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A B S T R A C T

One commonly used approach to seismic probabilistic safety assessment (PSA) is the discrete method, which 
follows the conventional PSA framework and can be applied to various different model types (e.g., multi-unit 
models). As it is performed using standard software, this method reduces computational costs. However, as 
intervals cannot be subdivided infinitely, the discrete method instead utilizes an approximation based on a finite 
number of subintervals. In practice, different numbers of subinterval are applied, and the representative ground 
motion level is selected based on expert judgment. When employing a smaller number of subintervals, care must 
be taken to prevent underestimation of risk. The present study analyzes the impact of representative ground 
motion level on seismic risk, confirming that underestimation can indeed occur with a small number of sub
intervals, depending on the representative ground motion level. Specifically, using the left endpoint un
derestimates, the right endpoint overestimates, and the midpoint may do either. It also proposes a method for 
determining the underestimation-overestimation boundary. This method is demonstrated via examples, affording 
a mathematical basis for the appropriate selection of representative ground motion levels. Avoiding underesti
mation helps prevent significant risk contributors from being overlooked and enhances the current under
standing of seismic risk.

1. Introduction

Probabilistic Safety Assessment (PSA) is an integrated, structured 
approach to quantitatively evaluate the risk from nuclear power plants. 
It tries to answer what can go wrong, what the consequences are, and 
how likely it is. Recent improvements in conventional PSA include the 
frequency calculation of interfacing system loss of coolant accident [1] 
and state-of-knowledge correlation effect [2]. Multi-unit PSA [3] and 
dynamic PSA [4–7] have also been widely investigated.

Seismic PSA is a component of PSA to evaluate the risk that seismic 
events pose to nuclear power plants. Seismic PSA generally consists of 
seismic hazard analysis, seismic fragility analysis, systems analysis, and 
quantification [8–10]. The seismic hazard analysis generates seismic 
hazard curves that indicate the exceedance frequencies of ground mo
tion levels, along with the uncertainties that correspond to those fre
quencies. Seismic fragility analysis gives the seismic fragility 
probabilities of systems, structures, and components (SSCs). Both types 
of analyses are required input for determining the risk posed by seismic 
events, as opposed to that posed by general internal events. Systems 

analysis enables a logic model to be generated in the wake of a seismic 
initiating event, with event and fault trees that consider seismic failures 
of SSCs [11]. In the quantification process for seismic PSA, a nuclear 
power plant’s core damage frequency initiated by a seismic event is 
calculated per the convolution of the hazard and fragility curves. 
Recently, multi-unit seismic PSA has also been investigated [12].

There are various approaches to quantifying the seismic PSA. Kwag 
et al. [37] categorized them as either complete sampling, semi-sampling, 
or analytical methods, while Zhou et al. [10] categorized them into two 
numerical schemes: simulation based and discretization based. The 
simulation-based scheme combines the seismic hazard and fragility 
curves by sampling random variables via Monte Carlo simulation and 
Latin hypercube sampling. The sampling and semi-sampling approach 
can be considered as part of the simulation-based scheme. Various 
studies have been conducted using simulation-based approaches, and 
Monte-Carlo-based direct quantification of fault trees is an example of 
one such approach that is currently experiencing active utilization and 
enhancement ([13,14,15,37,]). Although this method can consider 
seismic correlations, sufficient sampling is required for accurate results, 
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thus leading to high computational costs. Another method is a discrete 
approach based on discretization of the continuous distribution, which 
is considered as an analytical method and is the primary focus of this 
study [9,10,16]. In this method, the ground motion level (e.g., peak 
ground acceleration and spectral acceleration) is discretized into several 
subintervals. The seismic risk is then analyzed by assuming a repre
sentative ground motion level for each. Since the discrete approach 
follows the conventional PSA framework, a number of guidelines on 
seismic PSA describe this approach [9,17,18]. In addition, the analysis 
can be performed without great computational effort, using standard 
software. Furthermore, active research is being conducted on hybrid 
methods that consider both the simulation and discrete approaches. 
Zhou et al. [10] accounted for dependencies between multi-unit SSCs by 
considering a combination of parallel Monte Carlo simulations and 
discrete approaches.

However, even if the conventional PSA framework is employed for 
the discrete approach, applying the existing quantification method may 
inject a large amount of uncertainty into the results of seismic events. 
This is because undue conservatism can be injected when employing 
rare event approximations and minimal cut-set upper bounds, as are 
typically used to quantify internal events. Han [19] introduced a method 
of partially performing binary decision diagram calculations to increase 
the quantification accuracy. Park and Jung [20] introduced a new 
quantification method called “probability subtraction” to avoid over
estimation of the risk. Jung [21] identified the effect of underestimation 
when combinations of mutually exclusive events are not deleted, and 
suggested a method of explicitly accounting for conditional events in a 
fault tree so as to avoid this issue. And Kim and Kim [22] provided in
sights into the quantification of seismic risk by using approximations 
such as the delete-term approximation, rare event approximation, and 
minimal cut-set upper bound while applying the negate-down, which is 
a new feature in seismic quantification.

In addition, the number of subintervals and the representative 
ground motion level should be carefully selected. Kim and Kim [23] 
showed that accuracy improves as the number of subintervals increases. 
However, in practical applications, it is unrealistic to subdivide the in
tervals infinitely due to computational constraints, as each subinterval 
requires a seismic PSA model and evaluation process. They also showed 
that underestimation can occur when the number of subintervals is small 
[24]. Furthermore, the number of subintervals and the representative 
ground motion levels are applied differently depending on the applica
tion. For example, 8, 9, and 16 subintervals of ground motion level were 
employed in the seismic PSAs performed on the Surry [25], Sequoyah 
[26], and Diablo Canyon [27] plants, respectively. And although Zhou 
et al. [10] showed that geometric ground motion level produces 
non-conservative results, there remains a lack of clarity as to what 
specific value to select for the ground motion level. In addition, the 
discrete approach inherently introduces interpolation errors when esti
mating seismic responses between seismic intensity levels [28,29].

Many studies have been conducted to reduce uncertainty and pro
duce more accurate results by avoiding conservatism or the underesti
mation of seismic risk. This study focuses on the representative ground 
motion level in the discrete approach, which has historically been 
assumed without sufficient justification. The aim of this study is to 
analyze the effect of representative ground motion level on seismic risk 
and to provide a mathematical background for selecting the appropriate 
level in practice. Section 2 discusses practical application of the discrete 
approach’s convolution of the hazard and fragility curves. Section 3
mathematically demonstrates how the representative ground motion 
level affects seismic risk estimations. Section 4 introduces a method for 
deriving the boundary between overestimating and underestimating 
seismic risk. Section 5 examines the applicability of this method in the 
context of a specific example. The outcomes of this study are discussed in 
Section 6, and the overall conclusions are presented in Section 7.

2. Discrete approach to seismic quantification in practice

By integrating the convolution (i.e., product) of the hazard and 
fragility curves, we can obtain the seismic risk. In theory, all ground 
motion levels should be considered; however, in actual seismic PSA 
practice, only a specific range is covered, as SSCs are designed to 
withstand both the operating basis earthquake and the safe shutdown 
earthquake. For higher ground motion levels, direct core damage is 
generally assumed, without the need for detailed analysis.

The seismic risk stemming from the ground motion levels a to b can 
be obtained per: 

P=

∫ b

a
−

dH(x)
dx

F(x)dx (1) 

where H(x) is a hazard curve and F(x) is a fragility curve for the ground 
motion level x. The hazard curve represents the rate of earthquakes 
exceeding ground motion level. This curve, which is generally decreasing, 
can be approximated via Eq. (2) if using an appropriate constant (KI) and 
slope parameter (KH) [30,31]. The fragility curve represents the failure 
probability of an SSC, and per Eq. (3) it is generally assumed to be 
lognormally distributed with a median capacity ground motion level (Am) 
and a composite standard deviation (βc) [32]. The composite standard 
deviation (βc) can be calculated by taking the square of the sum of the 
aleatory standard deviation (βr) and epistemic standard deviation (βu). 

H(x)=KIx− KH (2) 

F(x)=Φ
(

ln(x) − ln(Am)

βc

)

(3) 

In the discrete approach, seismic risk is quantified by several sub
intervals, as per: 

P= lim
N→∞
(Δx→0)

∑N

i=1

H(xi) − H(xi + Δx)
Δx

F(xi)Δx (4) 

where N is the number of subintervals and Δx is the length of the sub
intervals when the ground motion level discretizes into equally spaced 
subintervals from a to b.

If the number of subintervals extends to infinity, the exact risk can be 
obtained. However, in actual application, the PSA model should be 
developed the same number of times as the subintervals are discretized. 
Thus, the number of subintervals is instead considered to be finite and 
the seismic risk is approximated using the Riemann sum. The approxi
mated seismic risk is defined by Eq. (5)—an approach commonly used in 
practice [9,18,33]: 

P ≈
∑N

i=1
(H(xi) − H(xi +Δx))F(xi) (5) 

On the other hand, the different representative ground motion levels 
can be applied in the hazard and fragility terms, as per: 

P ≈
∑N

i=1
(H(xh(i)) − H(xh(i+1)))F

(
xf(i)
)

(6) 

where xh(i) and xf(i) denote the representative ground motion levels 
within the i-th subinterval for the hazard and fragility curves, respec
tively. Since the earthquake occurrence frequency is derived by deter
mining the difference between the exceeding frequency from the hazard 
curve, xh(i) is usually assumed to be the left endpoints of the ground 
motion level within the subintervals. Alternatively, xh(i+1) can be 
expressed as xh(i) + Δx. However, xf(i) can be assumed to be either the 
left endpoint, right endpoint, or midpoint level within the subintervals. 
The effect of the number of subintervals can differ depending on the 
setting value of xf(i), as explained in Section 3.
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3. Effect of representative ground motion level on seismic risk

This section analyzes the effect that the number of subintervals has 
on seismic risk, depending on the representative ground motion level. 
Specifically, as regards the representative ground motion level of the 
fragility curve, there are three possibilities: it is assumed to be either at 
the left endpoint, right endpoint, or midpoint level within the 
subinterval.

The seismic risk from the ground motion level a to b, as approxi
mated via Eq. (5), is denoted by Pu,v, where u denotes the representative 
ground motion level for the fragility curve, which corresponds to the left 
endpoint (l), right endpoint (r), and midpoint (m) level; v denotes the 
number of subintervals, with the ground motion level being discretized 
by 2n and 2n+1, as represented by {1,2}, respectively; and the indices are 
defined as u ∈ {l, r,m} and v ∈ {1,2}.

The representative ground motion levels of the hazard curve are 
assumed to be left endpoints, so the hazard term of the approximation in 
Eq. (5) equates to the change in the hazard—from the minimum to the 
maximum level—within the subintervals. Thus, xh(i) and xh(i+1) of the 
hazard term are applied to the left endpoint of the i-th and i+ 1-th 
subinterval—namely, a + (i − 1)Δx and a+ iΔx.

3.1. Seismic risk for the left endpoint of the fragility curve within the 
subinterval

The seismic risk, as denoted by Pu=l, was approximated by assuming 
the representative ground motion level of the fragility curve to be the 
left endpoint within the subinterval from Eq. (6). Per Eq. (7), xf(i) was 
applied to the left endpoint of the i-th subinterval, which is a+ (i −
1)Δx. 

Pu=l =
∑N

i=1
(H(a+(i − 1)Δx) − H(a+ iΔx))F(a+(i − 1)Δx) (7) 

To compare seismic risk depending on the number of subintervals, 
we defined the seismic risk Pl,1 and Pl,2 by utilizing Eqs. (8) and (9), 
which are discretized by 2n and 2n+1, respectively. 

Pl,1=
∑2n

i=1

(

H
(

a+
(i − 1)(b − a)

2n

)

− H
(

a+
i(b − a)

2n

))

F
(

a+
(i − 1)(b − a)

2n

)

(8) 

Pl,2=
∑2n+1

j=1

(

H
(

a+
(j − 1)(b − a)

2n+1

)

− H
(

a+
j(b − a)

2n+1

))

F
(

a+
(j − 1)(b − a)

2n+1

)

(9) 

The seismic risk Pl,2 can be transformed by Eq. (10) to be equal to the 
upper bound of the summation in Eq. (8). 

Pl,2 =
∑2n

i=1

((

H
(

a+
(2i − 2)(b − a)

2n+1

)

− H
(

a+
(2i − 1)(b − a)

2n+1

))

F
(

a+
(2i − 2)(b − a)

2n+1

)

+

(

H
(

a+
(2i − 1)(b − a)

2n+1

)

− H
(

a+
2i(b − a)

2n+1

))

F
(

a+
(2i − 1)(b − a)

2n+1

))

(10) 

Since the index and the upper bound of summation of Eq. (10)
matches up with those of Eq. (8), the two summations from Eq. (8) and 
Eq. (10) can be combined into a single summation. By using Eq. (11), we 
can compare Pl,1 and Pl,2. 

Pl,1 − Pl,2 =
∑2n

i=1

(

H
(

a+
(i − 1)(b − a)

2n

)

− H
(

a+
i(b − a)

2n

))

F
(

a+
(i − 1)(b − a)

2n

)

−
∑2n

i=1

((

H
(

a+
(2i − 2)(b − a)

2n+1

)

− H
(

a+
(2i − 1)(b − a)

2n+1

))

F
(

a+
(2i − 2)(b − a)

2n+1

)

+

(

H
(

a+
(2i − 1)(b − a)

2n+1

)

− H
(

a+
2i(b − a)

2n+1

))

F
(

a+
(2i − 1)(b − a)

2n+1

))

(11) 

Eq. (11) is simplified into Eq. (12) via summation of the factorized 
equation. 

Pl,1 − Pl,2 =
∑2n

i=1

(

H
(

a+
(2i − 1)(b − a)

2n+1

)

− H
(

a+
2i(b − a)

2n+1

))

(

F
(

a+
(2i − 2)(b − a)

2n+1

)

− F
(

a+
(2i − 1)(b − a)

2n+1

)) (12) 

The inequalities shown below in Eq. (13) are always satisfied 
because the typical hazard curve is a decreasing one, and the typical 
fragility curve is an increasing one. Accordingly, the hazard term in Eq. 
(12) is always positive and the fragility term always negative. 
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

H
(

a+
(2i − 2)(b − a)

2n+1

)

>H
(

a+
(2i − 1)(b − a)

2n+1

)

>H
(

a+
2i(b − a)

2n+1

)

F
(

a+
(2i − 2)(b − a)

2n+1

)

< F
(

a+
(2i − 1)(b − a)

2n+1

)

< F
(

a+
2i(b − a)

2n+1

)

(13) 

Therefore, Eq. (12) always has a negative value when the represen
tative ground motion level of the fragility curve is assumed to be the left 
endpoint within the subintervals. This means greater seismic risk stems 
from a larger number of subintervals than from a smaller number. In 
other words, an insufficient number of subintervals may lead to un
derestimation of risk.

3.2. Seismic risk for the right endpoint of the fragility curve within the 
subinterval

The seismic risk was also approximated by assuming the represen
tative ground motion level for the fragility curve to be the right endpoint 
within the i-th subinterval, which is a+ iΔx, and denoted by Pu=r. The 
seismic risk based on the right endpoint is defined by Eq. (14), and is 
discretized by 2n and 2n+1 in Eqs. (15) and (16), respectively. 

Pu=r =
∑N

i=1
(H(a+(i − 1)Δx) − H(a+ iΔx))F(a+ iΔx) (14) 

Pr,1 =
∑2n

i=1

(

H
(

a+
(i − 1)(b − a)

2n

)

− H
(

a+
i(b − a)

2n

))

F
(

a+
i(b − a)

2n

)

(15) 

Pr,2 =
∑2n+1

j=1

(

H
(

a+
(j − 1)(b − a)

2n+1

)

− H
(

a+
j(b − a)

2n+1

))

F
(

a+
j(b − a)

2n+1

)

(16) 

Similarly, the seismic risk Pr,2 can be transformed by adjusting the 
upper bound of the summation from Eq. (16), as per: 
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Pr,2 =
∑2n

i=1

((

H
(

a+
(2i − 2)(b − a)

2n+1

)

− H
(

a+
(2i − 1)(b − a)

2n+1

))

F
(

a+
(2i − 1)(b − a)

2n+1

)

+

(

H
(

a+
(2i − 1)(b − a)

2n+1

)

− H
(

a+
2i(b − a)

2n+1

))

F
(

a+
2i(b − a)

2n+1

))

(17) 

The following equation can be used to compare Pr,1 and Pr,2: 

Pr,1 − Pr,2 =
∑2n

i=1

(

H
(

a+
(i − 1)(b − a)

2n

)

− H
(

a+
i(b − a)

2n

))

F
(

a+
i(b − a)

2n

)

−
∑2n

i=1

((

H
(

a+
(2i − 2)(b − a)

2n+1

)

− H
(

a+
(2i − 1)(b − a)

2n+1

))

F
(

a+
(2i − 1)(b − a)

2n+1

)

+

(

H
(

a+
(2i − 1)(b − a)

2n+1

)

− H
(

a+
2i(b − a)

2n+1

))

F
(

a+
2i(b − a)

2n+1

))

(18) 

Similar to the previous process, Eq. (18) can be transformed into Eq. 
(19): 

Pr,1 − Pr,2 =
∑2n

i=1

((

H
(

a+
(2i − 2)(b − a)

2n+1

)

− H
(

a+
(2i − 1)(b − a)

2n+1

))

(

F
(

a+
2i(b − a)

2n+1

)

− F
(

a+
(2i − 1)(b − a)

2n+1

)))

(19) 

Due to the properties of the hazard and fragility curves in Eq. (13), 
the hazard and fragility terms of Eq. (19) are always positive. Accord
ingly, the seismic risk discretized by 2n exceeds the risk discretized by 
2n+1, meaning that a small number of discretization cannot cause 
underestimation.

3.3. Seismic risk for the midpoint of the fragility curve within the 
subinterval

Finally, the seismic risk was approximated by assuming the repre
sentative ground motion level for the fragility curve to be the midpoint 
within the i-th subinterval, which is a+ (2i− 1)

2 Δx, and denoted by Pu=m.

The seismic risk based on the midpoint level is defined as: 

Pu=m =
∑N

i=1
(H(a+(i − 1)Δx) − H(a+ iΔx))F

(

a+
(2i − 1)

2
Δx
)

(20) 

When the number of subintervals is 2n, the seismic risk can be calculated 
using Eq. (21). The hazard term can be expanded because the sum of the 
hazard terms is the same regardless of number of subintervals. 

Pm,1=
∑2n

i=1

((

H
(

a+
(i − 1)(b − a)

2n

)

− H
(

a+
i(b − a)

2n

))

F
(

a+
(2i − 1)(b − a)

2n+1

))

=
∑2n

i=1

((

H
(

a+
(2i − 2)(b − a)

2n+1

)

− H
(

a+
(2i − 1)(b − a)

2n+1

))

F
(

a+
(2i − 1)(b − a)

2n+1

)

+

(

H
(

a+
(2i − 1)(b − a)

2n+1

)

− H
(

a+
2i(b − a)

2n+1

))

F
(

a+
(2i − 1)(b − a)

2n+1

))

(21) 

When the number of subintervals is 2n+1, the seismic risk can be 
calculated via Eq. (22) and transformed by adjusting the upper bound of 
the summation. 

Pm,2=
∑2n+1

j=1

((

H
(

a+
(j − 1)(b − a)

2n+1

)

− H
(

a+
j(b − a)

2n+1

))

F
(

a+
(2j − 1)(b − a)

2n+2

))

=
∑2n

i=1

((

H
(

a+
(2i − 2)(b − a)

2n+1

)

− H
(

a+
(2i − 1)(b − a)

2n+1

))

F
(

a+
(4i − 3)(b − a)

2n+2

)

+

(

H
(

a+
(2i − 1)(b − a)

2n+1

)

− H
(

a+
2i(b − a)

2n+1

))

F
(

a+
(4i − 1)(b − a)

2n+2

))

(22) 

The equation for comparing Pm,1 and Pm,2 can be defined by Eq. (23)
and manipulated in its simplest form. 

Pm,1 − Pm,2 =
∑2n

i=1

((

H
(

a+
(2i − 2)(b − a)

2n+1

)

− H
(

a+
(2i − 1)(b − a)

2n+1

))

(

F
(

a+
(4i − 2)(b − a)

2n+2

)

− F
(

a+
(4i − 3)(b − a)

2n+2

))

+

(

H
(

a+
(2i − 1)(b − a)

2n+1

)

− H
(

a+
2i(b − a)

2n+1

))

(

F
(

a+
(4i − 2)(b − a)

2n+2

)

− F
(

a+
(4i − 1)(b − a)

2n+2

)))

(23) 

Because the typical hazard curve is generally decreasing convex, the 
inequalities shown in Eq. (24) and Eq. (13) are satisfied. Accordingly, 
the hazard terms are always positive, and the first term of the hazard 
exceeds the second term, as shown in Eq. (25). 

H
(

a+
(2i − 1)(b − a)

2n+1

)

<

H
(

a+(2i− 2)(b− a)
2n+1

)

+H
(

a+ 2i(b− a)
2n+1

)

2
(24) 

H
(

a+
(2i − 2)(b − a)

2n+1

)

− H
(

a+
(2i − 1)(b − a)

2n+1

)

>H
(

a+
(2i − 1)(b − a)

2n+1

)

− H
(

a+
2i(b − a)

2n+1

)

(25) 

The fragility curve is satisfied as regards the inequality reflected in 
Eq. (26) because it is an increasing curve. The first term of the fragility 
curve in Eq. (23) is positive but the second is negative. 

F
(

a+
(4i − 3)(b − a)

2n+2

)

< F
(

a+
(4i − 2)(b − a)

2n+2

)

<F
(

a+
(4i − 1)(b − a)

2n+2

)

(26) 

Additionally, the fragility curve has both convex and concave re
gions. In the concave region, which has a higher ground motion level, 
Eq. (27) is satisfied. Because of the property of the concave curve, the 
first term of the fragility curve exceeds the second, as shown in Eq. (28). 

F
(

a+
(4i − 2)(b − a)

2n+2

)

>

F
(

a +
(4i− 3)(b− a)

2n+2

)

+ F
(

a +
(4i− 1)(b− a)

2n+2

)

2
(27) 

F
(

a +
(4i − 2)(b − a)

2n+2

)

− F
(

a +
(4i − 3)(b − a)

2n+2

)

> F
(

a +
(4i − 1)(b − a)

2n+2

)

− F
(

a +
(4i − 2)(b − a)

2n+2

)

(28) 

Eqs. (25) and (28) can be summarized by Eq. (29), and Eq. (23) can 
be confirmed to always be positive, since the absolute value of the 
negative term of Eq. (23) is less than that of the positive term of Eq. (23)
via Eq. (29). That is, as the number of subintervals increases, the seismic 
risk decreases in the concave region of the fragility curve. 
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(

H
(

a+(2i − 1)(b − a)
2n+1

)

− H
(

a+
2i(b − a)

2n+1

))(

F
(

a+(4i − 1)(b − a)
2n+2

)

− F
(

a+
(4i − 2)(b − a)

2n+2

))

<

(

H
(

a+
(2i − 2)(b − a)

2n+1

)

− H
(

a+
(2i − 1)(b − a)

2n+1

))(

F
(

a+
(4i − 2)(b − a)

2n+2

)

− F
(

a+
(4i − 3)(b − a)

2n+2

))

(29) 

On the other hand, it is not satisfied in the convex region of the 
fragility curve. If the hazard curve is linear, the hazard terms of Eq. (23)
are identical as well as positive. Eq. (23) can then be transformed into 
Eq. (30), and the seismic risk is affected solely by the fragility curve. Eq. 
(30) is always negative because of the convex property, as shown in Eq 
(31). Thus, the seismic risk might be underestimated as the number of 
subintervals decreases in the convex region of the linear hazard curve. 

Pm,1 − Pm,2 =
∑2n

i=1

(

H
(

a+
(2i − 2)(b − a)

2n+1

)

− H
(

a+
(2i − 1)(b − a)

2n+1

))

(

2F
(

a+
(4i − 2)(b − a)

2n+2

)

− F
(

a+
(4i − 3)(b − a)

2n+2

)

− F
(

a+
(4i − 1)(b − a)

2n+2

))

(30) 

F
(

a+
(4i − 2)(b − a)

2n+2

)

<

F
(

a +
(4i− 3)(b− a)

2n+2

)

+ F
(

a +
(4i− 1)(b− a)

2n+2

)

2
(31) 

However, since the hazard curve is decreasing convex rather than 
linear, the underestimation results stemmed from the lower ground 
motion level of the fragility curve’s convex region. The seismic risks 
depending on the number of subintervals were compared based on 
whether Eq. (23) was negative or positive. For instance, Eq. (23) being 
negative meant that the seismic risk with 2n subintervals was less than 
the risk with 2n+1. The boundary for the result depends on the ratios of 
the hazard and fragility differences, which are derived from Eq. (23), as 
follows:  

where Δx = b− a
2n .

4. Underestimation-overestimation boundary, with a small 
number of subintervals

For the seismic risk based on the midpoint level of the fragility curve, 
the ground motion level boundary at which the underestimation result 
was identified is in the convex region of the fragility curve. Per Eq. (32), 
the boundary can be derived by assuming the changes of each hazard 
term and fragility term to be the slope at the midpoint of each subin
terval, per: 

h
(

a + 8i− 6
8 Δx

)

h
(

a + 8i− 2
8 Δx

) ≤

f
(

a + 8i− 3
8 Δx

)

f
(

a + 8i− 5
8 Δx

) (33) 

where h(x) and f(x) are the derivatives of the hazard and fragility 
curves, respectively.

The underestimation-overestimation boundary is based on the point 
at which the equation that shifts the right term to the left is less than 0. 
Applying Eqs. (2) and (3) enables the boundary equation, y(i), to be 
derived per Eq. (34). If the equation is negative, the result will be 
underestimated when using a smaller number of subintervals. 

y(i)=
(

a1

a4

)− KH − 1

−
a2

a3
exp

⎛

⎜
⎜
⎝

ln
(

a2
a3

)

ln

(

a2a3
A2

m

)

2β2
c

⎞

⎟
⎟
⎠ (34) 

where a1 = a+ 8i− 6
8 Δx 

a2 = a +
8i − 5

8
Δx 

a3 = a +
8i − 3

8
Δx 

a4 = a +
8i − 2

8
Δx 

The boundary equation can be solved by employing the false position 
method [34]. Fig. 1 gives a flowchart for finding the root of Eq. (34). To 
derive the boundary, this method requires the hazard data (KI, KH), 
fragility data (Am,βr,βu), and error limit (EL). The entire ground motion 
level ranges from a to b, but the boundary is located in the convex region 
of the fragility curve, which is less than Am. The false position method is 
based on the linear line that connects two points. The two initial points 
are i1 and iN, representing the initial ground motion level a and the 
median ground motion level capacity Am. The second point i2 is posi
tioned where the initial line intersects the x-axis. The next point is then 
obtained as follows, after determining the location via the root of Eq. 
(34) with the root: 

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

y(ik)y(iN) < 0 : ik+1 =
iky(iN) − iNy(ik)

y(iN) − y(ik)

y(ik)y(iN) > 0 : ik+1 =
i1y(ik) − iky(i1)

y(ik) − y(i1)

(35) 

The false position method is performed until the change of i is below 
the error limit, thus indicating the boundary ground motion level, xβ. If 
the number of subintervals (N = 2n) falls under the predetermined 
threshold, it cannot be converged. Thus, the calculation is iterated by 
increasing n until the change in ground motion level boundary falls 
below the error limit.

5. Example of using the proposed method to derive the 
underestimation-overestimation boundary

This section provides an example in which a hazard curve with KI =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

H
(

a +
2i − 2

2
Δx
)

− H
(

a +
2i − 1

2
Δx
)

H
(

a +
2i − 1

2
Δx
)

− H
(

a +
2i
2

Δx
) <

F
(

a +
4i − 1

4
Δx
)

− F
(

a +
4i − 2

4
Δx
)

F
(

a +
4i − 2

4
Δx
)

− F
(

a +
4i − 3

4
Δx
) : Pm,1 < Pm,2

otherwise : Pm,1 ≥ Pm,2

(32) 
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Fig. 1. False position method for finding the roots of y(i).
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10− 6 and (KH) = 1/ln(3), and a fragility curve with AM = 0.5 and βu =

βr = 0.35, are considered. The entire ground motion level was analyzed 
from 0.05 to 1.05 g, and the subintervals were divided into 28. Each 
subinterval was analyzed based on a ground motion level of 
(a+(i − 1)Δx) up to (a + iΔx). Depending on whether the subinterval 
was analyzed as one section or two, a subinterval in which seismic risk is 
underestimated may occur as a result of a small number of subintervals.

Fig. 2 shows the seismic risk depending on the representative ground 
motion level of the fragility term. The risk based on the left endpoint is 
underestimated when using a small number of subintervals, whereas the 
risks based on the midpoint and right endpoint are overestimated. The 
results also show that the risk is converged with a large number of 
subintervals. Because, in practice, the number of subintervals is finite, it 
is recommended to conservatively use the right endpoint so as to prevent 
underestimation of the seismic risk.

When the midpoint is used, there exist ground motion levels where 
underestimation occurs if the number of subintervals is insufficient. This 
boundary can be identified from Eqs. (32) and (33), which incorporate 
both hazard and fragility data. Fig. 3 illustrates how the boundary de
pends on the ratios of the hazard and fragility term within each subin
terval. The hazard and fragility terms illustrated by the dashed lines and 
markers represent the ratios of the hazard and fragility differences from 
a to Am from Eq. (32). When illustrated by solid lines, the hazard and 
fragility terms indicate the ratios of the differentials of the hazard and 
fragility curves from Eq. (33). Because the dashed and solid lines are 
similar when Δx is small enough, we can use Eq. (33) to find the root. 
Fig. 3 also presents the differences between the hazard and fragility 
terms via the green line, which can be also defined by Eq. (34). In lower 
ground motion levels, the fragility term exceeds the hazard term in case 
where the difference of their ratios is negative. But as the difference of 
their ratios is positive, the relation of the hazard and fragility terms is 
reversed, and thus the risk cannot be underestimated. The point at which 
the difference of their ratios is zero is the underestimation- 
overestimation boundary, which depends on the number of sub
intervals. In this example, the boundary is located at around the 10-th 
subinterval, which represents a ground motion level of between 
0.0852 and 0.0891 g.

The ground motion level boundary where Eq. (34) is positive can be 
determined as xβ when using the false position method described in 
Section 4. In this example, the ground motion level 0.0859 g can be 
obtained as xβ, with the error limit 10− 5. Fig. 4 represents the seismic 
risk depending on the number of subintervals for the two regions. The 
first region, with a ground motion level of between 0.05 and 0.0859 g is 
where underestimated results are obtained by using a smaller number of 

Fig. 2. Example of seismic risk, depending on the representative ground mo
tion level of the fragility term.

Fig. 3. Hazard and fragility terms in Eqs. (32) and (33).

Fig. 4. Seismic risk for the two regions, depending on the number of 
subintervals.

Fig. 5. Boundary equation, depending on AM (βr = βu = 0.35).
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subintervals. The other region causes the risk to be overestimated as the 
number of subintervals decreases.

As seen in Figure, only a few regions lead to underestimated results 
when using a small number of subintervals. Most other subintervals, 
including the concave and even part of the convex region of the fragility 
curve, are more conservative when the number of subintervals is small. 
Additionally, in Figure, the seismic risk in the region which ranges from 
0.0859 to 1.05 g greatly contributes to the seismic risk, which is also 
much wider. Thus, the total seismic risk with the midpoint representa
tive level can at least be approximated based on conservative results, 
even using a small number of subintervals (see Fig. 2).

6. Discussion

The discrete approach to seismic quantification is based on making 
an assumption as to the representative ground motion level within each 
subinterval. With a finite number of subintervals being considered in 
practical application, assumption of the representative ground motion 
level can affect seismic risk estimates. At this point, the fact that using a 
small number of subintervals leads to underestimation of risk may be 
important to note. As discussed in Section 3, we were able to confirm 
that seismic risk is affected by the representative ground motion level. 
Although using the left endpoint the case in which the risk is based on 
the midpoint level leads to both overestimation and underestimation of 
risk depending on the ground motion level.

Additionally, it should be noted that, in practice, the hazard curve is 
typically not provided in a closed-form analytical expression, and the 
fragility curve is not represented by a single function [35]. However, 
since the hazard curve generally follows a monotonic decreasing trend 
[36], it has limited influence on whether underestimation or over
estimation occurs for a given the representative ground motion level. In 
contrast, fragility data directly influences the curvature of the fragility 
curve, resulting in different convex and concave regions across the 
ground motion level. It can affect where the underestimation and 
overestimation occur with a smaller number of subintervals.

Therefore, the boundary equation, y(i), was analyzed in accordance 
with the fragility data. Fig. 5 shows the boundary equation, and Fig. 6
shows the boundary ground motion level as per the change of AM. In 
Fig. 5, the underestimation-overestimation boundary is based on the 
point that becomes 0. It can be shown that the boundary moves to the 
right as AM increases. In other words, the lower AM does not make the 
underestimation boundary. In cases where the value of AM is low but has 
an underestimation boundary, such as 0.3 in Fig. 5, obtaining a reliable 
solution becomes challenging. To derive more accurate estimates of the 
boundary ground motion level, the false position method proposed in 
Section 4 can be employed. Fig. 6 illustrates the boundary ground mo
tion level derived via the proposed method. The boundary ground mo
tion level is also shown to increase as AM increases. In addition, the 
boundary ground motion level is seen to be proportional to AM, and the 
ratio of boundary ground motion level to AM is constant.

Figs. 7 and 8 show the boundary equation and boundary ground 
motion level, respectively, in accordance with βc. Unlike with AM, it is 
difficult to see a consistent trend, but the boundary does appear in a 
lower ground motion level than for AM. This indicates that a substantial 
number of subintervals is needed to avoid underestimation of risk when 
analyzing low ground motion levels.

7. Conclusions

The discrete approach is one of the most commonly used methods in 
seismic risk quantification, as it can be conducted similarly to the 
traditional PSA method, using standard PSA software. However, in 
practical applications, an infinite number of subintervals cannot be 
analyzed to obtain an exact result, so the seismic risk is approximated 
using a finite number of subintervals. In this approach, the representa
tive ground motion level in each subinterval is also assumed to reflect 

Fig. 6. Boundary ground motion level, depending on AM (βr = βu = 0.35).

Fig. 7. Boundary equation, depending on βc (AM = 0.5).

Fig. 8. Boundary ground motion level, depending on βc (AM = 0.5).
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the hazard and fragility values for different ground motion levels. These 
assumptions, historically determined via expert judgment and without 
sufficient justification, have been applied to various different analytical 
practices.

The present study analyzed how representative ground motion level 
affects seismic risk when using a small number of subintervals. The 
hazard term does not affect the seismic risk value, because it applies the 
difference between the minimum and maximum values to the corre
sponding subinterval. However, the fragility curve does affect seismic 
risk because it applies the failure probability for one representative 
ground motion level. Accordingly, the left endpoint of the representative 
ground motion level was confirmed to be underestimated in a small 
number of subintervals, and the right endpoint was overestimated. 
When using the midpoint level, although it can depend on the hazard 
and fragility data, the underestimation-overestimation boundary was 
confirmed to occur in a lower ground motion level than for AM, which is 
located in the convex region of the fragility curve. This article also 
proposed a method of deriving this boundary ground motion level.

The present study concluded that when the representative ground 
motion level is based on the left endpoint or midpoint level, it should be 
analyzed using a sufficient number of subintervals. This is because un
derestimation of seismic risk is something to be carefully considered, as 
significant contributions may be overlooked. This study adds to the 
current understanding of seismic risk quantification when using the 
discretization method, as well as the understanding of seismic risk 
changes in response to assumptions regarding such things as represen
tative ground motion level and the number of subintervals. This study 
can provide a mathematical basis for selecting representative ground 
motion levels in seismic PSA, and can help seismic PSA analysts identify 
and prevent underestimation of risk.
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