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We propose the microscopic origin of the pole inflation from the scalar fields of broken noncompact
isometry in Weyl gravity. We show that the SOð1; NÞ isometry in the field space in combination with the
Weyl symmetry relates the form of the nonminimal couplings to the one of the potential in the Jordan
frame. In the presence of an explicit breaking of the SOð1; NÞ symmetry in the coefficient of the potential,
we realize the pole inflation near the pole of the inflaton kinetic term. Applying our results to the Higgs or
Peccei-Quinn (PQ) inflation models, we find that there is one parameter family of the solutions for the pole
inflation, depending on the overall coefficient of the Weyl covariant derivatives for scalar fields. The same
coefficient not only makes the predictions of the pole inflation varying, being compatible with the Planck
data, but also determines the mass of the Weyl gauge field. We also show that the isocurvature perturbations
of the axion can be suppressed sufficiently during the PQ pole inflation, and the massive Weyl gauge field
produced during reheating serves as a dark matter candidate.
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Introduction—Inflation has been a main paradigm for the
early universe by which various problems in the standard
Big Bang cosmology are solved and the initial conditions
for the flat, homogeneous, and isotropic universe can be
explained. A slowly rolling scalar field, the so called
inflaton, is required to derive inflation, and its quantum
fluctuations generate necessary inhomogeneities observed
in the cosmic microwave background (CMB) and large
scale structures. Higgs inflation with a nonminimal
coupling [1] has drawn a lot of attention because it shows
a possibility that inflation is realized by the Higgs field
within the standard model (SM), but a consistent picture
beyond Higgs inflation should emerge due to the problem
with large nonminimal coupling [2–4].
There is another class of inflation models where the

inflaton has a conformal coupling to gravity [4,5], so that
inflation takes place close to the pole of the inflaton kinetic
term in the Einstein frame. This is dubbed pole inflation.
The concept of the inflation for α-attractor models was also
introduced in Refs. [6–9]. Global conformal symmetry can
be gauged by a local conformal symmetry or Weyl
symmetry. As a result, the Planck mass can be generated
dynamically from the vacuum expectation value of the
dilaton field or one of the scalar fields of a nonlinear sigma
model type [10]. Furthermore, multifield models with Weyl

symmetry including the SM Higgs were considered for
inflation [11–13].
The SM is based on the gauge principle explaining the

forces in nature after the gauge symmetries are broken
spontaneously, and there is an approximate custodial sym-
metry for SM Higgs fields, which is broken only by the
Uð1ÞY gauge coupling and Yukawa couplings. A similar
gauge principle is applied to the theory of gravitation such
that the conformal symmetry is gauged and it is broken
spontaneously. As a result, Einstein gravity is reproduced,
up to a massive Weyl gauge field, which couples to gravity
minimally. The goal of this article is to make theWeyl gauge
symmetry manifest in the extension with extra scalar
multiplets beyond the dilaton and the metric tensor, so it
is suitable for a unified description of the gravity-Higgs
system based on both the gauge symmetry principle and the
extended custodial symmetry for the dilaton and the extra
multiple fields. The scalar sector contains an extended
custodial symmetry for the SM Higgs or the Peccei-
Quinn (PQ) fields, which is the inflaton candidate with an
appropriate form of the scalar potential in the context of the
pole inflation. The full content of the SM or its nongravita-
tional extensions can be easily accommodated in this setup.
In this Letter, we propose the multifield models for

inflation respecting both the Weyl symmetry and the broken
noncompact isometry in the field space such as SOð1; NÞ,
which is the extension of the isometry or custodial symmetry
of nondilaton scalar fields. After the Weyl symmetry is
broken spontaneously due to the vacuum expectation value
(VEV) of the dilaton, the SOð1; NÞ symmetry is sponta-
neously broken to SOðNÞ, and the Planck scale is generated.
In this scenario, we pursue a concrete realization of the pole
inflation inWeyl gravity,which is applicable to the caseswith
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the SM Higgs fields [14] and the PQ singlet scalar
field [15,16] transforming under electroweak symmetry or
a global Uð1Þ PQ symmetry, respectively. For inflation, we
introduce an explicit breaking for the SOð1; NÞ symmetry
only in the effective quartic coupling, but the SOðNÞ
symmetry remains unbroken in the Lagrangian. We discuss
the roles of theWeyl covariant derivatives for scalar fields for
the mass of the Weyl gauge field and the solutions for pole
inflation [17].
The setup—We consider the dilaton χ, an N-dimensional

scalar multiplet, Φ ¼ ð1= ffiffiffi
2

p Þðϕ1;ϕ2;…;ϕNÞT , composed
of N real scalar fields, and the Weyl gauge field wμ in Weyl
gravity. It can accommodate the SM Higgs doublet for
N ¼ 4 or the PQ singlet scalar field for N ¼ 2. Then, the
Jordan frame Lagrangian for bosons respecting the Weyl
invariance and the SOð1; NÞ isometry, in fχ;ϕig with
i ¼ 1; 2;…; N, is given by

LJffiffiffiffiffiffiffiffi−gJ
p ¼ ð1þ aÞ

�
−

1

12
ðχ2 − ϕ2

i ÞR −
1

2
ð∂μχÞ2 þ

1

2
ð∂μϕiÞ2

�

þ 1

2
aðDμχÞ2 −

1

2
aðDμϕiÞ2 −

1

4
wμνwμν − V; ð1Þ

with

Vðχ;ϕiÞ ¼
1

hχ4i fðϕ
2
i =χ

2Þðχ2 − ϕ2
i Þ2: ð2Þ

Here, we note that the Weyl gauge transformations are

gμν → e2αðxÞgμν; χ → e−αðxÞχ;

ϕi → e−αðxÞϕi; wμ → wμ −
1

gw
∂μαðxÞ; ð3Þ

with αðxÞ being an arbitrary real transformation parameter.
Then, the covariant derivatives for the dilaton and the Higgs
fields are given by

Dμχ ¼ ð∂μ − gwwμÞχ; Dμϕi ¼ ð∂μ − gwwμÞϕi; ð4Þ
with gw being theWeyl gauge coupling, and the field strength
tensor for the Weyl gauge field is wμν ¼ ∂μwν − ∂νwμ. We
normalized the scalar kinetic terms inEq. (1), up to a constant
parameter a. We did not include the SM gauge interactions
for theHiggs fields explicitly, but they can be also introduced
easily. fðϕ2

i =χ
2Þ is an arbitrary function ofϕ2

i =χ
2, respecting

the Weyl gauge symmetry, but it breaks the SOð1; NÞ
isometry down to SOðNÞ explicitly. If fðϕ2

i =χ
2Þ is a constant

parameter, the full SOð1; NÞ is respected, but it leads to a
constant vacuum energy after a gauge fixing, as will be
shown later. Thus, in order to consider the inflationary
cosmology with a slow-roll inflaton, fðϕ2

i =χ
2Þ must not

be constant.
Due to the Weyl symmetry in the Jordan frame

Lagrangin in Eq. (1), the form of the Lagrangian is the
same in any other frames related by the Weyl trans-
formations unless a gauge for the Weyl symmetry is fixed.

Thus, we first fix the gauge for the Weyl symmetry with
χ ¼ hχi ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

6=ð1þ aÞp
in the Jordan frame, so we break

the Weyl symmetry and the SOð1; NÞ symmetry sponta-
neously. Then, the Lagrangian in Eq. (1) becomes

LJffiffiffiffiffiffiffiffi−gJ
p ¼ −

1

2

�
1 −

1

6
ð1þ aÞϕ2

i

�
Rþ 1

2
ð∂μϕiÞ2

þ 1

2
agwwμ∂

μϕ2
i −

1

2
ag2wϕ2

i wμwμ

−
1

4
wμνwμν þ 1

2
m2

wwμwμ − Vðhχi;ϕiÞ; ð5Þ
with

m2
w ¼ ag2whχ2i ¼

6ag2w
1þ a

; ð6Þ

Vðhχi;ϕiÞ ¼ fðϕ2
i =hχ2iÞ

�
1 −

1

6
ð1þ aÞϕ2

i

�
2

: ð7Þ

In the presence of electroweak symmetry breaking, there is
an additional contribution to theWeyl gauge field by ag2wv2,
but it is negligible as compared to the one from the
dilaton VEV.
For a ¼ 0, we get the same form of the Higgs part of the

Lagrangian as in the Higgs pole inflation where the Higgs is
conformally coupled to gravity and both the effective Planck
scale and the Higgs potential depend on the same factor,
ð1 − 1

6
ϕ2
i Þ [14]. But, in this case, theWeyl gauge field would

be massless, while being decoupled from the Higgs fields.
However, for a ≠ 0, the Weyl gauge field becomes massive,
and we can generalize the Higgs pole inflation, as will be
discussed later. As compared to the case with conformal
symmetry in Ref. [5], our results rely on the spontaneously
broken Weyl gauge symmetry. Thus, there are extra inter-
action terms between the Weyl gauge field and the Higgs
fields. The same results hold for the PQ pole inflation.
Gauge-fixed Lagrangian in Einstein frame—Using

Eq. (5) and the redefined Weyl gauge field, we can rewrite
the Lagrangian in the Jordan frame, as follows:

LJ;effffiffiffiffiffiffiffiffi−gJ
p ¼ −

1

2

�
1 −

1

6
ð1þ aÞϕ2

i

�
Rþ 1

2
ð∂μϕiÞ2

−
1

48
að1þ aÞ · ð∂μϕ2

i Þ2
1 − 1

6
ð1þ aÞϕ2

i

− fðϕ2
i =hχ2iÞ

�
1 −

1

6
ð1þ aÞϕ2

i

�
2

−
1

4
w̃μνw̃μν þ 1

2
m2

w

�
1 −

1

6
ð1þ aÞϕ2

i

�
w̃μw̃μ; ð8Þ

where

w̃μ ≡ wμ −
1

2gw
∂μ lnðm2

w − ag2wϕ2
i Þ: ð9Þ

Here, we used Eq. (6) for m2
w.
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Now making a rescaling of the metric by gμν;J ¼
gμν;E=Ω, with Ω¼1−1

6
ð1þaÞϕ2

i , we obtain the Einstein
frame Lagrangian from Eq. (8) as

LEffiffiffiffiffiffiffiffi−gE
p ¼ −

1

2
Rþ 3

4Ω2
ð∂μΩÞ2 þ

1

2

ð∂μϕiÞ2
Ω

−
1

48
að1þ aÞ · ð∂μϕ

2
i Þ2

Ω2
− fðϕ2

i =hχ2iÞ

−
1

4
w̃μνw̃μν þ 1

2
m2

ww̃μw̃μ: ð10Þ

Thus, the redefined Weyl gauge field w̃μ is decoupled from
the Higgs fields, and it couples to gravityminimally.We note
that theWeyl gauge field has an arbitrarymass depending the
Weyl gauge coupling gw anda, and there is aZ2 symmetry for
w̃μ in the Lagrangian. So, the Weyl gauge field could be a
good candidate for dark matter, which is gravitationally
produced during inflation or reheating.
From ∂μΩ ¼ − 1

6
ð1þ aÞ∂μϕ2

i , we can recast the Einstein
frame Lagrangian without the Weyl gauge field in a simpler
form,

LEffiffiffiffiffiffiffiffi−gE
p ¼ −

1

2
Rþ 1

2

ð∂μϕiÞ2�
1 − 1

6
ð1þ aÞϕ2

i

�
2

þ 1

12
ð1þ aÞ ·

1
4
ð∂μϕ2

i Þ2 − ϕ2
jð∂μϕiÞ2�

1 − 1
6
ð1þ aÞϕ2

i

�
2

− VEðϕiÞ; ð11Þ
with VEðϕiÞ ¼ fðϕ2

i =hχ2iÞ. Therefore, the Higgs kinetic
terms in the above Lagrangian are of the same form as in
the Higgs pole inflation [14], except with an arbitrary
parameter a.
For the pole inflation, we take the coefficient of the

Jordan frame potential as

fðϕ2
i =χ

2Þ ¼ V0 þ
1

2
m2

ϕhχ2i ·
ϕ2
i

χ2
þ 1

4
λϕhχ4i ·

ðϕ2
i Þ2
χ4

: ð12Þ

Here, V0 corresponds to the vacuum energy, which respects
the SOð1; NÞ symmetry, but m2

ϕ, λϕ terms break the
SOð1; NÞ symmetry into SOðNÞ. Then, under the gauge
condition, χ ¼ hχi ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

6=ð1þ aÞp
, it leads to the standard

form of the Higgs-like potential in Eq. (11) as

VEðϕiÞ ¼
1

2
m2

ϕϕ
2
i þ

1

4
λϕðϕ2

i Þ2: ð13Þ

Pole inflation models in Weyl gravity—From the general
Einstein frame Lagrangian obtained in the previous section,
we discuss the generalization of the pole inflation scenarios
with the SM Higgs doublet or the PQ singlet scalar field in
Weyl gravity.
Generalized Higgs pole inflation: We realize pole

inflation with the SM Higgs inflation [14] as an example

for N ¼ 4. In unitary gauge, the Higgs fields composing an
SUð2ÞL doublet take ϕ1 ¼ h and ϕ2 ¼ ϕ3 ¼ ϕ4 ¼ 0, so the
second kinetic term in Eq. (11) vanishes. Then, the Einstein
frame Lagrangian in Eq. (11) becomes

LEffiffiffiffiffiffiffiffi−gE
p ¼ −

1

2
Rþ 1

2

ð∂μhÞ2�
1 − 1

6
ð1þ aÞh2

�
2
− VEðhÞ; ð14Þ

with VEðhÞ ¼ 1
2
m2

Hh
2 þ 1

4
λHh2 after m2

ϕ; λϕ in Eq. (13) is
replaced by the Higgs parameters, m2

H; λH, respectively.
This takes precisely the same form as in the Higgs pole
inflation [14], again except the parameter a. For m2

H < 0
and λH > 0, the VEV of the Higgs is determined by
hhi ¼ v ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−m2

H=λH
p

.
As a result, making the Higgs kinetic term canonical for

h ¼ hχi tanh
�

ψ

hχi
�
; ð15Þ

we obtain the inflaton Lagrangian in Eq. (14) as

LEffiffiffiffiffiffiffiffi−gE
p ¼ −

1

2
Rþ 1

2
ð∂μψÞ2 − VEðψÞ; ð16Þ

where the inflaton potential with the Higgs quartic coupling
only becomes

VEðψÞ ¼ 9λHtanh4
�

ψ

hχi
�
: ð17Þ

Then, the Higgs pole inflation corresponds to a ¼ 0 or
hχi ¼ ffiffiffi

6
p

. As compared to T α-attractor models with the
potential VE ∼ tanh2nðψ= ffiffiffiffiffiffi

6α
p Þ [6], we can identify the

model parameters by 1þ a ¼ ð1=αÞ and n ¼ 2. Thus, for
a ¼ ½0; 1�, the T α-attractor models vary by α ¼ ½1; 1

2
�.

We note that the interaction Lagrangian of the Higgs
boson to the electroweak bosons in unitary gauge in the
Einstein frame contains

Lh;gauge ¼ FðhÞ
�
2g2WμWμ þ ðg0Bμ − gW3

μÞ2
�
; ð18Þ

with

FðhÞ≡ h2

8½1 − 1
6
ð1þ aÞh2� ¼

1

8
hχi2sinh2

�
ψ

hχi
�
; ð19Þ

where we used Eq. (15) in the second line. Then, during
inflation with ψ ≫ hχi, the effective masses for the
electroweak gauge bosons are given by M2

W ≫ 1
4
g2M2

P

and M2
Z ≫ 1

4
ðg2 þ g02ÞM2

P, so they are safely decoupled
from the inflaton. On the other hand, after inflation,
ψ ≪ hχi, for which hχi2tanh2ðψ=hχiÞ ≃ ψ2, so we can
recover the standard interactions of the Higgs boson to the
electroweak gauge bosons, so reheating can proceed.
From the slow-roll parameters with Eq. (16), we get the

spectral index and the tensor-to-scalar ratio at horizon exit
in terms of the number of e-foldings, as follows:
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ns ¼ 1 −
64ð8N þ hχ2iÞ
256N2 − hχ4i ; ð20Þ

r ¼ 512hχ2i
256N2 − hχ4i : ð21Þ

As a result, from Eq. (20), we obtain the spectral index as
ns ¼ 0.9662–0.9666 for N ¼ 60 and a ¼ ½0; 1�, which
agrees with the observed spectral index from Planck,
ns ¼ 0.967� 0.0037 [18]. Moreover, we also predict the
tensor-to-scalar ratio as r ¼ 0.000 83 − 0.0033 for N ¼ 60
and a ¼ ½0; 1�, which is compatible with the bound from the
combined Planck and Keck data [19], r < 0.036. We also
find that the CMB normalization, As ¼ ð1=24π2ÞðVI=ϵ�Þ ¼
2.1 × 10−9, sets the inflation energy scale by

λH ¼ ð3.4 × 10−9Þr: ð22Þ
Thus, for a given r, we need the Higgs quartic coupling
during inflation to be λH ¼ 2.8 × 10−12–1.1 × 10−11. Such a
tiny quartic coupling for the SM Higgs could be achieved
when the corresponding beta function is sufficiently small in
the presence of the couplings of singlet scalar fields to the SM
Higgs [14].
In Fig. 1, we depict the inflationary predictions of the

pole inflation in Weyl gravity in the spectral index ns vs the
tensor-to-scalar ration r. We show the results for a ¼ 0 and
a ¼ 1 in blue and red lines, respectively, while the number
of e-foldings is bounded between N ¼ 50 and 60 at the
pairs of blue or red bullets. We overlay the bounds from

Planck on the spectral index within 1σ and 2σ errors in the
yellow and green regions, respectively.
Generalized PQ pole inflation—We now realize the pole

inflation with the PQ singlet scalar field [15,16] as an
example with a complex scalar field, that is, N ¼ 2. In this
case, a PQ complex scalar field, Φ ¼ ð1= ffiffiffi

2
p Þðϕ1 þ iϕ2Þ,

transforms under the global Uð1Þ PQ symmetry. Taking the
PQ field in the polar representation, Φ ¼ ð1= ffiffiffi

2
p Þρeiθ, the

Einstein frame Lagrangian in Eq. (11) becomes

LEffiffiffiffiffiffiffiffi−gE
p ¼ −

1

2
Rþ 1

2

ð∂μρÞ2�
1 − 1

6
ð1þ aÞρ2

�
2

þ 1

2
ð1þ aÞ · ρ2ð∂μθÞ2�

1 − 1
6
ð1þ aÞρ2

� − VEðρÞ; ð23Þ

where VEðρÞ ¼ 1
2
m2

Φρ
2 þ 1

4
λΦρ

4 after m2
ϕ; λϕ in Eq. (13) is

replaced by the PQ parameters, m2
Φ; λΦ, respectively. This

takes precisely the same form as in the PQ pole
inflation [15,16], again except for the parameter a. For
m2

Φ < 0 and λΦ > 0, the VEVof the PQ field is determined
by hΦi ¼ fa ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−m2

Φ=λΦ
p

.
Making the kinetic term for the radial mode canonically

normalized by

ρ ¼ hχi tanh
�

ψ

hχi
�
; ð24Þ

we obtain Eq. (23) as

LEffiffiffiffiffiffiffiffi−gE
p ¼ −

1

2
Rþ 1

2
ð∂μψÞ2

þ 3sinh2
�

ψ

hχi
�
ð∂μθÞ2 − VEðψÞ; ð25Þ

where the inflaton potential with the PQ quartic coupling
only is given by

VEðψÞ ¼ 9λΦtanh4
�

ψ

hχi
�
: ð26Þ

Therefore, the same inflationary predictions as in the Higgs
pole inflation are maintained, as far as the Higgs quartic
coupling in Eq. (22) is replaced by the PQ quartic coupling.
In this case, a similarly tiny quartic coupling for the PQ
field can be stable under the renormalization group running
for small Yukawa couplings and mixing quartic couplings
of the PQ field [15,16].
On the other hand, if the PQ symmetry is not broken

explicitly, the angular mode or the axion would be massless
before the QCD phase transition, so there exists a nonzero
isocurvature perturbation from the angular mode. The
Planck satellite [18] sets a bound on the isocurvature
perturbations by

FIG. 1. Spectral index ns vs tensor-to-scalar ratio r for the pole
inflation in Weyl gravity. Blue and red solid lines are the cases
with a ¼ 0, 1, respectively, and the blue or red bullets indicate the
boundaries where the number of e-foldings is given by N ¼ 50,
60. The Planck bounds on the spectral index within 1σ and 2σ
errors are shown in the yellow and green regions, respectively.
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βiso ≡ Pisoðk�Þ
Pζðk�Þ þ Pisoðk�Þ

< 0.038; ð27Þ

at 95%C.L.,withPζðk�Þ ¼ 2.1 × 10−9 atk� ¼ 0.05 Mpc−1,
leading to

�
Ωa

ΩDM

�
2 H2

I

π2θ2�f2a;eff
< 8.3 × 10−11: ð28Þ

The effective decay constant of the axion is large at the
horizon exit, namely, fa;eff ≃ 22MP for jaj≲ 1 [16]. Thus,
for Ωa¼ΩDM and θ�¼π, we find that HI<1.1×1015GeV.
Therefore, the current bound from the isocurvature perturba-
tion is consistent with our predicted value, HI ¼
ð2.48 × 1014 GeVÞ ffiffiffi

r
p

, with r≲ 0.0033 for jaj ≲ 1 in
our model.
Gravitational production of Weyl photon dark matter—

In the postinflationary period of the pole inflation, the
coherent oscillation of the inflaton starts, reheating the
universe. Assuming that a quartic term in the Einstein frame
potential in Eq. (13) is dominant as in Higgs or PQ pole
inflation models, the potential for the canonical inflaton
becomes VEðψÞ ≃ λϕψ

4, for which the equation of state for
the inflaton during reheating becomes radiationlike [20],
i.e., ωψ ¼ 1

3
. Then, in the presence of the decay and

scattering of the inflaton, the postinflationary dynamics
in the perturbative regime is governed by the Boltzmann
equations [14],

ρ̇ψ þ 3ð1þ wψ ÞHρψ ¼ −ð1þ wψ ÞΓψρψ ; ð29Þ

ρ̇R þ 4HρR ¼ ð1þ wψÞΓψρψ ; ð30Þ

withH2 ¼ ð1=3M2
PÞðρψ þ ρRÞ. Here, ρψ , ρR are the energy

densities for the inflaton and the SM radiation bath, and Γψ

contains the decay and scattering rates for the inflaton.
Then, the evolution of the inflaton energy density is
approximately given by ρψ ≃ ρψ ;endða=aendÞ−3ð1þwψ Þ, and
the SM radiation energy density is also approximated to

ρRðaÞ ≃
8MPΓψ

ffiffiffiffiffiffiffiffiffiffiffi
ρψ ;end

p
ffiffiffi
3

p ð5 − 3wψÞ

�
a

aend

�
−3
2
ð1þwψ Þ

×

�
1 −

�
a

aend

�
−1
2
ð5−3wψ Þ�

: ð31Þ

Thus, the reheating temperature TRH is determined by
ρψ ¼ ρR ¼ ðπ2gRH=30ÞT4

RH.
On the other hand, the Weyl photon can be produced

from the gravitational scattering of the inflaton as well as
the gravitational scattering of the radiation during or after
reheating. Thus, solving the Boltzmann equations for the
number density of the Weyl photon during and after
reheating [23], we obtain the relic abundance of the
Weyl photon as

Ωwh2 ¼ 1.6 × 108mw

�
g�;0
gRH

��
Yw;inflaton

þ Yw;thermal þ Yw;reheating

�
; ð32Þ

with

Yw;inflaton ≃
2.53g3=4RHλ

3=4
ϕ ψ3

end

M3
P

; ð33Þ

Yw;thermal ≃
56 469T3

RH

128π6
ffiffiffiffiffiffiffiffiffiffiffiffi
10gRH

p
M3

P
; ð34Þ

Yw;reheating ≃
	Yw;thermal; PQ inflation;

18 759
18 823

Yw;thermal; Higgs inflation:
ð35Þ

Here, g�;0 ¼ 3.91 and gRH ¼ 106.75 are taken, and ψ end is
the inflation field value at the end of inflation, set to
ψ end ≃ 1.5MP, and λϕ ¼ 10−11 at reheating from CMB
normalization. In the case of the Higgs pole inflation, we
kept only the SM fermions and gauge bosons for thermal
scattering during reheating (Yw;reheating) as the Higgs fields
have large field-dependent masses. We also note that the
contribution from the inflaton scattering is independent of
the reheating temperature [24], unlike the case with a
matterlike inflaton during reheating [25,26].

FIG. 2. Reheating temperature TRH vs Weyl photon massmw in
the pole inflation with a quartic potential. The orange dashed line
corresponds to the contour satisfying the correct relic density with
thermal scattering only, while the black line is the case after both
inflaton scattering and thermal scattering are included. A small
discrepancy between the cases for PQ and Higgs pole inflation
models is not shown.
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In Fig. 2, the black lines show the contours for the correct
relic density for the Weyl photon dark matter in TRH vs mw
for the PQ or Higgs pole inflations. The orange dashed lines
correspond to the correct relic density when only the
thermal scattering processes during and after reheating
are taken into account. The temperature for instantaneous
reheating becomes maximal, as shown in the red lines. We
find that the contribution from the inflaton scattering is
independent of the reheating temperature and dominant as
compared to the thermal scattering [27]. The observed dark
matter abundance is accounted for by the Weyl photon of
about 10 MeV mass. A small difference between the relic
abundances in the PQ and Higgs pole inflations is not
visible in Fig. 2.
Conclusions—We presented the microscopic origin of

pole inflation with scalar fields in the N-dimensional
multiplet in Weyl gravity. We showed that the broken
SOð1; NÞ isometry in the field space in combination with
Weyl symmetry restricts the form of the Lagrangian in the
Jordan frame such that the vacuum energy is dominant
during inflation near the pole of the kinetic term for the
inflaton in the Einstein frame. An explicit breaking of the
SOð1; NÞ symmetry to SOðNÞ is necessary for a slow-roll
inflation near the pole.
From the Higgs or PQ inflation models with Weyl

symmetry, we found that one parameter family of the pole
inflation exists, depending on the overall coefficient a of
the Weyl covariant derivatives for scalar fields. The same
coefficient not only makes the inflationary predictions for
the spectral index and the tensor-to-scalar ratio varying,
being compatible with the Planck data, but also determines
the mass of the Weyl gauge field. As compared to the T α-
attractor models [5], our results show an interesting
consequence that the tensor-to-scalar ratio decreases as
the Weyl photon mass, m2

w ¼ ½6a g2w=ð1þ aÞ�, increases,
for a ¼ ½0; 1�.
A successful inflation with Higgs or PQ fields is possible

while the isocurvature perturbations of the axion can be
suppressed sufficiently in the latter case, due to a large
effective axion decay constant during inflation. We also
showed that the massive Weyl photon can be a dark matter
candidate of about 10 MeV mass, which is produced
dominantly from the inflaton scattering during reheating.
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