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Timely detection of abnormal cardiotocography (CTG) during labor plays a crucial role in enhancing 
fetal prognosis. Recent research has explored the use of deep learning for CTG interpretation, most 
studies rely on small, localized datasets or focus on outcomes less relevant to clinical practice. To 
address these limitations, we developed a clinically applicable model using a large-scale, nationwide 
CTG dataset with reliable annotations provided by a board-certified obstetrician. Our study utilized 
22,522 deliveries from 14 hospitals, each including cardiotocography (CTG) recordings of up to 75 min 
in length. The CTG signals were segmented into 5-minute intervals, resulting in a total of 519,800 
person-minutes of analyzed data. We trained and validated a deep learning model based on CTG 
segments for classifying normal and abnormal CTGs. In the independent test dataset, the model 
achieved an AUC (area under the receiver operating characteristic curve) of 0.880 and PRC (area under 
the precision-recall curve) of 0.625 in internal tests. External tests across three datasets achieved AUCs 
of 0.862, 0.895, and 0.862 and PRCs of 0.553, 0.615, and 0.601. Our study results show the potential of 
the deep learning for automated CTG interpretation. We will evaluate this model in future prospective 
studies to assess the model’s clinical applicability.
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UC	� Uterin contraction
EMR	� Electronic medical records
AUC	� Area under the receiver operating characteristic curve
PRC	� Area under the precision-recall curve

Cardiotocography (CTG) is an essential tool for real-time monitoring of fetal status during labor1, serving a 
critical function in detecting abnormal patterns by monitoring fetal heart rate (FHR) and uterine contractions 
(UC). Abnormal CTG waveforms may indicate fetal hypoxemia, and failure to detect fetal hypoxemia in a 
delays in timely detection elevate the risk of long-term complications for both the mother and fetus, making the 
accuracy and promptness of CTG interpretation clinically significant2. However, since most CTG interpretation 
is still performed manually by obstetricians, there are frequent delays in detecting abnormal patterns, which can 
adversely affect the safety of both the fetus and the mother.

Simple abnormal signals, such as bradycardia and tachycardia, are already alarmed by commercial devices 
that utilize traditional signal processing methods. However, traditional automatic CTG interpretation systems, 
which rely on basic machine learning or mathematical formulas, have shown limitations in addressing more 
complex and nuanced patterns, such as late variable decelerations. These limitations ultimately hinder their 
ability to fully enhance clinical decision-making and improve patient outcomes. For instance, a clinical trial 
conducted in 2017 confirmed that computer-based CTG interpretation did not enhance neonatal outcomes3.

Recently, with advancements in technologies such as deep learning, there have been numerous attempts to 
utilize models based on CTG raw waveform data. However, according to a scoping review published in 20244, 
most prior studies have been conducted using data collected from a small number of institutions, resulting in 
insufficient dataset sizes. Except for studies conducted by Petrozziello et al. and McCoy et al., all studies utilized 
datasets with fewer than 5,000 patients5–10. Since many studies used data from only a few thousand patients, the 
performance of deep learning models has often been moderate, and insufficient external validation has limited 
the generalizability of these models.

Furthermore, most studies, including the one by Petrozziello et al., have focused solely on predicting fetal 
acidosis or similar outcomes. This approach is rarely used by obstetricians and, as a result, is difficult to apply in 
clinical practice. In typical clinical decision flows, CTG is utilized to assess fetal hypoxemia in real-time based 
on specific patterns. Identifying these patterns requires large-scale labeled datasets.

Our study aims to overcome these limitations by collecting nationwide, large-scale CTG data from multiple 
institutions. Additionally, a committee of obstetricians will collaborate to create a comprehensive labeled dataset, 
which will serve as the foundation for developing a high-performance deep learning-based CTG interpretation 
model. The model developed in our study is expected to be applicable as an automated CTG interpretation 
system in the future11.

Materials and methods
Data sources
Between January 2010 and December 2020, we collected a total of 22,651 delivery records from the delivery 
wards of 14 hospitals in South Korea.

The study cohort included patients who visited the hospital for delivery and underwent at least one fetal heart 
rate record in the hospital. Both singleton and multiple pregnancies were included. We collected cardiotocography 
(CTG) data along with relevant maternal demographics, such as maternal age and gestational age, as well as 
obstetric history, pregnancy complications, and neonate outcomes from electronic medical records (EMRs) of 
each hospital. We excluded cases if any of the following information was missing gestational age, Apgar score, 
mode of delivery (vaginal delivery or cesarean section), gestational weeks, or birth outcomes. We also exclude if 
only one fetal heart rate was available in cases of multiple pregnancy.

We utilized 17,494 singleton deliveries and 1,246 multiple deliveries from 11 hospitals for model development 
and internal validation. For external validation, data from three hospitals were included. External validation 
hospital 1 contained a total of 2,372 delivery records, among which 1,886 were singleton deliveries and 486 were 
multiple deliveries. External validation hospital 2 included 1,307 delivery records, comprising 1,135 singleton 
deliveries and 172 multiple deliveries. External validation hospital 3 consisted of 191 delivery records, of which 
133 were singleton deliveries and 58 were multiple deliveries. This data collection project was funded by the 
National Information Society Agency (NIA).

The study was approved by Instituional Review Board(IRB) along with the Ajou University Medical Center, 
Seoul St. Mary’s Hospital, Kyungpook National University Chilgok Hospital, Kyungpook National University 
Hospital, Kyung Hee University Hospital, Korea University Medical Center, Dankook University Hospital, Inje 
University Paik Hospitals(Busan, Haeundae, Ilsan), Seoul National University Hospital, Seoul National University 
Bundang Hospital, Chonnam National University Hospital, Chung-Ang University Hospital. Institutional 
Review Board (IRB) approvals from all hospitals and further details can be found in Supplementary Note. 
Because our study was retrospective and personal information was anonymized, the institutional review boards 
of the aforementioned institutions waived the requirement for informed consent. Our study was subsequently 
designed and conducted in accordance with the World Medical Association Declaration of Helsinki and all 
relevant guidelines and regulations for medical research involving human subjects.

The CTG data were collected as PNG files, and information on fetal heart rate (FHR) and uterine contractions 
(UC) was extracted at a frequency of 0.5 Hz using the Hough transform algorithm12. Data with continuous 
interruptions in FHR or UC lasting more than one minute were excluded from the study. The total length of CTG 
data ranged from a minimum of 5 min to a maximum of 70 min. In this study, we minimized pre-processing to 
preserve clinically relevant information. Outliers and non-physiological signals were retained, acknowledging 
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their potential significance. Only data segments with missing intervals exceeding one minute were excluded. We 
presented examples of CTG data in Supplementary Figure S1.

Outcome labeling
The collected CTG data were segmented into 5-minute intervals for labeling. We labeled the data whether 
normal or abnormal. We defined late decelerations, variable decelerations, absent FHR variability, and sinusoidal 
patterns as abnormal CTG which requires obstetric intervention13.

To address the well-known issue of inter-observer disagreement in CTG interpretation14,15, we established 
a 2-stage reading system. For each hospital, two board-certified obstetricians from hospital labeled the CTG 
independently. In cases of disagreement between the labels provided by the two primary board-certified 
obstetricians, a senior obstetrician with over 15 years of experience made the final interpretation.

Model development
We used the dataset from 11 hospitals for model development and internal testing. To prove the robustness of 
the deep learning model, we used the dataset from three hospitals for external testing. For model development 
and internal validation, we used 17,494 singleton deliveries and 1,246 multiple deliveries from the 11 hospitals, 
while for external validation, we used 3,155 singleton deliveries and 716 multiple deliveries. We randomly 
divided deliveries in an 8:1:1 ratio into training, validation, and internal test sets. No additional class imbalance 
correction was applied, as our development dataset included 436,695 person-minutes of CTG, with 15.9% 
labeled as abnormal—substantially higher than in previous studies5–7.

We used FHR, uterine contraction waveform data from CTG. We also extracted time-series features from 
CTG. From the extracted time-series features, we selected seven that, when incorporated, resulted in an AUC 
improvement of at least 0.001 on the validation dataset. We concated waveform and time-series features as 
input for the deep learning model. For model selection, we tested several deep learning algorithms, and selected 
SE-ResNet50 as the optimal model. SE-ResNet50 is a deep learning model that integrates the Squeeze-and-
Excitation (SE)16 module into the ResNet50 architecture. ResNet5017 consists of 50 layers with residual blocks, 
where each block includes a convolutional layer, batch normalization18, and ReLU19 activation. The SE module 
in SE-ResNet50 helps the model enhance important features and suppress less relevant ones by learning channel-
wise relationships, leading to improved performance. Detailed information about the model structure and model 
selection is provided in Supplementary Figure S2 and Supplementary Figure S3.

For metrics, we used the area under the receiver operating characteristic curve (AUC). In addition, we 
calculated the sensitivity, specificity, positive predictive value, and negative predictive value with a cut-off 
point from Youden’s J statistics in the development dataset. We utilized the DeLong test to assess the statistical 
significance of the AUC of our model.

We also evaluated model calibration to further assess model explainability. We generated calibration plots to 
examine how well the predicted probabilities align with the actual outcomes, offering additional insights into the 
model’s reliability and performance.

Sensitivity analysis
To assess the robustness of the developed deep learning model, a subgroup analysis was conducted by 
categorizing patients into six clinically relevant groups. The subgroups were defined based on prematurity, 
emergent operations, and multiple pregnancies. The analysis was performed using internal test data and three 
external test datasets, enabling a comprehensive evaluation of the model’s performance stability within each 
subgroup.

Statistical analysis
For baseline characteristics, both continuous and categorical variables are presented as mean values and absolute 
standardized differences. Continuous and categorical variables were compared accordingly. Some characteristics 
included missing values; in such cases, we calculated baseline characteristics using only complete cases. Python 
3.8, Pytorch 1.11, Tsfresh 0.20, scikit-learn 1.3 was used for signal preprocessing and model development.

Results
Study cohorts
The development dataset included 18,740 deliveries from 11 hospitals, while the external test dataset included 
3,911 deliveries from 3 hospitals. After applying exclusion criteria, 88 deliveries were excluded from the 
development dataset and 41 deliveries were excluded from the external test dataset. As a result, a total of 22,522 
deliveries and 519,800 person-minutes of CTG data were included in the study. After the labeling process, the 
development dataset contained a total of 436,695 person-minutes of CTG, of which 69,400 person-minutes 
(15.9%) were labeled as abnormal. The external test dataset contained a total of 83,105 person-minutes of CTG, 
with 14,470 person-minutes (17.4%) labeled as abnormal (Fig. 1).

We investigated baseline characteristics of patients (Table 1). In the developmental dataset, maternal age was 
similar between the abnormal and normal groups, with means of 32.9 and 33.1 years, respectively (ASD = 0.034). 
Among maternal factors, pre-eclampsia was more frequent in the abnormal group (11.4%) compared to the 
normal group (8.0%), with an ASD of 0.114, indicating a noticeable difference. Additionally, the cesarean section 
rate was lower in the abnormal group (54.5%) compared to the normal group (64.3%), with an ASD of 0.200, 
suggesting a moderate difference. For fetal characteristics, the incidence of fetal growth restriction was higher 
in the abnormal group (14.1%) compared to the normal group (9.2%), with an ASD of 0.152. Neonatal head 
circumference was slightly smaller in the abnormal group (32.8 cm) compared to the normal group (33.1 cm), 
with an ASD of 0.082. Additionally, the Apgar scores at 1 min (7.3 vs. 7.7) and 5 min (8.7 vs. 8.9) were lower 
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in the abnormal group, with ASDs of 0.242 and 0.209, respectively, indicating significant differences. Among 
neonatal outcomes, intubation was more frequent in the abnormal group (10.5%) compared to the normal group 
(5.9%), with an ASD of 0.169. Similarly, low birth weight was more prevalent in the abnormal group (34.6%) 
compared to the normal group (31.4%), with an ASD of 0.067. All other characteristics showed no statistically 
significant differences.

Performance of deep learning model
The performance of the model was evaluated through both internal and external validation tests, with the 
results summarized in the AUC (Area Under the receiver operating characteristic Curve) and PRC (area under 
the Precision-Recall Curve). For the internal test, the model achieved an AUC of 0.880 and a PRC of 0.625, 
indicating strong overall performance in distinguishing between classes with high specificity (0.810) and 
negative predictive value (0.947). External test 1 yielded an AUC of 0.862 and a PRC of 0.553, while external test 
2 showed an improved AUC of 0.895 and PRC of 0.615, demonstrating the model’s robustness across different 
datasets. External test 3 resulted in an AUC of 0.862 and a PRC of 0.601, further affirming the model’s consistent 
performance. The high NPV values across all tests (0.947 for internal, 0.901 to 0.946 for external) reflect the 
model’s strong ability to rule out false positives. These results are depicted in the AUC and PRC curves above 
(Fig. 2).

Sensitivity analysis
Through the AUC results for the entire dataset and subgroup analyses, it was observed that the model exhibited 
relatively consistent performance across diverse patient characteristics. In the internal test dataset, the model 
achieved a generally high AUC value (above 0.880), and similar levels of AUC were maintained across most 
subgroups in the external test dataset. This suggests that the model maintains a certain level of predictive 
performance even in external environments and is applicable to a variety of patient populations (Table 2).

Particularly, subgroups such as preterm babies, emergency deliveries, and singleton pregnancies showed high 
AUC values, indicating stable predictive performance in these groups. On the other hand, subgroups such as 
multiple pregnancies and elective deliveries showed relatively lower AUC values in some external tests, suggesting 
that the predictive performance may decrease for these groups. However, overall, all subgroups maintained AUC 
values above 0.84, demonstrating that the model provides reliable predictive performance across various clinical 
conditions. As a result of the DeLong test, the P-value was < 0.01 in all subgroups.

Model calibration
The calibration metrics of our model indicate the agreement between predicted probabilities and observed 
outcome rates for both internal and external test datasets. In the calibration plot, the diagonal dashed line 
represents a perfect calibration line, which would occur if predicted probabilities matched the observed outcome 
probabilities perfectly.

Fig. 1.  Study flowchart. The figure illustrates the process of data preparation and labeling for the development 
and external test datasets. The development dataset includes deliveries from 11 hospitals, with specific 
exclusion criteria and an 8:1:1 split into training, validation, and internal test sets. The external test dataset is 
derived from 3 hospitals and divided into three subsets after applying similar exclusion criteria. A two-stage 
labeling process was conducted by obstetricians using 5-minute signal intervals, categorizing labels as normal 
or abnormal based on specific criteria. Disagreements were resolved by senior obstetricians with over 15 years 
of experience.
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The calibration curves for internal testing and external tests 1, 2, and 3 show some overestimation or 
underestimation in certain segments, particularly with external test 3 in the high-probability region, where 
predicted probabilities tend to be overestimated compared to actual outcome rates. Nevertheless, the overall 
trend of the calibration curves is close to the x = y line, indicating adequate calibration of the model (Fig. 3).

Discussion
In our study, data from 22,522 deliveries and 519,800 person-minutes of CTG collected across 14 hospitals 
were utilized to develop a deep learning model, which was validated through internal and external testing. The 
model achieved an AUC of 0.880 and a PRC of 0.625 in internal testing, while in external testing across three 
hospitals, it demonstrated AUCs of 0.862, 0.895, and 0.862 and PRCs of 0.553, 0.615, and 0.601, respectively, 
demonstrating its generalizability. Given the limitations of previous CTG automated interpretation systems, 
which were constrained by limited datasets and low accuracy, our study holds significant value in improving 
model generalization through the use of large-scale, multi-institutional data and robust study design.

Additionally, in all sub-analyses, the model demonstrated stable performance, achieving an AUC of 0.869 
in internal validation and exceeding an AUC of 0.839 in external test. Notably, in subgroups with high clinical 
relevance, such as preterm infants and emergency deliveries, the model achieved AUCs of 0.879 and 0.882, 
respectively, underscoring its clinical utility. Furthermore, calibration plot shows that the model’s abnormal 
predictions were aligned with the distribution of actual abnormal cases.

Our model combines deep learning with traditional signal processing features, and there are a couple of 
reasons for this approach. First, since our study is based on convolutional networks, the model excels at capturing 
the local characteristics of individual signals but faces challenges in understanding the overall characteristics of 
the entire signal at once. Second, with SeResNet50 having 28 million parameters, the 100,000 data points used 
in this study may have been insufficient to fully optimize the deep learning model. Therefore, incorporating 
traditional signal processing features may have helped optimize the model by providing additional relevant 
information that the deep learning model could not learn from the raw data alone.

Our study has two major strengths compared to prior CTG automatic interpretation studies. First, it 
significantly expanded the number of participating patients and hospitals. While prior studies use fewer 
than 5,000 patients, our study utilized a large-scale, multi-institutional dataset comprising 22,522 delivery 

Characteristics

Development dataset External Test dataset

Abnormal Normal

ASD

Abnormal Normal

ASDMean Mean Mean Mean

Total 5487 14,367 1305 3281

Mother

 Age (year)† 32.9 33.1 0.034 33.2 33.6 0.090

 Height (cm)† 161.2 161.3 0.021 160.9 161.3 0.062

 Weight (kg)† 69.7 70.3 0.049 65.1 67.0 0.157

 Gravida† 1.9 2.0 0.118 2.2 2.2 0.068

 Para† 0.5 0.5 0.097 0.9 1.0 0.054

 Gestational hypertension 4.7% 4.2% 0.023 7.6% 5.8% 0.071

 Gestational diabetes 8.3% 8.9% 0.023 11.6% 10.1% 0.051

 Pre-eclampsia 11.4% 8.0% 0.114 11.6% 8.4% 0.108

 Cesarean section 54.5% 64.3% 0.200 53.5% 67.4% 0.288

 Gestational weeks† 36.6 36.6 0.025 36.4 36.4 0.027

Fetal

 Fetal growth restriction 14.1% 9.2% 0.152 10.0% 7.5% 0.089

 Baby sex (male) 52.3% 52.7% 0.008 48.6% 52.4% 0.077

 Weight (g)† 2712.3 2795.2 0.117 2653.9 2705.8 0.075

 Height (cm)† 47.0 47.3 0.074 47.9 48.2 0.072

 Head circumference (cm)† 32.8 33.1 0.082 32.6 33.1 0.184

 Apgar score.1 min† 7.3 7.7 0.242 7.6 8.1 0.263

 Apgar score.5 min† 8.7 8.9 0.209 8.8 9.1 0.215

 NICU admission 46.6% 43.2% 0.068 42.6% 40.5% 0.043

 Intubation 10.5% 5.9% 0.169 3.6% 1.5% 0.132

 Jaundice 20.6% 20.3% 0.007 31.2% 32.9% 0.038

 Prematurity 39.7% 39.7% 0.002 42.5% 42.6% 0.001

 Low birth weight 34.6% 31.4% 0.067 39.2% 35.7% 0.072

Table 1.  Baseline characteristics of the study cohort. †Means continous variable. The numbers of patients in 
each group before and after propensity score matching are presented, with percentages in parentheses. NICU, 
neonatal intensive care unit; ASD, absolute standardized difference;
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records collected from 14 hospitals. This extensive dataset facilitated the model in demonstrating excellent 
model performance. Secondly, we conducted an extensive labeling process to create a dataset aligned with the 
conventional clinical use of CTG. While previous studies primarily relied on extractable test variables, such as 
laboratory results, our approach involved direct expert labeling by multiple obstetricians. To address potential 
disagreements among labelers, we implemented a two-stage labeling process to enhance precision. Initially, two 
obstetricians from each hospital independently analyzed the data. In cases of disagreement, a senior obstetrician 
with over 15 years of experience resolved the discrepancy, ensuring high accuracy and reliability in the labeled 
data. The comparison between our study and previous studies is summarized in Table 3.

While existing models using objective outcomes such as pH provide meaningful clinical value, their focus 
often diverges from real-time CTG interpretation tasks that are integral to current intrapartum workflows15,16. 

Subgroup Internal External 1 External 2 External 3

Preterm baby 0.879 0.868 0.893 0.844

Full term baby 0.880 0.859 0.892 0.892

Emergency delivery 0.882 0.878 0.902 0.859

Elective delivery 0.877 0.839 0.867 0.870

Singleton 0.881 0.853 0.907 0.875

Multiple 0.869 0.861 0.860 0.843

Table 2.  Model performance in sensitivity analysis. The table presents the sensitivity analysis results, showing 
the model’s AUC across various subgroups, including preterm and full-term babies, emergency and elective 
deliveries, and singleton and multiple deliveries. The consistent AUC values across internal and external 
datasets demonstrate the model’s robustness and generalizability across different clinical scenarios. Detailed 
information about Sensitivity analysis metrics are provided in Supplementary Table S1 and Supplementary 
Table S2.

 

Fig. 2.  Model performance. The figure shows the performance metrics of the model evaluated on internal and 
external test datasets using AUC and PRC curves. The left plot represents the AUC (Area Under the Receiver 
Operating Characteristic curve), indicating the model’s discrimination ability across internal and external 
test sets. The right plot illustrates the PRC (Precision-Recall Curve), highlighting the model’s performance in 
detecting abnormal cases. The accompanying table summarizes key metrics, including AUC, PRC, specificity 
(SPE), and negative predictive value (NPV), for each dataset. Consistent performance across internal and 
external tests demonstrates the model’s generalizability.
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Our model instead targets the recognition of standardized patterns—such as late, variable, and prolonged 
decelerations—which are routinely assessed by obstetricians. These two different approaches offer potential 
as an automated alarm system embedded within ongoing fetal monitoring. In the future, alarm systems that 
incorporate a wider range of clinically relevant features will be essential for real-world implementation in 
delivery rooms.

Our study has several limitations. First, as it is based on a retrospective design, the model’s effectiveness in 
real-time clinical settings has not been validated. Prospective studies are necessary to confirm its practical utility 
in improving fetal and maternal outcomes during labor. Also, the study collected CTG data from image (PNG) 
files, and due to image resolution limitations, only 0.5 Hz data was extracted instead of the original 4 Hz signal 
This limitation may have restricted the deep learning model’s ability to learn intricate features of complex CTG 
signals. If higher-resolution original waveform data were available, the model performance could be improved. 
Future study should aim to improve access to original waveform data or explore new data processing methods 
to minimize resolution loss. Another limitation of this study is that relatively short CTG segments, ranging from 
5 to 75 min, were examined as sequences of PNG files. The necessity of obstetricians for labeling, particularly to 
address inter-labeler discrepancies, limited the number of labeled signals. In order to increase the patient count, 
it was necessary to restrict the signal duration per patient. Future studies should aim to involve more labelers, 
allowing for an increase in both the signal duration per patient and the overall dataset size. Also, Inter-labeler 
variability could raise concerns about labeling reliability. To mitigate this, we used a 2-stage labeling process with 
two clinicians, followed by a final review from a clinician with over 15 years of experience. Nevertheless, the 
subjectivity of labeling remains a limitation.

Future studies should focus on validating the effectiveness of our model through prospective clinical trials 
and expanding the dataset to include diverse patient groups, such as those with multiple pregnancies, where 
performance was relatively lower. Also, rather than merely analyzing CTG in 5-minute intervals, interpreting 
continuous signals as time-series data could lead to a more clinically relevant model. Incorporating such time-
series analysis techniques may enhance the model’s predictive power. Through these improvements, the model 
has the potential to establish a new standard for CTG interpretation during labor, serving as a critical tool for 
early detection of fetal hypoxemia and improving outcomes for both mothers and fetuses.

Fig. 3.  Model calibration. The calibration plot shows the agreement between predicted probabilities and 
observed outcomes for the internal test and three external test datasets. The x-axis represents the mean 
predicted probability, while the y-axis indicates the fraction of positive cases. The dashed diagonal line 
(x = y) represents perfect calibration, where predictions match the observed outcomes exactly. The model 
demonstrates varying levels of calibration across datasets, with predictions generally aligning closer to the 
diagonal in some datasets than others. This highlights the model’s calibration performance and its ability to 
provide reliable probability estimates.
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Conclusion
Our study demonstrates that a deep learning-based model can achieve high diagnostic performance in 
automated CTG interpretation, leveraging a large-scale, nationwide dataset with expert-annotated labels. Future 
prospective studies are needed to validate its clinical applicability and potential to improve fetal prognosis.
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clinician No k-fold MLP, bagging, 

RF ands SVM Partially

RF

Yes
Sensitivity = 96.4%

Specificity = 98.4% 
Accuracy = 96.7%

Precision = 96.8%

22

Remove 
spikes, 
interpolate, 
and segment 
into 20 min

Wavelet packet 
decomposition 
image

FHR Non-
clinician No k-fold 2DCNN No

CNN:

NoAccuracy = 95.24% 
Sensitivity = 90.4% 
Specificity = 100%

23 Smoothing Morphological 
and statistical

FHR 
and 
UC

Non-
clinician No k-fold

NN, RF, 
clustering and 
SVM

Partially

Ensemble 
combination- NN, 
RF, k-means 
and SVM: 
Accuracy = 92.30%

No

24

Processing 
outliers and 
removing 
spike using 
moving 
average

Image
FHR 
and 
UC

Non-
clinician Yes Did not 

specify

1D-CNN and 
bidirectional 
Gate No

Accuracy = 95.15%

No

Sensitivity = 96.20% 
Specificity = 94.09%, 
Precision = 94.21%

Recurrent Unit 
(BiGRU)

F measure = 95.20%

AUROC = 99.29%

25

Outlier 
detection 
and linear 
interpolation

Linear and 
nonlinear, 
extract feature 
using CNN & 
LSTM

FHR Non-
clinician No k-fold SVM and 

CNN-BiLSTM Partially

SVM:

NoSensitivity = 56.97% 
Specificity = 73.35%

QI = 63.91%

26 Did not 
specify

Image based 
and text FHR Non-

clinician Yes Stratified 
k-fold CNN No

MMIF-1 (ViT-B/16): 
Accuracy = 96.3%

NoF measure = 96.3%

AUROC = 96.2%

27 Did not 
specify Image FHR Non-

clinician Yes k-fold
KNN, NB, 
SVM, DT, RF, 
ADABOOST, 
XGBOOST

No

XGBOOST:

No

Accuracy = 96.3%

Precision = 95.4%

Recall = 97.3%

F measure = 96.4%

AUROC = 95.9%

28 Lagrange 
interpolation Image FHR Non-

clinician No Did not 
specify

Double Trend 
Accumulation 
Former CNN

No Accuracy = 90.6% No

29 Lagrange 
interpolation

Curve 
classification FHR Non-

clinician Yes k-fold Trend-Guided 
Long CNN No Accuracy = 89.80% No

Table 3.  The comparison between our study and previous studies.
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Data availability
The dataset used in this study is a public dataset with limited access that can be used after approval by the Nation-
al Information Society Agency (NIA), and details can be found on the AI-Hub website ​(​h​t​t​p​s​:​/​/​w​w​w​.​a​i​h​u​b​.​o​r​.​k​r​
/​a​i​h​u​b​d​a​t​a​/​d​a​t​a​/​v​i​e​w​.​d​o​? currMenu=115&topMenu=100&aihubDataSe=data&dataSetSn=71366).
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