵심질문을 선정, 체계적문헌 고찰을 시행하였다.

3.1. 수술과 적극적 관찰의 장단점 및 치료 방법의 선택 (1) 수술의 장단점

수술을 선택할 경우, 갑상선암을 수술로 제거함으로 써 단기간에 완치에 이를 수 있으며, 질병 진행에 대한 불안이나 두려움을 낮출 수 있다. 그러나 입원, 전신마 취, 수술과 같은 과정을 겪어야 하며, 이로 인해 단기간 에 많은 의료비용이 발생할 수 있다. 또한, 갑상선절제술 의 범위에 따라 빈도나 정도에는 차이가 있으나, 수술합 병증을 경험할 수 있다.

수술 후 갑상선기능저하증이 발생하면 갑상선호르몬 제 복용이 장기간 필요할 수 있다. 갑상선전절제술을 받 는 경우 100%, 갑상선엽절제술을 받는 경우 약 30% 정도 에서 수술 후 갑상선기능저하증이 발생한다. 110) 그러나 이 수치는 양성 갑상선질환에 대한 수술과 부분 절제술 을 포함한 연구 결과에 기반한 것으로, 갑상선암 환자만 을 대상으로 한 국내 연구들에서는 엽절제술을 받은 화 자의 약 60%에서 갑상선기능저하증이 발생하였다. 111-114) 더 나아가 갑상선자극호르몬(thyroid stimulating hormone, TSH) 목표농도를 2 mIU/L 이하로 유지하기 위해서는 73% 이상에서 갑상선호르몬제 복용이 필요하다. 115)

또한, 후두신경마비와 부갑상선기능저하증 같은 수술 합병증이 발생할 수 있다. 미세갑상선유두암에서 갑상 선전절제술을 받는 경우 영구적인 후두신경마비는 0.9%, 영구적인 부갑상선기능저하증은 1.8%에서 발생한다. 116) 반면, 갑상선엽절제술의 경우에는 후두신경마비가 0.2% 에서 발생하고, 부갑상선기능저하증은 거의 발생하지 않는다.116)

(2) 적극적 관찰의 장단점

적극적 관찰을 선택하는 경우, 수술을 시행하지 않아 도 된다는 이득이 있다. 즉, 전신마취 및 수술에 따른 위 험과 수술 관련 합병증이 발생하지 않고 갑상선호르몬 제를 복용할 필요도 없다. 그러나 적극적 관찰을 선택한 경우 5년의 추적관찰 기간 동안 2.2-10.8%에서 암의 크기 가 증가하거나 0-4.5%에서 새로운 림프절전이가 발생한 다.22) 질병이 진행하면 수술이 필요한데, 이 경우 즉시수 술 대비 수술 범위가 확대되고 수술 합병증의 위험이 증 가하며 추가적으로 방사성요오드 치료를 시행할 가능성 이 높아진다.²²⁾

또한 갑상선암을 추적 관찰하기 위해서는 초음파를

포함한 정기적인 검사가 필요한데, 아직까지 추적 종료 가 가능한 시점에 대해 정해진 바가 없다. 평생 지속해야 할 수도 있어서 장기 누적 의료비용이 수술을 받는 경우 보다 상회할 수도 있다.

장기적인 예후의 측면에서는 적극적 관찰은 아직 충 분한 자료가 없다. 수술을 선택한 경우 대부분은 완치되 지만 미세갑상선유두암의 재발률은 3% 정도로 낮다.⁹ 일본에서 저위험 미세갑상선유두암 환자를 대상으로 한 연구에서는 즉시 수술을 시행한 경우 10년 재발률이 1.4% 정도였다.66) 그 외에도 적극적 관찰 도중 질병이 진행하지 않았지만 환자의 마음이 바뀌어 수술을 하는 경우가 2-24% 정도인데¹¹⁸⁾ 일본의 장기 추적 연구에서 질병 진행 여부를 고려하지 않고 지연 수술을 한 경우를 즉시 수술한 경우와 비교하였을 때 워격전이 발생률에 차이는 없었으며, 갑상선암으로 인한 사망 사례는 아직 까지 보고되지 않았다.66

(3) 치료 방법의 선택

저위험 미세갑상선유두암의 치료 방침을 결정할 때 의사는 화자에게 수술과 적극적 관찰의 장단점에 대한 정보를 충분히 제공해야 한다. 이 때, 환자 본인의 가치 와 선호도가 무엇인지 스스로 인지하고 선택할 수 있도 록 도와야 환자의 삶의 질을 유지하고 불안을 낮출 수 있다. 환자의 가치관 및 인생관, 선호도는 치료 방침을 선택하는데 큰 영향을 미치기 때문이다. 이러한 환자의 가치나 선호도가 반영되지 않은 채 치료 방침을 결정하 게 되면, 환자는 선택된 치료 방침에 대해 만족하지 못하 거나 후회하게 된다. 적극적 관찰을 하던 도중 질병이 진행하지 않았는데도 지연 수술을 하는 경우와, 반대로 수술 후 수술합병증이 발생하였거나 갑상선호르몬을 복 용하는 경우 수술에 대해 후회하는 경우가 이에 해당된 다. 의학적 의사결정 과정에서 의사가 독단적으로 결정 하는 것이 아니라 환자와 함께 결정하는 방법을 공유의 사결정이라 칭하며, 복수의 의학적 선택지가 있고 각각 의 이득과 위해가 비슷할 때 적용할 수 있다. 119)

저위험 미세갑상선유두암 환자의 가치와 선호도에 대 한 자료는 현재까지 제한적이다. 주로 삶의 질 또는 불안 감과 관련된 지표에 대해 단회성으로 조사한 단면적 연 구 결과들이 대부분이고, 종적으로 반복 평가한 연구는 부족하다. 따라서 저위험 미세갑상선유두암 환자의 가 치와 선호도에 대한 추가적인 연구가 필요하다. 또한 의 사들은 환자와 함께 결정하는 공유의사결정의 중요성을 인식하면서도 시간과 인력 등의 제한에 따른 현실적인 이유로 실행하지 못하는 경우가 많다. 이에 따라 공유의 사결정을 실제 진료현장에 적용할 수 있는 도구들이 연구되고 있으며, ¹²⁰⁾ 갑상선암에서도 설명문이 환자들의 의사 결정에 도움을 준다는 보고가 있다. ¹²¹⁾ 이에 대한갑 상선학회에서는 저위험 미세갑상선유두암 환자에서 공유의사결정시 도움이 될 수 있는 환자설명도구와 동의서 예시를 학회 홈페이지를 통하여 제공할 예정이다 (2026년 예정).

3.2. 저위험 미세갑상선유두암의 자연 경과

2 cm 이하의 저위험 갑상선유두암을 대상으로 적극적 관찰을 시행한 9편의 연구를 메타분석한 결과 평균 1.5 년부터 7.6년까지 추적하는 동안 3 mm 이상 종양 장경 증가는 2.2-10.8%, 종양의 부피가 50% 이상 증가하는 경우가 16.0-28.8%, 새로운 림프절전이는 0-4.5%에서 발생하였다.²²⁾

2023년까지 출판된 17편의 논문에 대한 또다른 메타분석 결과 질병 진행은 14.5%, 3 mm 이상 종양 장경 증가는 6.78%, 종양 부피 50% 이상 증가는 20.19%, 새로운 림프절전이는 1.53%이었다. [22] 특히 1 cm 이하만 분석한 연구들에서는 질병 진행은 8.86%, 3 mm 이상 종양 장경 증가는 4.51%, 새로운 림프절전이는 1.55%였으며 종양 부피 50% 이상 증가는 17.48%로 보고되었다. 반면 1 cm 이상을 포함한 연구들에서는 질병 진행은 19.85%, 3 mm 이상 종양 장경 증가는 8.76%, 새로운 림프절전이는 1.46%였으며 종양 부피 50% 이상 증가는 21.64%로, 전체 질병 진행률과 3 mm 이상 종양 장경 증가 비율의 비율이 통계적으로 높았다. [122]

특히 1.5 cm 이하의 저위험 갑상선유두암 291명에 대해 중앙값을 25개월간 관찰한 결과 3 mm 이상 종양 장경 증가는 3.8%로 5년 예측비율은 12.1%였다. ²⁴⁾ 미세갑상선유두암 402명을 5년간 추적관찰한 결과 종양 부피 기준으로배가시간 5년 미만으로 빨리 자라는 경우가 17.2%, 5년 이상으로 천천히 자라는 경우가 10.9%였고, 부피에 변화 없는 경우가 67.7%, 작아지는 경우가 4.2%로 보고되었다. ¹²³⁾ 또한 질병 진행은 진단 시점부터 꾸준히 관찰되었다.

3.3. 즉시 수술과 지연 수술의 예후와 합병증

본 위원회에서는 적극적 관찰과 진단 즉시 수술의 건 강결과를 비교하기 위해 4개의 핵심질문을 선정하였다. 진단 즉시 수술을 하는 경우와 비교하여 적극적 관찰을 하는 경우 수술합병증, 병리소견, 재발 등의 예후와 삶의 질, 비용에 차이를 보이는가에 대해서 알아보고자 적극적 관찰 후 지연 수술에 초점을 맞추어 문헌 고찰을 하였다. 즉시 수술은 진단 후 바로 수술을 진행하는 경우이고,

지연 수술은 적극적 관찰을 선택하여 즉시 수술을 하지 않고 종양의 변화를 추적 관찰하다가 수술로 치료 방침을 변경하는 경우로서 문헌 검색 시에는 진단 6개월-18개월 이후에 수술을 시행하는 경우로 정의하였다.

핵심질문 3. 저위험 갑상선암에서 진단 후 즉시 수술을 한 환자와 지연 수술을 한 환자의 예후(수술 합병증, 병리소견, 재발)의 차이가 있는가?

3.3.A. 저위험 미세갑상선유두암 환자에서, 즉시 수술을 시행한 경우에 비해 적극적 관찰 중 지연 수술을 시행한 경우 일시적인 수술합병증 위험은 증가할 수 있지만, 영구적인 수술합병증이나 재발 위험 은 증가하지 않으므로, 적극적 관찰을 고려할 수 있다. 권고수준 2

9편의 관찰연구^{25,124-131)}에 따르면 지연 수술을 하는 이유로 종양이 진행하지 않았지만 환자가 수술로 선택을 변경한 경우(11.0-70.5%)와 종양의 크기 증가(16.7-50.0%) 또는 새로운 림프절전이(0.0-13.3%)와 같은 질병 진행으로 인한 경우가 있었다. 그 중 6편의 문헌¹²⁴⁻¹²⁹을 합성하였을 때, 지연 수술과 즉시 수술 간에 재발 위험도는 차이가 없었다(오즈비 0.749; 95% 신뢰구간, 0.424-1.321). 일본의 후향적 연구¹³²⁾에서는 평균 8.4년의 관찰 기간 동안 질병 진행으로 인해 지연 수술을 받은 72명 중 1명(1.4%)이 재발하였으며, 진행 소견 없이 지연 수술을 받은 170명 중에서는 재발 사례가 전혀 없었다. 또한 즉시수술을 한 환자 1625명 중에서는 평균 7.9년의 추적 기간 동안 9명(0.6%)이 재발하여, 모든 경우에서 재발률이 매우 낮음을 보고하였다.

수술 합병증에 대한 6편의 문헌^{25,125,128-131)}을 메타분석한 결과, 지연 수술은 즉시 수술보다 일시적 부갑상선기능저하증 및 일시적 성대마비 위험도가 각각 오즈비1.705 (95% 신뢰구간, 1.188-2.448) 및 1.519 (95% 신뢰구간, 1.038-2.222)로 높았다. 하지만 영구적 부갑상선기능저하증 및 영구적 성대마비 위험도는 각각 오즈비 1.304 (95% 신뢰구간, 0.583-2.915) 및 0.842 (95% 신뢰구간, 0.198-3.799)으로 유의한 차이가 없었다. 국내 다기관 전향 연구¹³¹⁾에서도 모든 합병증 발생률에서 통계적으로 유의한 차이는 없었다. 다만, 이 연구에서는 질병 진행으로 인해 지연수술을 시행한 경우, 즉시 수술을 받은 환자에 비해 중앙경부 및 측경부 림프절절제술을 시행하는 비율이 유의하

게 높았으며(95% vs. 89%, p=0.02), 방사성요오드 치료를 받은 비율도 높았으나 통계적 차이는 없었다(18.9% vs. 14.6%, p=0.235). 한편, 진단 당시에는 엽절제술이 고려되 었으나 지연 수술 시 전절제술이 필요하게 되면 영구적인 갑상선기능저하증이 발생한다. 다만, 두 편의 전향적 연 구에서 지연 수술 중 전절제술의 비율이 통계적으로 의미 있게 증가하지는 않았다. 또 하나, 반대엽에 새로운 갑상 선암이 발견되어 적극적 관찰을 중단하고 수술한 경우, 독립적으로 발생한 새로운 암인지 기존 미세갑상선유두 암의 갑상선내 전이인지 구분하기 어렵다. 그러므로 이에 대해서는 추가적인 연구가 필요하다.

이상을 종합하였을 때, 즉시 수술에 비해 적극적 관찰 중 지연 수술을 받는 경우 재발 및 영구적인 수술 합병 증의 위험이 증가하지 않았다. 즉, 저위험 갑상선암 환자 에서 적극적 관찰로 인한 장기 예후 악화는 확인되지 않 았다. 다만, 환자에게 수술 범주 및 방사성요오드 치료 증가 가능성에 대해 정보를 제공하여 의사결정 시 참고 하도록 해야 한다.

3.4. 즉시 수술과 적극적 관찰의 비용 평가

수술을 시행하는 경우에는 초기 수술 비용이 높지만, 적극적 관찰을 하는 경우에는 주기적으로 지속하여야 하는 초음파의 비용과 추적 중 수술로 변경하는 경우의 수술 비용을 함께 고려해야 한다. 의료비용은 각 국가의 건강보험제도와 의료 수가 및 개개인의 보험적용 상황, 제도권 의료서비스 및 보완대체의학의 이용행태 등에 따라 차이가 나므로, 즉시 수술과 적극적 관찰의 의료 비용을 평가하는 것은 단순하지 않다. 또한 치료방침 결 정시 고려되어야 하는 비용에는 개개인의 개인 고용상 태, 의료기관까지 거리, 생산성 손실, 의료보험 상태 등 을 포함한 직접비용 및 간접비용 등의 사회의료비용이 고려되어야 할 것이다.

본 위원회에서는 비록 지금까지 알려진 자료가 매우 제한적이기는 하지만, 저위험 갑상선암의 치료법에 따 른 사회의료비용의 차이에 대한 정보를 다음과 같은 핵 심질문에 대한 체계적 문헌고찰을 통해 다음과 같은 권 고사항을 제시하였다.

핵심질문 4. 저위험 갑상선암 환자에서 치료법에 따라 사회의료비용에 차이가 있는가?

3.4.A. 저위험 미세갑상선유두암 환자에서 치료 방법에 따라 장기 비용과 단기 비용에 차이가 있으므로, 치료 방침을 결정할 때 사회의료비용을 종합적으 로 고려해야 한다. 권고수준 3

[임상적 고려사항] 사회의료비용은 직접비용 및 간 접비용을 고려한 비용으로, 개인 고용상태, 의료기관 까지 거리, 생산성 손실 수준에 따라 개인별로 다를 수 있으므로 포괄적인 평가가 필요하다.

갑상선암의 진료 비용은 연령, 수술 종류, 건강보험제 도에 따라 다양하여 국가에 따라 적게는 1400달러, 많게 는 17,000달러 정도가 보고되고 있어,¹³³⁾ 국가별 비용 차 이가 크다. 저위험 갑상선암의 치료법에 따른 사회의료 비용에 대해 분석한 대부분의 연구들은 수술, 치료, 처치 등의 의료비용만을 고려하고 있다. 134-139) 또 대부분의 연 구가 국가, 지역 등의 보험이 적용된 의료비용 결과를 제시하고 있다. 117,135,136,138-140)

경제성평가 내 비용분석 중심의 연구 결과를 살펴보 면 초기에는 수술이 적극적 관찰에 비해서 최소 2.6배, 많게는 16배가량 비용이 많이 발생한다. 하지만 장기 추 적을 하게 되면 갑상선암 발견 15년 이후부터는 적극적 관찰을 할 경우 누적 비용이 수술보다 많아진다. 이를 바탕으로 환자의 기대 수명이 15년 미만인 경우 경제적 인 관점에서는 적극적 관찰이 이득일 수 있다. 그러나 각 치료에 따른 초음파 추적 관찰의 간격과 생산성 손실 과 같은 간접비용 및 환자들의 대체의학 의존 정도에 따 라 결과가 달라질 수 있어 추가적인 연구가 필요하다.

그 외 경제성평가 내 비용효용 분석 연구 결과를 살펴 보면 대체로 수술이 비용 효과적이었다. [134-136,139,141] 그러 나 각 연구들이 적극적 관찰 및 수술에 따른 질보정생존 년수에 차이가 거의 없거나, 대표성 있는 질보정생존년 수를 적용한 것이 아니었다는 한계점이 있다. 따라서 저 위험 갑상선암 환자 혹은 한국인 집단에서 치료법에 따 른 대표성 있는 질보정생존년수에 대한 확인과 이에 따 른 비용효용 분석 연구가 추가적으로 필요하다.

2편의 국내 연구에서, 직접의료비용만을 고려하였을 때는 10년부터 50년까지의 장기 추적기간 동안 수술이 적극적 관찰보다 항상 더 많은 비용이 지출되었지만, 직/ 간접의료비용을 모두 고려한 연구에서는 약 16년 시점 에 수술과 적극적 관찰 간 교차점을 형성하고 이후에는 적극적 관찰이 더 많은 비용을 지출하는 것으로 나타났 다. 그러므로 치료방침을 결정할 때에, 개개인의 개인 고 용상태, 의료기관까지 거리, 생산성 손실, 의료보험 상태 등을 포함한 직접비용 및 간접비용 등의 사회의료비용 도 치료 방법의 선택 시 고려되어야 할 것이다.

3.5. 즉시 수술과 적극적 관찰 시 삶의 질 비교

갑상선암을 진단받은 환자들의 많은 수가 두려움, 불안감, 우울감 등을 경험하고, 이는 갑상선암 예후에 대한 불확실성, 치료에 따른 위험, 합병증에 대한 두려움 등과 연관된다. 음성변화, 저칼슘혈증으로 인한 손발 저림, 수술 흉터로 인한 미용적인 문제, 삼킴 곤란 등의 수술 후합병증은 갑상선암이 완치가 된 경우에도 환자의 삶의 질에 영향을 줄 수 있다. 또한 수술하지 않고 적극적 관찰을 하고 있는 갑상선암 환자들은 암 자체에 대한 두려움, 암의 진행에 대한 불안감을 경험할 수 있다. 그러므로 치료 방법에 따른 삶의 질에 대한 정보가 치료를 선택할때 도움이 될 수 있다. 이에 본 위원회에서는 다음과 같은 핵심질문에 대한 체계적 문헌고찰을 진행하였다.

핵심질문 5. 저위험 갑상선암 환자에서 치료법(적극적 관찰과 진단 즉시 수술)에 따라 삶의 질에 차이가 있는가?

3.5.A. 저위험 미세갑상선유두암 환자에서 치료법에 따

른 삶의 질을 직접적으로 비교한 연구는 부족하지만, 치료 방침을 결정할 때 환자보고결과가 있는 경우 이를 고려해야 한다. 권고수준 3 [임상적 고려사항] 환자보고결과(patient-reported outcome, PRO)는 삶의 질, 불안, 우울 등과 같은 환자스스로가 주관적으로 인지하는 건강 상태를 평가한 정보를 의미한다.

10편의 연구^{129,142-150)}를 메타분석하였을 때, 음성변화, 집중력저하 관련 증상이 수술군에서 더 많았고, 신체건 강, 정신건강 점수 모두 적극적 관찰군에서 더 좋고 불안, 우울의 척도는 낮았다. 그러나, 진단 시점에 한정해보면, 진단관련 불안도가 더 낮고 기저 정신건강점수가더 높은 환자들이 적극적 관찰을 선택하는 경향을 보여주었고, ^{143,144)} 적극적 관찰 중 갑상선암이 진행되어 수술을 시행 받은 환자들은 수술 후 삶의 질이 감소하지 않았으며, 적극적 관찰 중 불안이나 다른 이유로 수술을받은 환자들보다 삶의 질이 좋았다. ¹⁴⁶⁾ 이러한 결과들은, 치료 자체가 삶의 질에 미치는 영향보다 환자 개개인의특성이 치료 선택에 영향을 줌을 시사한다.

삶의 질을 조사한 한 국내 연구에서는 수술을 선택한 환자들이 적극적 관찰을 선택한 경우보다 삶의 질이 낮았고, 적극적 관찰 도중 진행소견 없이 수술로 변경한경우가 진행소견을 보인 환자보다 삶의 질이 낮았다. ^{146,151)} 다만 적극적 관찰을 선택한 환자들은 진단 당시부터 삶의 질이 높고 불안감이 낮았다. 한 미국 연구에서도 수술을 선택한 환자들이 적극적 관찰을 선택한 환자들보다 불안감이 높았고, 수술 이후에도 불안감은 줄어들지 않았다. ²⁵⁾ 한 캐나다 연구에서 수술 후 갑상선호르몬제의 지속적인 복용에 대한 두려움이 클수록 적극적관찰을 선택하고, 갑상선암 진행에 대한 두려움이 클수록 수술을 선택한다고 보고하였다. ²⁶⁾ 반면, 한 일본 연구에서는 적극적 관찰을 선택한 환자들이 오히려 더 불안한 특성을 보였다. ¹⁴⁹⁾

이상의 결과는 갑상선암 진단 당시에 환자의 삶의 질 또는 불안감을 평가하고, 수술과 적극적 관찰에 대한 환자의 생각이나 불안감 등의 정보를 파악한 다음 치료 방침을 결정하는 것이 삶의 질 유지에 도움이 될 것임을 시사한다. 다만 별도의 시간과 지원 인력이 필요하므로, 임상진료현장에 적용하는 데는 현실적인 한계가 있다. 따라서 향후 삶의 질 평가에 대한 의료 정책적인 지원이 있다면 임상진료현장에서 환자보고결정에 대한 정보 제공 및 삶의 질에 대한 포괄적인 평가 및 관리가 가능해질 것이며, 이는 저위험 갑상선암 환자의 치료 선택에 대한 만족도를 높이고 이에 따른 삶의 질 향상에 도움을줄 것이다.

4. 적극적 관찰 중 추적검사

저위험 미세갑상선유두암에 대한 적극적 관찰은 질병이 진행하지 않을 환자를 선별하여 불필요한 수술을받지 않도록 하는 것이 일차 목적이지만, 추적 중 질병이 진행하더라도 너무 늦지 않은 시기에 수술을 받아 지연수술로 인한 위해를 최소화하는 것 역시 중요하다. 따라서 적극적 관찰 중에는 적절한 검사를 주기적으로 시행하여 질병 진행 여부를 정확히 평가하고, 그 외 치료 방침의 변경에 영향을 줄 수 있는 인자를 세심하게 평가하여야 한다(Fig. 4.A).

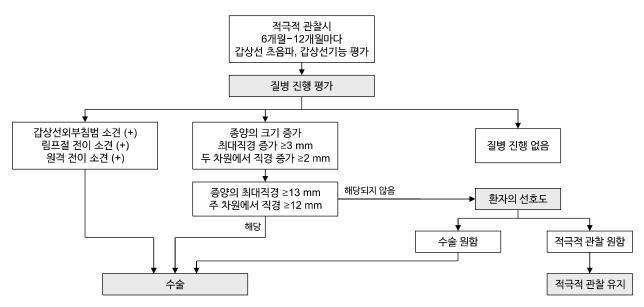


Fig. 4.A. 적극적 관찰 중 추적 알고리즘.

- 4A. 적극적 관찰 중인 경우 경부 림프절을 포함한 갑상 선 초음파검사로 종양의 진행 여부를 주기적으로 면밀하게 평가해야 한다. 권고수준 1
- 4.B. 적극적 관찰 중인 경우 주기적으로 갑상선기능검 사를 시행한다. 권고수준 3

[임상적 고려사항] 환자의 동반 질환 및 선호도 등 환자의 특성을 함께 평가하여 치료 방침 변경의 필요 성을 확인한다.

4.1. 갑상선 초음파검사

- 4.1.A. 적극적 관찰 중인 경우 질병 진행을 평가하기 위 해 진단 후 1-2년간은 매 6개월마다 초음파를 시 행하고, 질병 진행이 확인되지 않았다면 이후로 는 연 1회 초음파를 시행한다. 권고수준 1
 - [임상적 고려사항] 종양의 진행 여부는 지속적으로 동일한 방법으로 평가해야 하며, 초음파검사에서 관 찰된 성장 패턴에 따라 추적 간격을 조정할 수 있다.
- 4.1.B. 적극적 관찰 중인 경우 초음파검사를 통해 종양 크기, 갑상선외부침범, 림프절전이를 평가해야 한다. 권고수준 1
- 4.1.C. 적극적 관찰 중인 경우 초음파검사에서 종양 크 기는 3 축에서 평가한다. 권고수준 1
- 4.1.D. 림프절전이가 의심되는 경우 초음파 유도하 세 침흡인검사를 시행하며, 세침흡인세척액-갑상선 글로불린의 측정을 함께 시행한다. 권고수준 1

(1) 초음파 추적검사 간격

미세갑상선유두암이 저위험인 지를 결정하는 초기 평 가와 마찬가지로 추적 관찰 및 질병 진행의 평가에서도 초음파가 가장 중요한 영상 기법이다. 초음파 추적검사 를 통해 갑상선암의 크기를 측정하고 새로운 갑상선외 부침범이나 림프절전이 여부를 확인해야 한다. 다만 적 극적 관찰 기간 중 적절한 초음파검사 시행 간격에 대해 서는 자료가 부족하다. 일본에서 시행된 첫 전향적인 연 구에서는 1년에 1-2번 초음파를 시행하였고, 14) 이후 시 행된 전향적 연구들도 첫 2년간은 6개월마다 초음파를 시행하고, 이후에는 연 1회로 초음파를 시행하였다. 17,24,152) 이에 따라 여러 나라의 진료권고안에서도 동일한 간격 으로 추적검사할 것을 권고하고 있다.^{32,100,153,154)}

또한 적극적 관찰 중 초음파검사를 언제까지 얼마나 자주 시행해야 하는지, 그리고 추적 중단 가능한지에 대 해서는 근거가 없다. 일본과 프랑스 권고안에서는 평생 초음파를 시행해야 한다고 권고하였다.^{32,155)} 본 권고안에 서는 적극적 관찰 시작 후 처음 1-2년 동안은 6개월마다, 이후 종양 진행이 관찰되지 않으면 1년마다 종양 크기 변화 및 새로운 육안적 갑상선외부침범 또는 림프절전 이에 대한 초음파 평가를 권장한다. 31,32) 다만 마지막 초 음파검사에서 관찰된 성장 패턴에 따라 추적 간격을 조 정할 수 있으며, 특히 종양 크기 증가 및 기타 영상 소견 (육안적 갑상선외부침범 또는 림프절전이)을 확인하기 위해 필요에 따라 더 짧은 간격으로 시행할 수 있다. 이 와 반대로 장기간 질병 진행이 확인되지 않고 안정적인 경우에는 초음파 간격을 1-2년 이상으로 늘릴 수 있는데, 특히 나이가 많거나, 종양의 크기가 작거나 감소하는 경우에 적극 고려해 볼 수 있다. 종양 및 환자의 특성과 변화 양상에 따른 적절한 추적검사 주기를 정하기 위한 장기 연구결과가 필요하다.

(2) 질병 진행 평가를 위한 초음파검사 기법

적극적 관찰 시 질병 진행을 어떻게 정의하는 가는 지침과 연구마다 다르지만, 대부분의 연구에서 종양의 크기 성장을 종양 진행의 대리 지표로 삼는다. 따라서 적극적 관찰 중 초음파 추적검사에서는 갑상선암의 크기를 정확하고 일관된 방법으로 재현 가능하게 측정하는 것이 중요하다. ¹⁵⁶⁾

그러나 초음파를 이용한 갑상선결절의 크기 측정은 관찰자 내 및 관찰자 간 변동성이 높다. [57,158] 일관되고 재현 가능한 측정을 위해 American College of Radiology (ACR) Thyroid Imaging Reporting and Data System (TI-RADS)에서 제안한 세 축 측정 기법을 사용할 것을 권장하며 [56,159] 갑상선결절의 크기 측정은 횡단면과 종단면에서 모두 시행해야 한다. 횡단면에서 측정할 때는 횡단면에서 관찰되는 최대 길이를 나타내는 직경 (transverse diameter)을 측정한다. 두 번째 측정값인 전후 직경은 동일한 이미지에서 횡단 직경에 수직으로 측정된 최대 크기여야 한다. 종단면은 반드시 해부학적으로 정의된 시상면일 필요는 없으며 갑상선 중심의 종단면에 평행해야 한다.

횡단면 또는 종단면에서 최대 종양 직경을 측정하기 위해 탐촉자를 45°이내의 각도로 각을 주어 비스듬히 측정할 수 있다. 이 접근법은 비스듬히 위치한 결절의 재현 가능한 측정을 가능하게 해준다. 측정 대상인 결절에 저에코의 무리(halo)가 있는 경우 이를 포함해서 측정해야 한다. 갑상선결절의 크기를 일관되게 측정하고 연속해서 비교하기 위해서 추적검사 시 이전에 측정한 동일한 이미지 평면을 사용할 것을 권장한다. 그러나 갑상선결절이 커지거나 모양이 변하는 경우 크기를 측정하는 면의 위치가 달라질 수 있다.

(3) 질병 진행 평가에 필요한 영상학적 지표

적극적 관찰 중 질병 진행은 종양 크기의 증가, 새로운 갑상선외부침범과 림프절 또는 원격전이로 정의되며, 수술 전환의 적응증에도 활용된다. 32,100,160,1611 앞서 연급된 질병 진행의 정의와 동일하게 크기 증가는 최소 한축에서 3 mm 이상 증가하거나, 최소 두 축에서 각각 2 mm 이상 증가한 경우로 정의된다. 다만 일부 권고안들과 연구에서는 크기 증가 기준을 한 번만 만족해도 수술

을 권고하는 반면, 일본⁶⁶과 캐나다의 전향적 연구들, ^{152,156} 그리고 프랑스의 권고안¹⁵⁵⁾에서는 초음파검사에서 두 번 연속 성장 기준을 만족할 경우에만 수술을 권고하고 있다. 이는 초음파를 이용한 종양 크기 측정시 관찰자 내 및 관찰자 간 변동성, ^{157,158)} 그리고 일시적으로 크기 증가 기준을 만족한 종양이 이후 크기가 줄어들 수 있는 가능성을¹⁶²⁾ 고려한 것이다.

추적 관찰 중 림프절전이가 의심되는 경우, 그 크기에 따라서 세침흡인검사를 시행할 수 있다.³⁴⁾ 하지만 세침흡인검사를 단독으로 시행할 경우 비진단적 결과나 위음성 결과가 나올 수 있으므로,⁵⁵⁻⁵⁷⁾ 검사의 민감도를 높이기 위해 세침흡인세척액-갑상선글로불린검사를 함께 사용하는 것이 권고된다.^{34,38)}

4.2. 갑상선기능 평가

갑상선기능에 따른 질병 진행은 측정방법 및 기준에 따라 다양하게 보고되고 있다. 일본의 한 코호트 연구에서는 갑상선자극호르몬(TSH)을 2.5 mIU/L를 기준으로나누었을 때, 유의한 결과를 보이지 않았으나⁹²⁾ 또다른일본의 대규모 코호트 연구에서는 5년간 5.5%의 재발이확인되었고, 공식을 통해 보정된 TSH를 기준으로 분석하였을 때 TSH>2 mIU/L인 환자들이 질병 진행 위험성이 높았다(HR 2.954, 95% 신뢰구간 1.282-6.802).⁹⁴⁾ 두 편의 국내 코호트 연구에서도 높은 TSH가 질병 진행위험과 연관이 있었고,^{19,91)} 특히 TSH>7 mIU/L은 질병 진행과 유의한 관련성이 있었다.^{20,98)} 그러므로, 적극적 관찰중인 저위험 미세갑상선유두암 환자에서 현성 갑상선기능저하증이 발견된 경우 치료가 필요하며, 무증상 갑상선기능저하증에서도 치료가 필요할 가능성이 높다.

다만, 갑상선호르몬을 복용하여 TSH를 억제하면 질병진행위험이 낮아지는가에 대해서는 아직 근거가 제한적이다. 일본의 대규모 코호트 연구에서는 TSH 억제는 질병 진행률과 유의한 연관성을 보이지 못했으며,⁹⁴⁾ 국내 연구에서 역시 질병 진행과 유의한 연관성이 관찰되지 않았다.⁹³⁾ 그러므로, TSH를 일정 농도 이하로 억제 또는 유지하는 것이 실제 질병 진행을 억제할 수 있는지에 대해서는 근거가 부족하여 이에 대해서는 추가적인연구가 필요하다. 앞선 연구 결과에 의하면 TSH 농도를 2-7 mIU/L 이하로 유지하는 것이 도움되므로, 본 권고안에서는 적극적 관찰 중인 환자에서 주기적으로 갑상선기능을 평가하도록 권고한다.

4.3. 환자 특성의 변화

적극적 관찰을 하는 동안에도 환자 특성에 대한 지속

적인 평가가 필요하다. 특히, 환자의 선호도가 변화하였 는지를 확인하는 것이 중요하다. 이전 연구들에서 암이 진행하지 않았음에도 불구하고 일부 환자들이 수술로 변경하였다. 또한, 환자의 동반질환, 전반적인 건강상태, 그리고 가임기 여성의 경우 임신 여부에 대한 확인도 필 요하다. 적극적 관찰 중 임신하거나 임신 중 갑상선암이 새로 진단되어도 종양의 진행 위험이 증가하지 않으므 로 임신 중에도 적극적 관찰이 가능하다. 다만, 임신기간 중 정기적인 경부 초음파검사를 통한 추적 관찰이 필요 하며, 초음파에서 암의 진행이 확인될 경우에는 임신 중 기 또는 분만 후 수술을 고려할 수 있다.35)

5. 적극적 관찰 중 질병 상태 평가

5.1. 질병 진행의 기준

- 5.1.A. 적극적 관찰 도중 질병 진행은 다음 소견 중 한 가지 이상이 발견된 경우로 정의한다.
 - (1) 종양 크기가 증가한 경우로서 종양 최대 직경이 3 mm 이상 증가하거나 두 차원에서 직경 2개 이 상이 2 mm 이상 증가한 경우. 권고수준 3
 - (2) 임상적으로 종양의 갑상선외부침범 소견이나 림 프절 또는 원격전이가 새롭게 보이는 경우. 권고 수준 1

적극적 관찰 도중 질병 진행은 일반적으로 종양의 크 기가 증가한 경우 또는 새롭게 갑상선외부침범, 림프절 또는 원격전이가 발생한 경우로 정의된다. [60] 이 기준들 중에서 갑상선외부침범, 림프절전이, 원격전이는 적극적 관찰에 부적합한 소견으로 이 중 하나라도 새롭게 발생 하는 경우는 모든 전향적 연구와 진료권고안에서 동일 하게 질병 진행으로 평가되고 있다.

그러나 종양의 크기 증가에 대한 기준은 연구나 진료 권고안마다 다소 다르다. 가장 일반적으로 많이 사용되는 기준은 Ito 등이 제시한 최대 직경이 3 mm 이상 증가한 경우이다. 32,160,163) 그러나 미국 Memorial Sloan Kettering Cancer Center 연구에서는 최대 직경 3 mm 이상 증가한 경우와 함께 종양 부피가 처음보다 50% 이상 증가한 경 우를 종양 크기 증가로 정의하였다.²⁴⁾ 미국 Cedars-Sinai Medical Center 연구에서는 최대 직경이 5 mm 이상 증 가하거나 종양 부피가 100% 이상 증가한 경우로 정의하 였다.²⁵⁾ 국내 전향적 연구에서는 최대 직경 3 mm 이상 증가한 경우와 두 차원에서 직경이 2 mm 이상 증가한 경우로 정의했다. 17,19) 반복 측정 오차에 대한 재현성의 측면에 대한 국내 후향적 연구에서는 장경으로는 24%, 부피 72% 이상 증가한 경우를 측정 오차를 최소화한 크 기 증가 기준으로 보고하였다. 164) 본 권고안에서는 국내 전향적 연구의 기준을 채택하여 한 차원에서 최대 직경 이 3 mm 증가하거나 두 차원에서 직경이 2 mm 증가하 는 경우를 종양 크기가 증가하는 것으로 정의하였다.

5.2. 적극적 관찰 중 수술을 시행하여야 하는 경우

- 5.2.A. 적극적 관찰 중 다음 소견 중 한 가지 이상이 발 견되면 수술을 권고한다.
 - (1) 종양의 최대 직경이 13 mm 이상이거나 두 차원 에서 직경 2개 이상이 12 mm 이상인 경우. 권고 수준 3
 - (2) 초음파상 부적합한 소견(Fig. 2.3.A)이 새로 발생 한 경우. 권고수준 1
 - (3) 림프절 또는 원격전이가 새로이 확인되거나 의심 되는 경우. 권고수준 1
 - (4) 환자가 수술을 원하는 경우. 권고수준 1
- 5.2.B. 수술적 절제의 범위는 대한갑상선학회 갑상선분 화암 진료권고안을 따른다. 권고수준 1

적극적 관찰 도중 질병이 진행하면 환자에게 수술을 권고한다. 즉, 종양의 크기가 증가하거나 새롭게 육안적 갑상선외부침범, 림프절전이, 또는 원격전이가 의심되는 경우가 이에 해당한다. 특히 육안적 갑상선주위침범이 나 림프절 또는 원격전이와 같이 적극적 관찰이 부적합 한 소견이 새로 발생한 경우에는 즉각적인 수술이 필요 하다.

그러나 종양이 얼마나 증가했을 때 수술을 권고할 것 인가는 논란의 여지가 있다. 현재 여러 권고안에서 종양 최대 직경이 3 mm 이상 증가하면 수술을 권고하고 있 다. 16) 그러나 저위험 미세갑상선유두암은 진단 당시 최 대 직경 10 mm 이하이면 크기에 무관하게 적극적 관찰 이 가능하므로, 일본 권고안에서는 다른 고위험 소견이 동반되지 않고 크기 증가만 보이는 경우에는 최대 직경 이 10 mm 보다 3 mm 이상 증가한 13 mm 이상에 도달 하였을 때 수술을 권고하고 있다.32 본 위원회도 이와 같은 의견에 동의하여, 다른 고위험 소견이 새로 생기지 않았다면 종양의 최대 직경이 13 mm 이상이거나 두 차 원에서 직경 2개 이상이 12 mm 이상 증가한 경우에 수 술을 권고한다.

또한 본 위원회는 이러한 기준을 적어도 6개월 이내 에 2번 연속 만족했을 때 수술을 권고한다. 초음파를 이 용한 종양 크기 측정은 관찰자 내 및 관찰자 간 변동성 이 높고, 157,158) 때로는 종양이 감소하는 경우도 있기 때문에 162) 2번 연속 기준을 만족할 때 수술을 권고한다. 한편, 적극적 관찰 도중 질병이 진행하지 않더라도 환자가 원하는 경우에는 수술을 시행한다. 이 때 수술 시 절제 범위는 2024년 대한갑상선학회 갑상선분화암 진료권고안 ("Part I. 2장 갑상선분화암의 적절한 초기 수술")을 따른다.8)

6. 향후 해결해야 할 점

6.1. 장기 예후에 대한 근거

적극적 관찰에 대한 전향적 연구들이 시행되고 있으나 다양한 집단에서의 장기 예후에 대한 역학 자료는 여전히 부족하다. 특히 언제까지 적극적 관찰을 지속해야하는가에 대한 자료는 전무하다. 일본의 3222명 환자를 적극적 관찰한 전향적 연구에서 최대 30년에 이르는 장기 추적 결과가 보고되었으나 추적 기간 중앙값은 11.9년이며 10년이로, 20년에 장기적인 암의 자연 경과 및 예후를 평가하기에는 한계가 있다. 따라서 적극적 관찰의 안전성과 유효성을 보다 명확하게 확인하기 위해서는 10년 이상의 장기 추적 연구가 필요하다. 특히, 인종 또는 국가별로 질병 진행 양상이 다를 수 있으므로, 한국인을 포함한 국내 환자에서의 장기적인 자연 경과 및 예후 자료를 확보하는 것이 중요하다.

6.2. 질병 진행 예측 인자

적극적 관찰 중 질병 진행을 예측하는 인자를 규명하는 것은 저위험 미세갑상선유두암 치료 방침 결정에 큰도움이 될 수 있다. 이러한 예측 인자를 통해 향후 진행위험이 높은 환자에게는 수술적 치료를 우선적으로 고려하고, 반면 진행 위험이 낮은 환자에게는 보다 안전하게 적극적 관찰을 지속할 수 있기 때문이다.

현재까지의 연구 결과에서는 나이와 종양의 크기가 비교적 일관되게 질병 진행과 관련된 주요한 임상적 예측 인자로 보고되었다. 그 외에 갑상선암에서 흔히 분석되는 BRAF^{V600E}유전자변이의 경우 적극적 관찰 중 질병 진행과의 뚜렷한 연관성은 현재까지 확인되지 않았다. 95,131) 그러나, BRAF^{V600E}혹은 RAS 유전자변이에 TERT 프로모터 유전자변이가 동반된 경우 갑상선암 예후가 나쁘다는 것은 잘 알려져 있어, 두 개 이상의 유전 자변이가 확인된 경우에는 수술적 치료를 우선 고려하는 것이 권고된다. 향후에는 다양한 분자표지자에 대한체계적인 연구 수행이 필요하다.

적극적 관찰 도중 추적에 영향을 미치거나 질병 진행

과 연관된 초음파 소견으로 갑상선외부침범이나 림프절전이 이외에는 근거가 부족하다. 다만, 미만성 갑상선 질환으로 갑상선 전반 또는 일부의 에코가 감소된 경우와결절의 석회화는 결절의 정확한 크기 측정에 영향을 미쳐 질병 진행으로 오인될 수 있을 뿐 아니라, 그 자체가종양의 성장과 연관될 수 있다. 일본의 한 연구에서 종양이 강한 석회화(거대석회화 또는 경계부위석회화)를 동반하거나 혈관성이 낮으면 진행률이 낮다고 보고하였다. 165) 해당 내용은 2020 일본내분비외과학회(JAES) 권고안에서 언급되었으나, 166) 여전히 석회화와 종양 성장과의 연관성에 대해서는 논란이 있다. 20,95) 국내 한 전향적 코호트 연구에서는 초음파에서 갑상선실질에 미만성갑상선질환 소견이 보이거나 종양내 과혈관성이 보인경우 종양 성장과 관련됨을 보고하였다. 200

이처럼 일부 미세갑상선유두암의 진행을 예측하는 인 자들이 제시되고 있지만, 아직까지 임상적인 유용성은 높지 않다. 향후 예측 정확도를 높일 수 있는 추가적인 임상적, 병리학적, 또는 분자생물학적 인자의 발굴이 필 요하다.

6.3 질병 진행 예방 치료

현재까지 적극적 관찰 중에 저위함 미세갑상선유두암 환자에서 질병 진행을 예방할 수 있는 치료 전략은 확립되어 있지 않다. 특히 TSH 억제 요법은 갑상선암 재발방지를 위해 수술 후 상당수의 환자에서 시행되지만, 미세갑상선유두암에서도 질병 진행 억제효과가 있을지에대해서는 근거가 부족하다. 일부 연구에서는 높은 TSH수치가 질병 진행과 연관성이 있다는 보고가 있으나, 상반된 결과도 있어 결론을 내리기 어렵다. 20,91,167) 일본의한 연구에서는 TSH 억제 요법이 질병 진행 위험을 낮춘다고 보고하였으나, 대상 환자 수가 적어서 일반화하기에 한계가 있다. 15) 따라서, 적극적 관찰 중 TSH 억제 요법의 효과에 대한 대규모 전향적 연구가 필요하다. 그외에도 적극적 관찰 중 질병 진행을 효과적으로 예방할수 있는 다양한 치료 전략 개발이 필요하다.

6.4. 영상 유도하 최소 침습 치료법

최소 침습적 치료(열절제술, thermal ablation)는 갑상 선 양성 결절 및 재발성 병변에 대해 높은 효과와 안정 성을 보이는 치료 방법이다. [68,169] 현재 갑상선질환에서 고주파절제술, 레이저절제술, 마이크로파절제술 등이 널리 사용되고 있다. [69-171] 그 중 고주파절제술이 가장 많이 사용되고 있는 방법으로서, 미세갑상선유두암의 치료에도 적용되기 시작하여, [72] 미세갑상선유두암에 고주

파절제술을 시행한 후 10년 이상 우수한 장기 치료 성적 이 보고되고 있다. 173)

2015년 이탈리아 학회들이 다발성이 아니면서, 림프절 전이가 없는 미세갑상선유두암에서 초음파 유도 기법의 적용가능성에 대해 언급한 이래, 174) 2018년 대한갑상선영 상의학회에서는 수술을 거부하거나 절제 불가능한 원발 성 갑상선암 환자들에서 고주파절제술을 대안으로 고려 할 수 있다고 제안하였다.¹⁶⁹⁾ 이후 2021년 유럽갑상선학 회(European Thyroid Association) 및 유럽심혈관중재영 상의학회(Cardiovascular and Interventional Radiological Society of Europe)에서도 고위험 수술군, 짧은 기대수명, 동반질환이 있거나, 수술이나 적극적 관찰을 거부하는 저위험 미세갑상선유두암 환자에 대해 열절제술을 고려 할 것을 권고하였으며, 170) 이와 함께 환자들에게 수술이 나 적극적 관찰 외에 또다른 치료 대안으로서 열절제술 의 장점과 한계에 대해 알려야 한다고 제안하였다. 170) 2021년에 발표된 국제 다학제 합의문에서는 고주파절제 술이 원발성 갑상선암의 일차 치료로 고려되지는 않지 만, 저위험이나 수술이 불가능한 고위험 갑상선암에서 하나의 치료전략이 될 수 있다고 언급하였다. 175)

국내에서도 적극적 관찰 대상군에서 전향적으로 고주 파절제술을 시행한 연구 결과가 최근 보고되었고, 그 외 여러 연구에서 저위험 미세갑상선유두암의 일차 치료로 서의 가능성이 제시되었다.¹⁷⁶⁻¹⁸³⁾ 이러한 저위험 갑상선 유두암 환자의 치료에 대한 임상 연구 결과들과 양성결 절의 열절제술에 대한 임상결과들에 근거하여 최근 발 표된 국제 다학제 합의문에서는 1 cm 이하의 미세갑상 선유두암에서 열절제술 치료가 사용될 수 있음을 언급 하고 있다. 175,184) 그러나 저위험 미세갑상선유두암 환자 중 열절제술에 적합한 대상에 대해서는 구체적으로 규 정되지 않았다. 적절한 열절제술의 대상군 선정을 위해 서는 고주파절제술의 기술적 타당성 측면에 따른 기준 뿐만 아니라, 저위험 갑상선유두암의 치료적 관점에서 다각적인 검토가 필요하다. 또한 현재와 같이 갑상선암 의 유병률이 높은 상황에서는 갑상선암에 대한 고주파 절제술이 남용 및 오용되지 않도록185,186) 제도권 내에서 체계화할 필요가 있으며, 이를 위해 적응증, 치료기법, 갑상선암 고주파절제술을 시행하기 위한 자격요건 등에 대한 근거 고찰, 논의 및 합의 과정이 필요하다.

6.5. 병리진단검사 없이 시행하는 적극적 관찰 전향적 연구의 필요성

저위험 미세갑상선유두암의 적극적 관찰에 대한 인식 이 확대됨에 따라, 갑상선외부침범, 림프절전이 또는 원

격전이가 없는 1 cm 이하 크기의 갑상선결절 중 초음파 에서 악성이 의심되는 병변에 대해 병리진단검사가 필 요한가에 대한 논의가 제기되고 있다.

적극적 관찰에 대한 기존 근거들은 갑상선결절에 대한 세포병리학적 진단을 전제로 한다. 일본내분비외과학회 (JAES) 권고안에서는 0.5 cm보다 큰 크기의 초음파상 악 성의심(높은의심) 결절에 대해 세침흡인검사를 시행하도 록 하고 있다.³²⁾ 2021년 대한갑상선영상의학회와 2024년 대한갑상선학회의 권고안에서는 높은의심(K-TIRADS 5) 소견을 보이는 결절에서 1 cm를 초과하는 경우에 병리 진단검사를 시행하도록 하고 있으나, 1 cm 이하의 결절 에서도 육안적 갑상선주위조직 침범이 의심되는 경우에 는 병리진단검사를 권고하며, 치료 결정이 필요한 0.5 cm 초과 1 cm 이하 크기의 높은의심 결절에서는 고위험 갑상선암 소견이 없더라도 선택적으로 병리진단검사를 시행하도록 권고하고 있어,340 실제 임상에서는 다수의 0.5 cm 초과 1 cm 이하 크기의 높은의심 결절에서 병리 진단검사가 이루어지고 있다.

그러나 그 외의 여러 나라 권고안에서는 초음파상 악 성의심 소견이 있더라도 결절의 크기가 1 cm 이상일 경 우에만 병리진단검사를 권고하고, 36,38) 1 cm 미만의 결절 에 대해 세포병리학적 진단 없이 적극적 관찰을 시행할 것을 제안하고 있다.^{36,37)} 최근에는 초음파상 높은의심 결 절의 경우에도 세포병리학적 진단 없이 안전하게 적극 적 관찰을 시행할 수 있음이 국내 연구를 포함한 후향적 연구결과에서 보고되기도 하였다. [87,188] 그러므로 2024년 대한갑상선영상의학회에서는 환자의 선호도를 고려하 여 초음파에서 0.5 cm 초과 1 cm 이하 크기의 높은의심 결절에 대해 병리진단검사 없이 적극적 관찰하는 것을 고려하도록 권고하였으며, 본 권고안에도 이를 수용하 고 있다. 그러나, 실제 임상 진료에서 이를 보다 활발하 게 적용할 수 있도록, 병리진단검사 없이 적극적 관찰을 시행한 경우의 임상 경과에 대한 전향적 연구와 공유의 사결정을 통해 방침을 결정할 수 있는 의료기반의 구축 이 필요하다.

맺음말

적극적 관찰은 저위험 미세갑상선유두암의 유효한 치 료 전략 중 하나로 자리매김하고 있다. 대한갑상선학회 는 2016년 갑상선결절 및 암 진료권고안부터 저위험 미 세갑상선유두암에서 적극적 관찰을 고려할 수 있음을 기술하였다. 21) 그러나 의사들이 적극적 관찰을 저위험 갑상선암의 치료 전략으로 인식하는 것과 실제 진료에 적용하는 것 사이에는 괴리가 있다. (**) 의사들은 적극적 관찰 시행의 장애물로, 환자의 적극적 관찰에 대한 거부 감, 환자가 추적 소실될 우려, 환자 자신의 걱정 및 불안 감, 법적 분쟁 가능성, 기약 없는 추적 관찰 기간 등을 제시하였다. (**) 환자들은 적극적 관찰에 대한 정보 부족, 암이 진행할 가능성, 치료 방법 선택 자체에 대한 어려움, 암을 가지고 살아간다는 것에 대한 부정적 감정과 정서적 고통, 정기적인 병원 방문과 이에 따른 의료비지출에 부담을 느낀다. (**) 따라서 적극적 관찰을 진료 현장에 적절히 적용하기 위해서는, 앞서 언급한 장애 요인들을 해소하기 위한 다각적인 노력이 필요하다.

이의 일환으로 대한갑상선학회에서는 본 권고안을 개발하여 저위험 미세갑상선유두암의 치료 방침에 대해 환자와 공유의사결정을 할 수 있도록 객관적인 정보를 제공하고자 하였다. 즉, 적극적 관찰이 적합한 종양 및 환자의 특성, 수술과 적극적 관찰 중 선택 시 고려할 사항, 적극적 관찰 중 시행해야 할 추적검사, 암의 진행 기준 및 수술 적응증 등에 대해 구체적으로 제시하였다. 이를 통해 본 권고안이 진료 현장에서 저위험 갑상선암의 치료 방침을 결정하는 데 실질적인 도움을 주고, 미세 갑상선유두암 환자의 예후와 삶의 질을 향상시키며, 갑 상선암의 과잉진단과 과잉치료에 대한 의료 사회적 논란 해소에 기여하기를 기대한다.

중심 단어: 적극적 관찰, 한국, 권고안, 미세갑상선유두암, 갑상 선암.

Acknowledgments

핵심질문 선정부터 권고안 도출까지 상세하게 검토해주신 방법론 전문가 최미영 박사와 행정적 도움을 주신 대한갑상선학회 이재은 실장에게 감사를 표합니다. 본권고안은 국가암진료가이드라인 연구사업(Grant Number 2112570)과 보건복지부의 환자-의사가 함께하는 의사결정 모형개발 및 실증연구 사업단 보건의료기술연구개발 사업의 지원으로 이루어졌습니다(RS-2023-KH142322).

Conflicts of Interest

No potential conflict of interest relevant to this article was reported.

Orcid

Eun Kyung Lee: https://orcid.org/0000-0003-0098-0873 Min Joo Kim: https://orcid.org/0000-0002-9765-9340 Seung Heon Kang: https://orcid.org/0000-0001-6569-825X Bon Seok Koo: https://orcid.org/0000-0002-5928-0006 Kyungsik Kim: https://orcid.org/0000-0001-9007-7025 Mijin Kim: https://orcid.org/0000-0002-1538-8859 Bo Hyun Kim: https://orcid.org/0000-0001-9632-9457 Ji-hoon Kim: https://orcid.org/0000-0002-6349-6950 Shin Je Moon: https://orcid.org/0000-0003-3298-3630 Kyorim Back: https://orcid.org/0000-0001-9160-3541 Young Shin Song: https://orcid.org/0000-0003-4603-1999 Jong-hyuk Ahn: https://orcid.org/0000-0003-0187-9777 Hwa Young Ahn: https://orcid.org/0000-0002-2737-6759 Ho-Ryun Won: https://orcid.org/0000-0002-5135-2474 Won Sang Yoo: https://orcid.org/0000-0002-2314-4184 Min Kyoung Lee: https://orcid.org/0000-0003-3172-3159 Jeongmin Lee: https://orcid.org/0000-0001-9074-8087 Ji Ye Lee: https://orcid.org/0000-0002-3929-6254 Kyoung Yeon Jung: https://orcid.org/0000-0003-4029-6312 Chan Kwon Jung: https://orcid.org/0000-0001-6843-3708 Yoon Young Cho: https://orcid.org/0000-0002-4599-2889 Dong-Jun Lim: https://orcid.org/0000-0003-0995-6482 Sun Wook Kim: https://orcid.org/0000-0002-6858-3439 Young Joo Park: https://orcid.org/0000-0002-3671-6364 Dong Gyu Na: https://orcid.org/0000-0001-6422-1652 Jee Soo Kim: https://orcid.org/0000-0003-0006-1834

References

- Lim H, Devesa SS, Sosa JA, Check D, Kitahara CM. Trends in thyroid cancer incidence and mortality in the United States, 1974-2013. JAMA 2017;317(13):1338-48.
- Ferlay J, Ervik M, Lam F, Laversanne M, Colombet M, Mery L, et al. Global cancer observatory: cancer today. Lyon, France: International Agency for Research on Cancer. 2024. [cited May 9, 2025] Available from: https://gco.iarc.who.int/ today.
- Park EH, Jung KW, Park NJ, Kang MJ, Yun EH, Kim HJ, et al. Cancer statistics in Korea: incidence, mortality, survival, and prevalence in 2022. Cancer Res Treat 2025;57(2):312-30.
- 4) Choi YM, Lee J, Kwak MK, Jeon MJ, Kim TY, Hong EG, et al. Recent changes in the incidence of thyroid cancer in Korea between 2005 and 2018: analysis of Korean national data. Endocrinol Metab (Seoul) 2022;37(5):791-9.
- 5) Megwalu UC, Moon PK. Thyroid cancer incidence and

- mortality trends in the United States: 2000-2018. Thyroid 2022:32(5):560-70.
- 6) Ahn HS, Kim HJ, Welch HG. Korea's thyroid-cancer "epidemic"--screening and overdiagnosis. N Engl J Med 2014; 371(19):1765-7.
- Vaccarella S, Franceschi S, Bray F, Wild CP, Plummer M, Dal Maso L. Worldwide thyroid-cancer epidemic? The increasing impact of overdiagnosis. N Engl J Med 2016;375(7): 614-7
- 8) Cho YY, Lee CR, Kang HC, Koo BS, Kwon H, Kim SW, et al. Korean Thyroid Association guidelines on the management of differentiated thyroid cancers; Part I. Initial management of differentiated thyroid cancers Chapter 2. Surgical management of thyroid cancer 2024. Int J Thyroidol 2024;17(1):30-52.
- 9) Mehanna H, Al-Maqbili T, Carter B, Martin E, Campain N, Watkinson J, et al. Differences in the recurrence and mortality outcomes rates of incidental and nonincidental papillary thyroid microcarcinoma: a systematic review and meta-analysis of 21 329 person-years of follow-up. J Clin Endocrinol Metab 2014;99(8):2834-43.
- Wada N, Duh QY, Sugino K, Iwasaki H, Kameyama K, Mimura T, et al. Lymph node metastasis from 259 papillary thyroid microcarcinomas: frequency, pattern of occurrence and recurrence, and optimal strategy for neck dissection. Ann Surg 2003;237(3):399-407.
- 11) Mercante G, Frasoldati A, Pedroni C, Formisano D, Renna L, Piana S, et al. Prognostic factors affecting neck lymph node recurrence and distant metastasis in papillary microcarcinoma of the thyroid: results of a study in 445 patients. Thyroid 2009; 19(7):707-16.
- 12) Zhou YL, Gao EL, Zhang W, Yang H, Guo GL, Zhang XH, et al. Factors predictive of papillary thyroid micro-carcinoma with bilateral involvement and central lymph node metastasis: a retrospective study. World J Surg Oncol 2012; 10:67.
- 13) Besic N, Zgajnar J, Hocevar M, Petric R. Extent of thyroidectomy and lymphadenectomy in 254 patients with papillary thyroid microcarcinoma: a single-institution experience. Ann Surg Oncol 2009;16(4):920-8.
- 14) Ito Y, Uruno T, Nakano K, Takamura Y, Miya A, Kobayashi K, et al. An observation trial without surgical treatment in patients with papillary microcarcinoma of the thyroid. Thyroid 2003;13(4):381-7.
- 15) Takami H, Ito Y, Okamoto T, Yoshida A. Therapeutic strategy for differentiated thyroid carcinoma in Japan based on a newly established guideline managed by Japanese Society of Thyroid Surgeons and Japanese Association of Endocrine Surgeons. World J Surg 2011;35(1):111-21.
- 16) Kim MJ, Moon JH, Lee EK, Song YS, Jung KY, Lee JY, et al. Active surveillance for low-risk thyroid cancers: a review of current practice guidelines. Endocrinol Metab (Seoul) 2024;39(1):47-60.
- 17) Moon JH, Kim JH, Lee EK, Lee KE, Kong SH, Kim YK, et al. Study protocol of multicenter prospective cohort study of active surveillance on papillary thyroid microcarcinoma (MAeSTro). Endocrinol Metab (Seoul) 2018;33(2):278-86.
- 18) Jeon MJ, Kang YE, Moon JH, Lim DJ, Lee CY, Lee YS,

- et al. Protocol for a Korean multicenter prospective cohort study of active surveillance or surgery (KoMPASS) in papillary thyroid microcarcinoma. Endocrinol Metab (Seoul) 2021;36(2): 359-64.
- 19) Lee EK, Moon JH, Hwangbo Y, Ryu CH, Cho SW, Choi JY, et al. Progression of low-risk papillary thyroid micro-carcinoma during active surveillance: interim analysis of a multicenter prospective cohort study of active surveillance on papillary thyroid microcarcinoma in Korea. Thyroid 2022; 32(11):1328-36.
- 20) Lee JY, Kim JH, Kim YK, Lee CY, Lee EK, Moon JH, et al. US predictors of papillary thyroid microcarcinoma progression at active surveillance. Radiology 2023;309(1):e230006.
- 21) Yi KH, Lee EK, Kang HC, Kim SW, Kim IJ, Park SY, et al. 2016 Revised Korean Thyroid Association management guidelines for patients with thyroid nodules and thyroid cancer. Int J Thyroidol 2016;9(2):59-126.
- 22) Yoon JH, Choi W, Park JY, Hong AR, Kim HK, Kang HC. Active surveillance for low-risk papillary thyroid carcinoma as an acceptable management option with additional benefits: a comprehensive systematic review. Endocrinol Metab (Seoul) 2024;39(1):152-63.
- 23) Park YJ, Lee EK, Song YS, Kang SH, Koo BS, Kim SW, et al. 2023 Korean Thyroid Association management guidelines for patients with thyroid nodules. Int J Thyroidol 2023;16(1): 1-31.
- 24) Tuttle RM, Fagin JA, Minkowitz G, Wong RJ, Roman B, Patel S, et al. Natural history and tumor volume kinetics of papillary thyroid cancers during active surveillance. JAMA Otolaryngol Head Neck Surg 2017;143(10):1015-20.
- 25) Ho AS, Kim S, Zalt C, Melany ML, Chen IE, Vasquez J, et al. Expanded parameters in active surveillance for low-risk papillary thyroid carcinoma: a nonrandomized controlled trial. IAMA Oncol 2022:8(11):1588-96.
- 26) Sawka AM, Ghai S, Rotstein L, Irish JC, Pasternak JD, Gullane PJ, et al. A quantitative analysis examining patients' choice of active surveillance or surgery for managing low-risk papillary thyroid cancer. Thyroid 2022;32(3):255-62.
- 27) Sanabria A. Experience with active surveillance of thyroid low-risk carcinoma in a developing country. Thyroid 2020; 30(7):985-91.
- 28) Smulever A, Pitoia F. Active surveillance in papillary thyroid carcinoma: not easily accepted but possible in Latin America. Arch Endocrinol Metab 2019;63(5):462-9.
- 29) Kim MJ, Moon JH, Lee EK, Song YS, Jung KY, Lee JY, et al. A national survey of physicians regarding active surveillance for low-risk thyroid cancer in Korea. Eur Thyroid J 2025;14(1):e240281.
- 30) Helfand M, Balshem H. Principles in developing and applying guidance. In: Methods guide for effectiveness and comparative effectiveness reviews. Rockville (MD): Agency for Healthcare Research and Quality (US); 2008.
- 31) Lee JY, Lee MK, Lim HK, Lee CY, Sung JY, Yoon JH, et al. Standardized ultrasound evaluation for active surveillance of low-risk thyroid microcarcinoma in adults: 2024 Korean Society of Thyroid Radiology consensus statement. Korean J Radiol 2024;25(11):942-58.

- 32) Sugitani I, Ito Y, Takeuchi D, Nakayama H, Masaki C, Shindo H, et al. Indications and strategy for active surveillance of adult low-risk papillary thyroid microcarcinoma: consensus statements from the Japan Association of Endocrine Surgery task force on management for papillary thyroid microcarcinoma. Thyroid 2021;31(2):183-92.
- 33) Sanabria A, Ferraz C, Ku CHC, Padovani R, Palacios K, Paz JL, et al. Implementing active surveillance for low-risk thyroid carcinoma into clinical practice: collaborative recommendations for Latin America. Arch Endocrinol Metab 2024;68:e230371.
- 34) Ha EJ, Chung SR, Na DG, Ahn HS, Chung J, Lee JY, et al. 2021 Korean thyroid imaging reporting and data system and imaging-based management of thyroid nodules: Korean Society of Thyroid Radiology consensus statement and recommendations. Korean J Radiol 2021;22(12):2094-123.
- 35) Park YJ, Lee EK, Song YS, Kang SH, Koo BS, Kim SW, et al. Korean Thyroid Association management guidelines for patients with thyroid nodules 2024. Int J Thyroidol 2024;17(1):208-44.
- 36) Durante C, Hegedus L, Czarniecka A, Paschke R, Russ G, Schmitt F, et al. 2023 European Thyroid Association Clinical Practice Guidelines for thyroid nodule management. Eur Thyroid J 2023;12(5):e230067.
- 37) Do Cao C, Haissaguerre M, Lussey-Lepoutre C, Donatini G, Raverot V, Russ G. SFE-AFCE-SFMN 2022 Consensus on the management of thyroid nodules: initial work-up for thyroid nodules. Ann Endocrinol (Paris) 2022;83(6):380-8.
- 38) Haugen BR, Alexander EK, Bible KC, Doherty GM, Mandel SJ, Nikiforov YE, et al. 2015 American Thyroid Association management guidelines for adult patients with thyroid nodules and differentiated thyroid cancer: the American Thyroid Association Guidelines task force on thyroid nodules and differentiated thyroid cancer. Thyroid 2016;26(1):1-133.
- 39) Zhang C, Li Y, Li J, Chen X. Total thyroidectomy versus lobectomy for papillary thyroid cancer: a systematic review and meta-analysis. Medicine (Baltimore) 2020;99(6):e19073.
- 40) Miyauchi A, Kudo T, Ito Y, Oda H, Sasai H, Higashiyama T, et al. Estimation of the lifetime probability of disease progression of papillary microcarcinoma of the thyroid during active surveillance. Surgery 2018;163(1):48-52.
- 41) Randolph GW, Duh QY, Heller KS, LiVolsi VA, Mandel SJ, Steward DL, et al. The prognostic significance of nodal metastases from papillary thyroid carcinoma can be stratified based on the size and number of metastatic lymph nodes, as well as the presence of extranodal extension. Thyroid 2012; 22(11):1144-52.
- 42) Expert Panel on Neurological Imaging; Hoang JK, Oldan JD, Mandel SJ, Policeni B, Agarwal V, et al. ACR Appropriateness Criteria((R)) thyroid disease. J Am Coll Radiol 2019;16(5S):S300-14.
- 43) Lee JY, Baek JH, Ha EJ, Sung JY, Shin JH, Kim JH, et al. 2020 Imaging guidelines for thyroid nodules and differentiated thyroid cancer: Korean Society of Thyroid Radiology. Korean J Radiol 2021;22(5):840-60.
- 44) Ha EJ, Lim HK, Yoon JH, Back JH, Do KH, Choi M, et al. Primary imaging test and appropriate biopsy methods for

- thyroid nodules: guidelines by Korean Society of Radiology and National Evidence-Based Healthcare Collaborating Agency. Korean J Radiol 2018;19(4):623-31.
- 45) Lee MK, Na DG, Joo L, Lee JY, Ha EJ, Kim JH, et al. Standardized imaging and reporting for thyroid ultrasound: Korean Society of Thyroid Radiology consensus statement and recommendation. Korean J Radiol 2023;24(1):22-30.
- 46) Suh CH, Baek JH, Choi YJ, Lee JH. Performance of CT in the preoperative diagnosis of cervical lymph node metastasis in patients with papillary thyroid cancer: a systematic review and meta-analysis. AJNR Am J Neuroradiol 2017;38(1):154-61.
- 47) Kim E, Park JS, Son KR, Kim JH, Jeon SJ, Na DG. Preoperative diagnosis of cervical metastatic lymph nodes in papillary thyroid carcinoma: comparison of ultrasound, computed tomography, and combined ultrasound with computed tomography. Thyroid 2008;18(4):411-8.
- 48) Ahn JE, Lee JH, Yi JS, Shong YK, Hong SJ, Lee DH, et al. Diagnostic accuracy of CT and ultrasonography for evaluating metastatic cervical lymph nodes in patients with thyroid cancer. World J Surg 2008;32(7):1552-8.
- 49) Lee Y, Kim JH, Baek JH, Jung SL, Park SW, Kim J, et al. Value of CT added to ultrasonography for the diagnosis of lymph node metastasis in patients with thyroid cancer. Head Neck 2018;40(10):2137-48.
- 50) Jeon YH, Lee JY, Yoo RE, Rhim JH, Lee KH, Choi KS, et al. Validation of ultrasound and computed tomography-based risk stratification system and biopsy criteria for cervical lymph nodes in preoperative patients with thyroid cancer. Korean J Radiol 2023;24(9):912-23.
- 51) Yoo RE, Kim JH, Hwang I, Kang KM, Yun TJ, Choi SH, et al. Added value of computed tomography to ultrasonography for assessing LN metastasis in preoperative patients with thyroid cancer: node-by-node correlation. Cancers (Basel) 2020;12(5): 1190
- 52) Jeong SY, Chung SR, Baek JH, Choi YJ, Kim S, Sung TY, et al. Impact of additional preoperative computed tomography imaging on staging, surgery, and postsurgical survival in patients with papillary thyroid carcinoma. Korean J Radiol 2023; 24(12):1284-92.
- 53) Lee DH, Kim YK, Yu HW, Choi JY, Park SY, Moon JH. Computed tomography for detecting cervical lymph node metastasis in patients who have papillary thyroid microcarcinoma with tumor characteristics appropriate for active surveillance. Thyroid 2019;29(11):1653-9.
- 54) Lee JY, Jo K, Kang HC, Kim SW, Park YJ, Bang JI, et al. Korean Thyroid Association guidelines on the management of differentiated thyroid cancers; Part I. Initial management of differentiated thyroid cancers - Chapter 1. Preoperative imaging and diagnostic evaluation in thyroid cancer 2024. Int J Thyroidol 2024;17(1):21-9.
- 55) Jeon SJ, Kim E, Park JS, Son KR, Baek JH, Kim YS, et al. Diagnostic benefit of thyroglobulin measurement in fine-needle aspiration for diagnosing metastatic cervical lymph nodes from papillary thyroid cancer: correlations with US features. Korean J Radiol 2009;10(2):106-11.
- Cignarelli M, Ambrosi A, Marino A, Lamacchia O, Campo M, Picca G, et al. Diagnostic utility of thyroglobulin detection

- in fine-needle aspiration of cervical cystic metastatic lymph nodes from papillary thyroid cancer with negative cytology. Thyroid 2003;13(12):1163-7.
- 57) Chung SR, Baek JH, Choi YJ, Sung TY, Song DE, Kim TY, et al. Diagnostic algorithm for metastatic lymph nodes of differentiated thyroid carcinoma. Cancers (Basel) 2021;13(6): 1338.
- 58) Chung J, Kim EK, Lim H, Son EJ, Yoon JH, Youk JH, et al. Optimal indication of thyroglobulin measurement in fine-needle aspiration for detecting lateral metastatic lymph nodes in patients with papillary thyroid carcinoma. Head Neck 2014;36(6):795-801.
- 59) Sun J, Li P, Chen X, Yu Q, Li L. The influence of thyroid status, serum Tg, TSH, and TgAb on FNA-Tg in cervical metastatic lymph nodes of papillary thyroid carcinoma. Laryngoscope Investig Otolaryngol 2022;7(1):274-82.
- 60) Sigstad E, Heilo A, Paus E, Holgersen K, Groholt KK, Jorgensen LH, et al. The usefulness of detecting thyroglobulin in fine-needle aspirates from patients with neck lesions using a sensitive thyroglobulin assay. Diagn Cytopathol 2007;35(12): 761-7.
- 61) Kim MJ, Kim EK, Kim BM, Kwak JY, Lee EJ, Park CS, et al. Thyroglobulin measurement in fine-needle aspirate washouts: the criteria for neck node dissection for patients with thyroid cancer. Clin Endocrinol (Oxf) 2009;70(1):145-51.
- 62) Moon JH, Kim YI, Lim JA, Choi HS, Cho SW, Kim KW, et al. Thyroglobulin in washout fluid from lymph node fine-needle aspiration biopsy in papillary thyroid cancer: large-scale validation of the cutoff value to determine malignancy and evaluation of discrepant results. J Clin Endocrinol Metab 2013;98(3):1061-8.
- 63) Duval M, Zanella AB, Cristo AP, Faccin CS, Graudenz MS, Maia AL. Impact of serum TSH and anti-thyroglobulin antibody levels on lymph node fine-needle aspiration thyroglobulin measurements in differentiated thyroid cancer patients. Eur Thyroid J 2017;6(6):292-7.
- 64) Jeon MJ, Kim WG, Choi YM, Kwon H, Lee YM, Sung TY, et al. Features predictive of distant metastasis in papillary thyroid microcarcinomas. Thyroid 2016;26(1):161-8.
- 65) Kawano S, Miyauchi A, Ito Y. Routine chest computed tomography at presentation does not identify distant metastasis in cT1aN0 papillary thyroid carcinoma. Thyroid 2020;30(11): 1620-4
- 66) Miyauchi A, Ito Y, Fujishima M, Miya A, Onoda N, Kihara M, et al. Long-term outcomes of active surveillance and immediate surgery for adult patients with low-risk papillary thyroid microcarcinoma: 30-year experience. Thyroid 2023; 33(7):817-25.
- 67) Pusztaszeri M, Auger M. Update on the cytologic features of papillary thyroid carcinoma variants. Diagn Cytopathol 2017; 45(8):714-30.
- 68) Canberk S, Montezuma D, Ince U, Tastekin E, Soares P, Bongiovanni M, et al. Variants of papillary thyroid carcinoma: an algorithmic cytomorphology-based approach to cytology specimens. Acta Cytol 2020;64(4):288-98.
- 69) Lee SH, Jung CK, Bae JS, Jung SL, Choi YJ, Kang CS. Liquid-based cytology improves preoperative diagnostic accuracy

- of the tall cell variant of papillary thyroid carcinoma. Diagn Cytopathol 2014;42(1):11-7.
- 70) Rossi ED, Faquin WC, Pantanowitz L. Cytologic features of aggressive variants of follicular-derived thyroid carcinoma. Cancer Cytopathol 2019;127(7):432-46.
- 71) Harahap AS, Jung CK. Cytologic hallmarks and differential diagnosis of papillary thyroid carcinoma subtypes. J Pathol Transl Med 2024;58(6):265-82.
- 72) Miyauchi A, Kudo T, Hirokawa M, Ito Y, Kihara M, Higashiyama T, et al. Ki-67 labeling index is a predictor of postoperative persistent disease and cancer growth and a prognostic indicator in papillary thyroid carcinoma. Eur Thyroid J 2013;2(1):57-64.
- 73) Kim JY, Kim KJ, Bae JH, Kim JH, Kim NH, Kim HY, et al. Null association between BRAF V600E mutation and tumor recurrence in patients with papillary thyroid microcarcinoma in South Korea. Int J Thyroidol 2021;14(2):135-42.
- 74) Yip L, Nikiforova MN, Yoo JY, McCoy KL, Stang MT, Armstrong MJ, et al. Tumor genotype determines phenotype and disease-related outcomes in thyroid cancer: a study of 1510 patients. Ann Surg 2015;262(3):519-25; discussion 24-5.
- 75) Yip L, Gooding WE, Nikitski A, Wald AI, Carty SE, Karslioglu-French E, et al. Risk assessment for distant metastasis in differentiated thyroid cancer using molecular profiling: a matched case-control study. Cancer 2021;127(11):
- 76) Mu Z, Zhang X, Sun D, Sun Y, Shi C, Ju G, et al. Characterizing genetic alterations related to radioiodine avidity in metastatic thyroid cancer. J Clin Endocrinol Metab 2024;
- 77) Yang J, Gong Y, Yan S, Chen H, Qin S, Gong R. Association between TERT promoter mutations and clinical behaviors in differentiated thyroid carcinoma: a systematic review and meta-analysis. Endocrine 2020;67(1):44-57.
- 78) Kim SY, Jung CK. Frequency of TERT promoter mutations in real-world analysis of 2,092 thyroid carcinoma patients (Endocrinol Metab 2022;37:652-63, Heera Yang et al.). Endocrinol Metab (Seoul) 2022;37(6):947-8.
- 79) Yang H, Park H, Ryu HJ, Heo J, Kim JS, Oh YL, et al. Frequency of TERT promoter mutations in real-world analysis of 2,092 thyroid carcinoma patients. Endocrinol Metab (Seoul) 2022;37(4):652-63.
- 80) Kim SY, Kim T, Kim K, Bae JS, Kim JS, Jung CK. Highly prevalent BRAF V600E and low-frequency TERT promoter mutations underlie papillary thyroid carcinoma in Koreans. J Pathol Transl Med 2020;54(4):310-7.
- 81) Choi YS, Choi SW, Yi JW. Prospective analysis of TERT promoter mutations in papillary thyroid carcinoma at a single institution. J Clin Med 2021;10(10):2179.
- 82) Lee J, Ha EJ, Roh J, Kim HK. Presence of TERT +/- BRAF V600E mutation is not a risk factor for the clinical management of patients with papillary thyroid microcarcinoma. Surgery 2021;170(3):743-7.
- 83) Chung SR, Baek JH, Choi YJ, Sung TY, Song DE, Kim TY, et al. Sonographic assessment of the extent of extrathyroidal extension in thyroid cancer. Korean J Radiol 2020;21(10): 1187-95.

- 84) Jeong SY, Chung SR, Back JH, Choi YJ, Sung TY, Song DE, et al. Sonographic assessment of minor extrathyroidal extension of papillary thyroid microcarcinoma involving the posterior thyroid capsule. Eur Radiol 2022;32(9):6090-6.
- 85) Ito Y, Miyauchi A, Oda H, Kobayashi K, Kihara M, Miya A. Revisiting low-risk thyroid papillary microcarcinomas resected without observation: was immediate surgery necessary? World J Surg 2016;40(3):523-8.
- 86) Lee JY, Yoo RE, Rhim JH, Lee KH, Choi KS, Hwang I, et al. Validation of ultrasound risk stratification systems for cervical lymph node metastasis in patients with thyroid cancer. Cancers (Basel) 2022;14(9):2106.
- 87) Leboulleux S, Girard E, Rose M, Travagli JP, Sabbah N, Caillou B, et al. Ultrasound criteria of malignancy for cervical lymph nodes in patients followed up for differentiated thyroid cancer. J Clin Endocrinol Metab 2007;92(9):3590-4.
- 88) Liu LS, Liang J, Li JH, Liu X, Jiang L, Long JX, et al. The incidence and risk factors for central lymph node metastasis in cN0 papillary thyroid microcarcinoma: a meta-analysis. Eur Arch Otorhinolaryngol 2017;274(3):1327-38.
- 89) Brito JP, Ito Y, Miyauchi A, Tuttle RM. A clinical framework to facilitate risk stratification when considering an active surveillance alternative to immediate biopsy and surgery in papillary microcarcinoma. Thyroid 2016;26(1):144-9.
- 90) Park M, Park SH, Kim EK, Yoon JH, Moon HJ, Lee HS, et al. Heterogeneous echogenicity of the underlying thyroid parenchyma: how does this affect the analysis of a thyroid nodule? BMC Cancer 2013;13:550.
- 91) Kim HI, Jang HW, Ahn HS, Ahn S, Park SY, Oh YL, et al. High serum TSH level is associated with progression of papillary thyroid microcarcinoma during active surveillance. J Clin Endocrinol Metab 2018;103(2):446-51.
- 92) Nagaoka R, Ebina A, Toda K, Jikuzono T, Saitou M, Sen M, et al. Multifocality and progression of papillary thyroid microcarcinoma during active surveillance. World J Surg 2021;45(9):2769-76.
- 93) Oh HS, Ha J, Kim HI, Kim TH, Kim WG, Lim DJ, et al. Active surveillance of low-risk papillary thyroid microcarcinoma: a multi-center cohort study in Korea. Thyroid 2018; 28(12):1587-94.
- 94) Ito Y, Miyauchi A, Fujishima M, Noda T, Sano T, Sasaki T, et al. Thyroid-stimulating hormone, age, and tumor size are risk factors for progression during active surveillance of low-risk papillary thyroid microcarcinoma in adults. World J Surg 2023;47(2):392-401.
- 95) Oh HS, Kwon H, Song E, Jeon MJ, Kim TY, Lee JH, et al. Tumor volume doubling time in active surveillance of papillary thyroid carcinoma. Thyroid 2019;29(5):642-9.
- 96) Ito Y, Miyauchi A, Kihara M, Higashiyama T, Kobayashi K, Miya A. Patient age is significantly related to the progression of papillary microcarcinoma of the thyroid under observation. Thyroid 2014;24(1):27-34.
- 97) Yamamoto M, Miyauchi A, Ito Y, Fujishima M, Sasaki T, Kudo T. Active surveillance outcomes of patients with low-risk papillary thyroid microcarcinoma according to levothyroxine treatment status. Thyroid 2023;33(10):1182-9.
- 98) Kim HI, Jin M, Ko NG, Oh YL, Shin JH, Kim JH, et al.

- Effect of TSH levels during active surveillance of PTMC according to age. Endocr Relat Cancer 2022;29(4):191-200.
- Filetti S, Durante C, Hartl D, Leboulleux S, Locati LD, Newbold K, et al. Thyroid cancer: ESMO clinical practice guidelines for diagnosis, treatment and follow-updagger. Ann Oncol 2019;30(12):1856-83.
- 100) Ward LS, Scheffel RS, Hoff AO, Ferraz C, Vaisman F. Treatment strategies for low-risk papillary thyroid carcinoma: a position statement from the Thyroid Department of the Brazilian Society of Endocrinology and Metabolism (SBEM). Arch Endocrinol Metab 2022;66(4):522-32.
- 101) Uchino S, Noguchi S, Kawamoto H, Yamashita H, Watanabe S, Yamashita H, et al. Familial nonmedullary thyroid carcinoma characterized by multifocality and a high recurrence rate in a large study population. World J Surg 2002;26(8):897-902.
- 102) Capezzone M, Secchi C, Fralassi N, Cantara S, Brilli L, Ciuoli C, et al. Should familial disease be considered as a negative prognostic factor in micropapillary thyroid carcinoma? J Endocrinol Invest 2019;42(10):1205-13.
- 103) Ito Y, Kakudo K, Hirokawa M, Fukushima M, Yabuta T, Tomoda C, et al. Biological behavior and prognosis of familial papillary thyroid carcinoma. Surgery 2009;145(1):100-5.
- 104) Kung AW, Chau MT, Lao TT, Tam SC, Low LC. The effect of pregnancy on thyroid nodule formation. J Clin Endocrinol Metab 2002;87(3):1010-4.
- 105) Shindo H, Amino N, Ito Y, Kihara M, Kobayashi K, Miya A, et al. Papillary thyroid microcarcinoma might progress during pregnancy. Thyroid 2014;24(5):840-4.
- 106) Ito Y, Miyauchi A, Kudo T, Ota H, Yoshioka K, Oda H, et al. Effects of pregnancy on papillary microcarcinomas of the thyroid re-evaluated in the entire patient series at Kuma Hospital. Thyroid 2016;26(1):156-60.
- 107) Oh HS, Kim WG, Park S, Kim M, Kwon H, Jeon MJ, et al. Serial neck ultrasonographic evaluation of changes in papillary thyroid carcinoma during pregnancy. Thyroid 2017; 27(6):773-7.
- 108) Xiao WC, Li X, Shan R, Mei F, Song SB, Chen J, et al. Pregnancy and progression of differentiated thyroid cancer: a propensity score-matched retrospective cohort study. J Clin Endocrinol Metab 2024;109(3):837-43.
- 109) Ahn HY, Kang HC, Kim M, Kim BH, Kim SW, Kim WG, et al. Korean Thyroid Association guidelines on the management of differentiated thyroid cancers; Part IV. Thyroid cancer during pregnancy 2024. Int J Thyroidol 2024;17(1):188-92.
- 110) Apostolou K, Paunovic I, Frountzas M, Zivaljevic V, Tausanovic K, Karanikas M, et al. Posthemithyroidectomy hypothyroidism: updated meta-analysis of risk factors and rates of remission. J Surg Res 2024;293:102-20.
- 111) Kim SY, Kim HJ, Kim SM, Chang H, Lee YS, Chang HS, et al. Thyroid hormone supplementation therapy for differentiated thyroid cancer after lobectomy: 5 years of follow-up. Front Endocrinol (Lausanne) 2020;11:520.
- 112) Lee SJ, Song CM, Ji YB, Choi YY, Sohn YS, Park JH, et al. Risk factors for hypothyroidism and thyroid hormone replacement after hemithyroidectomy in papillary thyroid carcinoma. Langenbecks Arch Surg 2021;406(4):1223-31.

- 113) Ahn D, Lee GJ, Sohn JH. Levothyroxine supplementation following hemithyroidectomy: incidence, risk factors, and characteristics. Ann Surg Oncol 2019;26(13):4405-13.
- 114) Park S, Jeon MJ, Song E, Oh HS, Kim M, Kwon H, et al. Clinical features of early and late postoperative hypothyroidism after lobectomy. J Clin Endocrinol Metab 2017;102(4):1317-24.
- 115) Cox C, Bosley M, Southerland LB, Ahmadi S, Perkins J, Roman S, et al. Lobectomy for treatment of differentiated thyroid cancer: can patients avoid postoperative thyroid hormone supplementation and be compliant with the American Thyroid Association guidelines? Surgery 2018;163(1):75-80.
- 116) Hsiao V, Light TJ, Adil AA, Tao M, Chiu AS, Hitchcock M, et al. Complication rates of total thyroidectomy vs hemithyroidectomy for treatment of papillary thyroid microcarcinoma: a systematic review and meta-analysis. JAMA Otolaryngol Head Neck Surg 2022;148(6):531-9.
- 117) Kim K, Choi JY, Kim SJ, Lee EK, Lee YK, Ryu JS, et al. Active surveillance versus immediate surgery for low-risk papillary thyroid microcarcinoma patients in South Korea: a cost-minimization analysis from the MAeSTro study. Thyroid 2022;32(6):648-56.
- 118) Cho SJ, Suh CH, Baek JH, Chung SR, Choi YJ, Chung KW, et al. Active surveillance for small papillary thyroid cancer: a systematic review and meta-analysis. Thyroid 2019; 29(10):1399-408.
- 119) Koot A, Soares P, Robenshtok E, Locati LD, de la Fouchardiere C, Luster M, et al. Position paper from the Endocrine Task Force of the European Organisation for Research and Treatment of Cancer (EORTC) on the management and shared decision making in patients with low-risk micro papillary thyroid carcinoma. Eur J Cancer 2023;179:98-112.
- 120) Collee GE, van der Wilk BJ, van Lanschot JJB, Busschbach JJ, Timmermans L, Lagarde SM, et al. Interventions that facilitate shared decision-making in cancers with active surveillance as treatment option: a systematic review of literature. Curr Oncol Rep 2020;22(10):101.
- 121) Brito JP, Moon JH, Zeuren R, Kong SH, Kim YG, Iniguez-Ariza NM, et al. Thyroid cancer treatment choice: a pilot study of a tool to facilitate conversations with patients with papillary microcarcinomas considering treatment options. Thyroid 2018;28(10):1325-31.
- 122) Nguyen VC, Song CM, Ji YB, Moon S, Park JH, Kim DS, et al. Outcomes and effectiveness of active surveillance for low-risk papillary thyroid carcinoma: a systematic review and meta-analysis. Eur Arch Otorhinolaryngol 2025;282(5):2239-52.
- 123) Kim CA, Baek SH, Yoo J, Chung SR, Baek JH, Chung KW, et al. Tumor growth kinetics based on initial tumor volume doubling time in active surveillance of low-risk papillary thyroid carcinoma. Thyroid 2024;34(7):846-55.
- 124) Ito Y, Miyauchi A, Inoue H, Fukushima M, Kihara M, Higashiyama T, et al. An observational trial for papillary thyroid microcarcinoma in Japanese patients. World J Surg 2010:34(1):28-35.
- 125) Oda H, Miyauchi A, Ito Y, Yoshioka K, Nakayama A, Sasai H, et al. Incidences of unfavorable events in the management

- of low-risk papillary microcarcinoma of the thyroid by active surveillance versus immediate surgery. Thyroid 2016;26(1):
- 126) Jeon MJ, Kim WG, Kwon H, Kim M, Park S, Oh HS, et al. Clinical outcomes after delayed thyroid surgery in patients with papillary thyroid microcarcinoma. Eur J Endocrinol 2017;177(1):25-31.
- 127) Sakai T, Sugitani I, Ebina A, Fukuoka O, Toda K, Mitani H, et al. Active surveillance for T1bN0M0 papillary thyroid carcinoma. Thyroid 2019;29(1):59-63.
- 128) Sasaki T, Miyauchi A, Fujishima M, Ito Y, Kudo T, Noda T, et al. Comparison of postoperative unfavorable events in patients with low-risk papillary thyroid carcinoma: immediate surgery versus conversion surgery following active surveillance. Thyroid 2023;33(2):186-91
- 129) Liu C, Zhao H, Xia Y, Cao Y, Zhang L, Zhao Y, et al. Active surveillance versus immediate surgery: a comparison of clinical and quality of life outcomes among patients with highly suspicious thyroid nodules 1 cm or smaller in China. Eur J Surg Oncol 2023;49(9):106917.
- 130) Smulever A, Pitoia F. High rate incidence of post-surgical adverse events in patients with low-risk papillary thyroid cancer who did not accept active surveillance. Endocrine 2020;
- 131) Hwang H, Choi JY, Yu HW, Moon JH, Kim JH, Lee EK, et al. Surgical outcomes in patients with low-risk papillary thyroid microcarcinoma from MAeSTro study: immediate operation versus delayed operation after active surveillance. A multicenter prospective cohort study. Ann Surg 2023;278(5):
- 132) Fujishima M, Miyauchi A, Ito Y, Kudo T, Noda T, Sano T, et al. Active surveillance is an excellent management technique for identifying patients with progressive low-risk papillary thyroid microcarcinoma requiring surgical treatment. Endocr J 2023;70(4):411-8.
- 133) Uppal N, Cunningham Nee Lubitz C, James B. The cost and financial burden of thyroid cancer on patients in the US: a review and directions for future research. JAMA Otolaryngol Head Neck Surg 2022;148(6):568-75.
- 134) Youssef MR, Attia AS, Omar M, Aboueisha M, Freeman MN, Shama M, et al. Thyroid lobectomy as a cost-effective approach in low-risk papillary thyroid cancer versus active surveillance. Surgery 2022;171(1):190-6.
- 135) Baek HS, Ha J, Kim K, Bae J, Kim JS, Kim S, et al. Cost-effectiveness of active surveillance compared to early surgery of small papillary thyroid cancer: a retrospective study on a Korean population. J Korean Med Sci 2023;38(34):e264.
- 136) Lang BH, Wong CK. A cost-effectiveness comparison between early surgery and non-surgical approach for incidental papillary thyroid microcarcinoma. Eur J Endocrinol 2015;173(3):367-75.
- 137) Lin JF, Jonker PKC, Cunich M, Sidhu SB, Delbridge LW, Glover AR, et al. Surgery alone for papillary thyroid microcarcinoma is less costly and more effective than long term active surveillance. Surgery 2020;167(1):110-6.
- 138) Oda H, Miyauchi A, Ito Y, Sasai H, Masuoka H, Yabuta T, et al. Comparison of the costs of active surveillance and immediate surgery in the management of low-risk papillary

- microcarcinoma of the thyroid. Endocr J 2017;64(1):59-64.
- 139) Venkatesh S, Pasternak JD, Beninato T, Drake FT, Kluijfhout WP, Liu C, et al. Cost-effectiveness of active surveillance versus hemithyroidectomy for micropapillary thyroid cancer. Surgery 2017;161(1):116-26.
- 140) Kandil E, Noureldine SI, Tufano RP. Thyroidectomy vs active surveillance for subcentimeter papillary thyroid cancers--the cost conundrum. JAMA Otolaryngol Head Neck Surg 2016;142(1): 9-10
- 141) White C, Weinstein MC, Fingeret AL, Randolph GW, Miyauchi A, Ito Y, et al. Is less more? A microsimulation model comparing cost-effectiveness of the revised American Thyroid Association's 2015 to 2009 guidelines for the management of patients with thyroid nodules and differentiated thyroid cancer. Ann Surg 2020;271(4):765-73.
- 142) Jeon MJ, Lee YM, Sung TY, Han M, Shin YW, Kim WG, et al. Quality of life in patients with papillary thyroid microcarcinoma managed by active surveillance or lobectomy: a cross-sectional study. Thyroid 2019;29(7):956-62.
- 143) Kazusaka H, Sugitani I, Toda K, Sen M, Saito M, Nagaoka R, et al. Patient-reported outcomes in patients with low-risk papillary thyroid carcinoma: cross-sectional study to compare active surveillance and immediate surgery. World J Surg 2023; 47(5):1190-8.
- 144) Kong SH, Ryu J, Kim MJ, Cho SW, Song YS, Yi KH, et al. Longitudinal assessment of quality of life according to treatment options in low-risk papillary thyroid microcarcinoma patients: active surveillance or immediate surgery (interim analysis of MAeSTro). Thyroid 2019;29(8):1089-96.
- 145) Li R, Li G, Wang Y, Bao T, Lei Y, Tian L, et al. Psychological distress and sleep disturbance throughout thyroid nodule screening, diagnosis, and treatment. J Clin Endocrinol Metab 2021;106(10):e4221-30.
- 146) Moon JH, Ryu CH, Cho SW, Choi JY, Chung EJ, Hah JH, et al. Effect of initial treatment choice on 2-year quality of life in patients with low-risk papillary thyroid microcarcinoma. J Clin Endocrinol Metab 2021;106(3):724-35.
- 147) Sawka AM, Ghai S, Rotstein L, Irish JC, Pasternak JD, Monteiro E, et al. Decision regret following the choice of surgery or active surveillance for small, low-risk papillary thyroid cancer: a prospective cohort study. Thyroid 2024;34(5): 626-34.
- 148) Seo GT, Urken ML, Wein LE, Saturno MP, Kapustin D, Xing MH, et al. Psychological adjustment to initial treatment for low-risk thyroid cancer: preliminary study. Head Neck 2023;45(2):439-48.
- 149) Yoshida Y, Horiuchi K, Okamoto T. Patients' view on the management of papillary thyroid microcarcinoma: active surveillance or surgery. Thyroid 2020;30(5):681-7.
- 150) Nakamura T, Miyauchi A, Ito Y, Ito M, Kudo T, Tanaka M, et al. Quality of life in patients with low-risk papillary thyroid microcarcinoma: active surveillance versus immediate surgery. Endocr Pract 2020;26(12):1451-7.
- 151) Kim MJ, Won H, Kim WB, Lee EK, Lee CY, Cho SW, et al. Comparison of patient-reported outcomes between active surveillance and immediate lobectomy in patients with low-risk papillary thyroid microcarcinoma: initial findings from the

- KoMPASS cohort. Thyroid 2024;34(11):1371-8.
- 152) Sawka AM, Ghai S, Tomlinson G, Rotstein L, Gilbert R, Gullane P, et al. A protocol for a Canadian prospective observational study of decision-making on active surveillance or surgery for low-risk papillary thyroid cancer. BMJ Open 2018; 8(4):e020298.
- 153) Pacini F, Basolo F, Bellantone R, Boni G, Cannizzaro MA, De Palma M, et al. Italian consensus on diagnosis and treatment of differentiated thyroid cancer: joint statements of six Italian societies. J Endocrinol Invest 2018;41(7):849-76.
- 154) Jarzab B, Dedecjus M, Lewinski A, Adamczewski Z, Bakula-Zalewska E, Baldys-Waligorska A, et al. Diagnosis and treatment of thyroid cancer in adult patients Recommendations of Polish Scientific Societies and the National Oncological Strategy. 2022 Update [Diagnostyka i leczenie raka tarczycy u chorych dorosłych Rekomendacje Polskich Towarzystw Naukowych oraz Narodowej Strategii Onkologicznej. Aktualizacja na rok 2022]. Endokrynol Pol 2022;73(2):173-300.
- 155) Leboulleux S, Lamartina L, Lecornet Sokol E, Menegaux F, Leenhardt L, Russ G. SFE-AFCE-SFMN 2022 Consensus on the management of thyroid nodules: follow-up: how and how long? Ann Endocrinol (Paris) 2022;83(6):407-14.
- 156) Ghai S, O'Brien C, Goldstein DP, Sawka AM, Canadian Thyroid Cancer Active Surveillance Study Group. *Ultrasound* in active surveillance for low-risk papillary thyroid cancer: imaging considerations in case selection and disease surveillance. *Insights Imaging* 2021;12(1):130.
- 157) Choi YJ, Baek JH, Hong MJ, Lee JH. Inter-observer variation in ultrasound measurement of the volume and diameter of thyroid nodules. Korean J Radiol 2015;16(3):560-5.
- 158) Lee HJ, Yoon DY, Seo YL, Kim JH, Baek S, Lim KJ, et al. Intraobserver and interobserver variability in ultrasound measurements of thyroid nodules. J Ultrasound Med 2018;37(1): 173-8.
- 159) Tessler FN, Middleton WD, Grant EG, Hoang JK, Berland LL, Teefey SA, et al. ACR Thyroid Imaging, Reporting and Data System (TI-RADS): white paper of the ACR TI-RADS committee. J Am Coll Radiol 2017;14(5):587-95.
- 160) Horiguchi K, Yoshida Y, Iwaku K, Emoto N, Kasahara T, Sato J, et al. Position paper from the Japan Thyroid Association task force on the management of low-risk papillary thyroid microcarcinoma (T1aN0M0) in adults. Endocr J 2021;68(7): 763-80.
- 161) Jarzab B, Dedecjus M, Slowinska-Klencka D, Lewinski A, Adamczewski Z, Anielski R, et al. Guidelines of Polish National Societies diagnostics and treatment of thyroid carcinoma. 2018 Update. Endokrynol Pol 2018;69(1):34-74.
- 162) Ito Y, Miyauchi A, Kudo T, Higashiyama T, Masuoka H, Kihara M, et al. Kinetic analysis of growth activity in enlarging papillary thyroid microcarcinomas. Thyroid 2019;29(12):1765-73.
- 163) Ito Y, Miyauchi A. A therapeutic strategy for incidentally detected papillary microcarcinoma of the thyroid. Nat Clin Pract Endocrinol Metab 2007;3(3):240-8.
- 164) Chung SR, Choi YJ, Lee SS, Kim SO, Lee SA, Jeon MJ, et al. Interobserver reproducibility in sonographic measurement

- of diameter and volume of papillary thyroid microcarcinoma. Thyroid 2021;31(3):452-8.
- 165) Fukuoka O, Sugitani I, Ebina A, Toda K, Kawabata K, Yamada K. Natural history of asymptomatic papillary thyroid microcarcinoma: time-dependent changes in calcification and vascularity during active surveillance. World J Surg 2016;40(3): 529-37.
- 166) Ito Y, Onoda N, Okamoto T. The revised clinical practice guidelines on the management of thyroid tumors by the Japan Associations of Endocrine Surgeons: core questions and recommendations for treatments of thyroid cancer. Endocr J 2020;67(7):669-717.
- 167) Sugitani I, Fujimoto Y, Yamada K. Association between serum thyrotropin concentration and growth of asymptomatic papillary thyroid microcarcinoma. World J Surg 2014;38(3):673-8.
- 168) Ahmed M, Solbiati L, Brace CL, Breen DJ, Callstrom MR, Charboneau JW, et al. Image-guided tumor ablation: standardization of terminology and reporting criteria--a 10-year update. Radiology 2014;273(1):241-60.
- 169) Kim JH, Baek JH, Lim HK, Ahn HS, Baek SM, Choi YJ, et al. 2017 thyroid radiofrequency ablation guideline: Korean Society of Thyroid Radiology. Korean J Radiol 2018;19(4): 632-55.
- 170) Mauri G, Hegedus L, Bandula S, Cazzato RL, Czarniecka A, Dudeck O, et al. European Thyroid Association and Cardiovascular and Interventional Radiological Society of Europe 2021 clinical practice guideline for the use of minimally invasive treatments in malignant thyroid lesions. Eur Thyroid J 2021;10(3):185-97.
- 171) Chung SR, Suh CH, Baek JH, Park HS, Choi YJ, Lee JH. Safety of radiofrequency ablation of benign thyroid nodules and recurrent thyroid cancers: a systematic review and meta-analysis. Int J Hyperthermia 2017;33(8):920-30.
- 172) Papini E, Guglielmi R, Novizio R, Pontecorvi A, Durante C. Management of low-risk papillary thyroid cancer. Minimally-invasive treatments dictate a further paradigm shift? Endocrine 2024;85(2):584-92.
- 173) Jeong SY, Baek SM, Shin S, Son JM, Kim H, Baek JH. Radiofrequency ablation of low-risk papillary thyroid microcarcinoma: a retrospective cohort study including patients with more than 10 years of follow-up. Thyroid 2025;35(2):143-52.
- 174) Garberoglio R, Aliberti C, Appetecchia M, Attard M, Boccuzzi G, Boraso F, et al. Radiofrequency ablation for thyroid nodules: which indications? The first Italian opinion statement. J Ultrasound 2015;18(4):423-30.
- 175) Orloff LA, Noel JE, Stack BC Jr, Russell MD, Angelos P, Baek JH, et al. Radiofrequency ablation and related ultrasound-guided ablation technologies for treatment of benign and malignant thyroid disease: an international multidisciplinary consensus statement of the American Head and Neck Society Endocrine Surgery Section with the Asia Pacific Society of Thyroid Surgery, Associazione Medici Endocrinologi, British Association of Endocrine and Thyroid Surgeons, European Thyroid Association, Italian Society of Endocrine Surgery Units, Korean Society of Thyroid Radiology, Latin American Thyroid Society, and Thyroid Nodules Therapies Association. Head Neck 2022;44(3):633-60.

- 176) Lee JY, Na DG, Sim JS, Sung JY, Cho SW, Park DJ, et al. A prospective clinical trial of radiofrequency ablation in patients with low-risk unifocal papillary thyroid microcarcinoma favoring active surveillance over surgery. Thyroid 2024; 34(9):1126-36.
- 177) Zhou G, Zhang X, Xu K, Zhang B, Su R, Cai T, et al. Retrospective analysis of the efficacy and safety of ultrasoundguided radiofrequency ablation in the treatment of papillary thyroid microcarcinoma: a follow-up study of continuous postoperative surveillance and large-sample data. Int J Endocrinol 2024;2024:2704087.
- 178) Wang S, Yao N, Guo Z, Mao N, Wu H, Xu F, et al. Efficacy of ultrasound-guided radiofrequency ablation of papillary thyroid microcarcinoma after one year. Asian J Surg 2024;47(1):350-3.
- 179) Li X, Yan L, Xiao J, Li Y, Yang Z, Zhang M, et al. Follow-up strategy of radiofrequency ablation for papillary thyroid microcarcinoma: defining a response-to-ablation system. Eur Radiol 2024:34(2):761-9.
- 180) Jing H, Yan L, Xiao J, Li X, Jiang B, Yang Z, et al. Radiofrequency ablation for capsular-located versus noncapsularlocated papillary thyroid microcarcinoma: a propensity score matching study of 1095 patients. Eur Radiol 2024;34(7): 4716-26.
- 181) Jing H, Yan L, Xiao J, Li X, Jiang B, Yang Z, et al. Radiofrequency ablation for papillary thyroid microcarcinoma with a trachea-adjacent versus trachea-distant location. Int J Hyperthermia 2024;41(1):2270671.
- 182) Gong W, Zhang R, Zhang S, Zhai Y, Zheng C, Zhang D. Comparison between thermal ablation and surgery in low risk papillary thyroid carcinoma: a prospective study. Front Endocrinol (Lausanne) 2024;15:1398208.
- 183) Zheng L, Dou JP, Han ZY, Liu FY, Yu J, Cheng ZG, et al. Microwave ablation for papillary thyroid microcarcinoma with and without US-detected capsule invasion: a multicenter prospective cohort study. Radiology 2023;307(3):e220661.
- 184) Zhao ZL, Wang SR, Kuo J, Cekic B, Liang L, Ghazi HA, et al. 2024 International expert consensus on US-guided thermal ablation for T1N0M0 papillary thyroid cancer. Radiology 2025;315(1):e240347.
- 185) Sun J, Liu X, Zhang Q, Hong Y, Song B, Teng X, et al. Papillary thyroid carcinoma treated with radiofrequency ablation in a patient with hypertrophic cardiomyopathy: a case report. Korean J Radiol 2016;17(4):558-61.
- 186) Mauri G, Sconfienza LM. Image-guided thermal ablation might be a way to compensate for image deriving cancer overdiagnosis. Int J Hyperthermia 2017;33(4):489-90.
- 187) Zhuge L, Huang Z, Cai H, Wang S, Niu L, Li Z. The optimal age threshold for stratifying the risks of disease progression in patients with highly suspicious sub-centimeter thyroid nodules. Ann Surg Oncol 2023;30(9):5463-9.
- 188) Kim CA, Yoo J, Oh HS, Jeon MJ, Chung SR, Baek JH, et al. Undercover active surveillance of small highly suspicious thyroid nodules without fine needle aspiration. Endocrine 2024;84(2):615-24.
- 189) Hughes DT, Reyes-Gastelum D, Ward KC, Hamilton AS, Haymart MR. Barriers to the use of active surveillance for thyroid cancer results of a physician survey. Ann Surg 2022;

- 276(1):e40-7.
- 190) Roman BR, Brito JP, Saucke MC, Lohia S, Jensen CB, Zaborek N, et al. National survey of endocrinologists and surgeons regarding active surveillance for low-risk papillary thyroid cancer. Endocr Pract 2021;27(1):1-7.
- 191) Zhu P, Zhang Q, Wu Q, Shi G, Wang W, Xu H, et al. Barriers and facilitators to the choice of active surveillance for low-risk papillary thyroid cancer in China: a qualitative study examining patient perspectives. Thyroid 2023;33(7):826-34.