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This paper presents an energy-efficient and wide-angle simultaneous wireless information and power transfer (SWIPT) system
designed for smart energy systems, such as the Internet of Things (IoTs). The system transmits information by connecting
numerous IoT devices to a network, while a microwave-based power grid eliminates the need for manual battery replacement.
Although the dual functionality of SWIPT, a communication signal chain and a power transmission chain, offers convenience, it
increases the number of components and overall power consumption. A new energy-efficient architecture is proposed that shares
the highest power-consuming component, the power amplifier-across both signal chains. The operating principle and theoretical
analysis of the proposed architecture are presented, and improved power efficiency is demonstrated, achieving a DC-to-RF
efficiency of 31.4%, which is more than double that of conventional architectures. Furthermore, a wide-angle scanning array
antenna is developed, achieving scan angles up toÆ79° in the xz-plane andÆ75° in the yz-plane. The simultaneous transmission of
power and 64-QAM modulated information signals is experimentally verified, maintaining error vector magnitude (EVM) below
8% across various distances and angles. With its energy efficiency and wide-angle capabilities, the proposed SWIPT system
presents a practical solution for managing large-scale, spatially distributed IoT devices.
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1. Introduction

The rapid proliferation of smart energy systems, such as Inter-
net of Things (IoTs) devices, has led to a growing demand for
efficient network connectivity and power management. These
devices are connected to a network via an access point (AP) and
exchange essential information. However, many IoT devices
still rely on traditional power management methods, such as
battery replacement or wired power connections, which are
labor-intensive and costly. Consequently, microwave-based
wireless power transmission has emerged as a promising solu-
tion to reduce labor demands. As depicted in Figure 1, this
concept has been expanded to simultaneous wireless informa-
tion and power transfer (SWIPT) by integrating information
communication and power transmission for IoT devices [1–9].

SWIPT, which combines a communication signal chain
and a power transmission chain, offers significant convenience.
The conventional SWIPT AP, as shown in Figure 2a, consists
of an RF power transmission chain (comprising an oscillator,
drive amplifier, and high-power amplifier [HPA]) and a com-
munication circuit (comprising a mixer, drive amplifier, and
power amplifier) for information transmission [10]. However,
this architecture, which separates the power and information
chains, requires numerous components and suffers from low
overall efficiency, limiting the practical feasibility of SWIPT
systems. In particular, the power amplifier is the most energy-
consuming component among RF circuits. As the number of
amplifiers increases, power consumption rises accordingly,
reducing the overall system efficiency. This challenge moti-
vates the development of more efficient SWIPT systems with
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enhanced practical applicability. This necessitates the devel-
opment of a new energy-efficient architecture.

As shown in Figure 2a, the signal generated from the oscil-
lator is amplified by the drive amplifier. Then, high-power RF
signals are output from the HPA. To compare the energy effi-
ciency of the architectures, the DC-to-RF efficiency (ηDC-RF =
PRF=PDC) is adopted as the conversion efficiency of the sup-
plied DC power to the RF power output [11, 12]. If the trans-
mitter has low ηDC-RF, most of the DC power is lost as thermal
energy. Therefore, a new architecture with high ηDC-RF is essen-
tial for an energy-efficient system.

Even if both information and power signals are well gener-
ated, a wide-angle phased array antenna is required to provide
power to spatially distributed IoT devices [13–23]. Various
methods have been presented for wide-angle coverage: [13]
used beam-tilting to cover wide angles by selecting a tilted
beam facing the scanning direction and reconstructing the
beam pattern to create a wide-angle beam; another method
[14] combinedmain beams withmultiple angles and physically
integrated them for wide-angle convergence. However, existing
studies still have narrow angles, and array antennas with wider
angles are required. Addressing this need provides a second
design objective: the development of a SWIPT system capable

of serving a wide spatial range. The state-of-the-art research
will be compared with the wide-angle array antenna proposed
in section IV.

This paper proposes an energy-efficient and wide-angle
SWIPT system for IoT applications. The overall novelty and
key contribution of the present study are summarized as follows.

1. A novel energy-efficient architecture is proposed that
shares the power amplifier, the component with the
highest power consumption, across both the informa-
tion and power chains.

2. The operating principle and theoretical analysis of the
proposed architecture are presented, demonstrating bet-
ter power efficiency than conventional architecture.

3. A wide-angle antenna array is also introduced, which
shows a wider scanning performance compared to exist-
ing studies.

4. In addition, the proposed SWIPT system through
received power and error vector magnitude (EVM) is
demonstrated in experiments of simultaneous transmis-
sion of information and power.

5. Given its energy efficiency and wide-angle capabilities,
the proposed SWIPT system is poised to be an effective
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FIGURE 1: Scenario of SWIPT for indoor IoT devices.
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FIGURE 2: SWIPT transmitter architecture: (a) conventional and (b) proposed.
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solution for managing a large number of widely distrib-
uted IoT devices.

The rest of this paper is organized as follows: Sections 2
and 3 introduce the proposed method and materials for the
energy-efficient and wide-angle SWIPT system. Section 2 pre-
sents the energy-efficient SWIPT architecture and compares
its power efficiency with that of conventional architectures
following a theoretical analysis. Section 3 introduces an
antenna structure and transmitter designed for wide-angle
SWIPT. The methods and materials presented in Sections 2
and 3 are validated in Section 4. The SWIPT system is imple-
mented, and its wide-angle performance is compared with that
of conventional studies. Finally, the discussion and conclusion
of this work are given in Section 5.

The aim of this research is to develop an energy-efficient
and wide-angle SWIPT system suitable for smart energy sys-
tems, such as IoT networks. Specifically, we propose a novel
SWIPT architecture that shares the power amplifier between
the information and power chains to enhance energy effi-
ciency, and introduce a wide-angle antenna array to support
spatially distributed IoT devices. The effectiveness of the pro-
posed system is validated through theoretical analysis and
experimental results.

2. Energy-Efficient SWIPT

In conventional SWIPT architecture, as illustrated in Figure 2a,
the information and power chains are independently config-
ured, with HPAs employed in both chains. However, the pro-
posed architecture deviates from this by allowing the power
and information chains to share the HPA. This results in the
generation of high output power and gain, eliminating the need
for a drive amplifier in the power chain, thereby reducing
power consumption. This section presents a method for
achieving energy-efficient SWIPT.

2.1. Operating Principle. Figure 3 shows the schematic of a 4
× 4multiport amplifier (MPA) and the proposed shared high-
power oscillator (SHPO). As shown in Figure 3a, the MPA
shares multiple amplifiers in parallel [24–27], increasing the
dynamic range by reducing the load on each individual ampli-
fier. This configuration is particularly suitable for applications
requiring high-output power. The output signal of a typical
MPA can be expressed as Equation (1) [28].

sout1
sout2
sout3
⋮

2
6664

3
7775¼
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where g represents the gain of the power amplifier. A 4× 4
MPA is considered in this study. The input and output
hybrid matrices are defined in Equation (2).
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where the input and output hybrid matrices have the same
structure and all ports are assumed to be matched. Assuming
equal gain for all power amplifiers, the MPA output can be
written as Equations (3)–(6).

sout1 ¼ sin4 ⋅ g ⋅ e−jπ ; ð3Þ

sout2 ¼ sin3 ⋅ g ⋅ e−jπ ; ð4Þ

sout3 ¼ sin2 ⋅ g ⋅ e−jπ ; ð5Þ

sout4 ¼ sin1 ⋅ g ⋅ e−jπ : ð6Þ

The conventional MPA structure can only achieve a gain
equal to that of the power amplifier, as shown in
Equations (3)–(6). Therefore, as shown in Figure 3b, the pro-
posed architecture incorporates a feedback circuit at the input
and output terminals to achieve higher gain. The signal is
further amplified through the feedback loop, enabling high
gain while maintaining system linearity. The feedback circuit
consists of a band-pass filter and a digital phase shifter. The
band-pass filter allows only the desired frequency band to pass,
and the digital phase shifter adjusts the phase of the feedback
signal. In the proposed architecture, a general input signal is
given by Equation (7) [29].

sin ¼ ae−jθ; ð7Þ

where a is the amplitude and θ is the phase of the input
signal. For linear response, the output signal is given as
Equation (8).

sout ¼ gae−jθ: ð8Þ

It is assumed that the power amplifier introduces no phase
change. After passing through the feedback loops of the pro-
posed architecture, the output signal of SHPO is expressed as
Equation (9).

sout ¼ g2ae−j θ−φð Þ; ð9Þ

where φ (¼φ1 þφ2) represents the phase variable of the
feedback loops. Consequently, the phase shifter in the feed-
back loops of the proposed architecture can adjust the fre-
quency. In Equation (9), the proposed architecture amplifies
the signal twice, thereby increasing RF power using the same
DC power, which improves energy efficiency. The signal
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then oscillates continuously until it reaches the saturation
power of the MPA.

However, even an energy-efficient SHPO becomes useless
if the power signal leaks into the information signal. To
address this issue, a leakage cancelation circuit is added to
the proposed architecture. The leakage signal from the
high-power signal flows into the information signal, poten-
tially distorting it. To counteract this, a phase shifter is used in
one port to achieve a relative phase of 180°, and an attenuator
is used in another port to balance the loss [30]. The leakage of

high-power signals can be calculated at information ports
2 and 3 as Equations (10)–(14).

sl2 ⋅ gATTN ¼ sl3; ð10Þ

ϕ3 þ ϕPS ¼ ϕ2 þ π; ð11Þ

slo2 ¼ sl2 ⋅ gATTNð Þe−jϕ2 ; ð12Þ

slo3 ¼ sl3e−j ϕ3þϕPSð Þ; ð13Þ
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FIGURE 3: (a) A signal flow diagram of 4× 4 multiport amplifier (MPA) and (b) proposed shared high-power oscillator (SHPO) using a 4× 4MPA.
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slo2 ¼ −slo3; ð14Þ

where sl2, sl3, slo2, slo3, ϕ2, ϕ3, gATTN, and ϕPS is the leakage
signal, leakage output signal, phase of ports 2 and 3, attenu-
ator gain, and phase shifter phase, respectively. The leakage
of the high-power signal is combined and canceled at ports 2
and 3, resulting in only the desired information signal being
output.

2.2. Performance. To compare the energy-efficient perfor-
mance of the proposed architecture with conventional archi-
tecture, the DC-to-RF efficiency is calculated. The efficiency of
the architecture is evaluated with commercially available
parts. As shown in Figure 2, in the conventional and proposed
architectures, the oscillator, drive amplifier, power amplifier,
and HPO are used as HMC431, HMC407, HMC1121, and
HMC7357, respectively. Since the proposed architecture elim-
inates the need for a separate drive amplifier, it reduces overall
power consumption. As shown in Figure 4, the proposed
architecture achieves higher DC-to-RF efficiency than the
conventional design. At a center frequency of 5.8GHz, the
conventional and proposed architectures achieve DC-to-RF
efficiencies of 14.2% and 31.4%, respectively.

Despite generating energy-efficient signals, high isolation is
necessary because communication performance degrades
when interference occurs between information and power sig-
nals. Therefore, the proposed architecture incorporates a leak-
age cancelation circuit, as shown in Figure 3b, to ensure high
isolation. The leakage signal can be canceled by combining two
information output ports with a phase difference of 180°.

Figure 5a shows the gain and isolation performance with
and without leakage cancelation. At 5.8GHz, the gain is 26.26
dB without leakage cancelation and 25.80 dB with it. Addition-
ally, the isolation improves from 17.34 to 74.05 dB with leakage
cancelation. It has 56.71 dB of improved isolation without gain
degradation. Figure 5b compares measured EVM without and
with proposed leakage cancelation. The proposed architecture
with leakage cancelation also demonstrates improved EVM
performance. The EVM for different modulation schemes shall
be better than the limits in 3GPP TS 36.104. 3GPP requires 16
and 64-QAM at 12.5% and 8%, respectively. The proposed
system not only achieves higher efficiency than conventional
approaches but also satisfies the required EVM thresholds. The
proposed method improves 16-QAM with 14% EVM and dis-
torted 64-QAM signals with EVMof 4.5% and 3%, respectively.
Therefore, the proposed architecture is both energy-efficient
and provides high isolation. The proposed architecture in the
following section is still used.

3. Wide-Angle SWIPT

This section presents the methods andmaterials for wide-angle
SWIPT, including the method introduced in Section 2. The
transmitter, which employs the proposed architecture, is com-
posed of the SHPO, a leakage cancelation circuit, a control/
power board, power/information beamformers, and a wide-
angle array antenna, as illustrated in Figure 6. As discussed
in Section 2, the SHPO utilizes an MPA and feedback loops

to generate high-gain signals in an energy-efficient manner.
Subsequently, the information signal mitigates interference
from the high-power signal using a leakage cancelation circuit.
This section covers the power/information beamformers and
wide-angle array antennas. The power/information beamfor-
mers are designed for 2D wide-angle beamforming. A wide-
angle array antenna is configured in line with the proposed
antennas and is connected to a feeder network for 2D
beamforming.

Despite the energy efficiency of SWIPT, limited scan angles
can prevent power delivery to widely distributed IoT devices. A
wider scan angle than those in conventional studies is demon-
strated in the 2D plane using the new wide-angle SWIPT tech-
nology. The array beam pattern for SWIPT is formed as the
product of the beam pattern of a single antenna and the array
factor [31]. Therefore, achieving wide-angle SWIPT requires a
broad beam pattern from each individual antenna element. A
multipole antenna with a compact and low-profile structure is
designed in this study. Multipole antennas allow the split con-
ductors of a single antenna to form two or more poles, thereby
flexibly determining the direction of the current loop [32]. This
current diversity allows the antenna to form a wide beam
pattern.

Conventional array methods connect an RF chain to each
antenna to achieve 2D scanning, which incurs high costs. Alter-
natively, 1D scanning can be performed using a sub-array. A
dual-port multipole antenna is proposed to achieve 2D scan-
ning while using sub-arrays, as shown in Figure 7a. A switched
feeder network, which is connected to each of the antenna’s
dual ports, is designed to support 2D scanning as shown in
Figure 6. After selecting the desired scanning plane via switch
operation, a power/information beamformer-comprising a
phase shifter, attenuator, and power amplifier-is connected.
A microcontroller unit (MCU) controls beamformer opera-
tion. Conventional sub-array methods require 16 RF chains
to operate an 8× 8 phased array with 2D scanning, whereas
the proposed approach reduces this to just 8 RF chains.

Figure 7a illustrates the structure and current distribution
of the dual-port multipole antenna. The dimensions of the
antenna were optimized as listed in Table 1. The proposed
antenna comprises a driving magnetic dipole, two induced
magnetic dipoles, and an induced conductor. Unlike patch
antennas that generate current in a single direction, the pro-
posed design supports multidirectional current flow, enabling
wide beam formation. As a result, the half-power beamwidth
(HPBW) in the xz-plane and yz-plane from port 1 measures
154.9° and 134.9°, respectively, with a peak gain of 4.22 dBi.
Similarly, the HPBW from port 2 is 153.9° in the xz-plane and
131.9° in the yz-plane, accompanied by a peak gain of 4.33 dBi.
Both ports exhibit similar radiation patterns based on the same
underlying principle, as shown in Figure 7b.

As shown in Figure 8a, the dual-port multipole antenna
array is designed and implemented as an 8× 8 array, where the
array antenna has dimensions of 4.25× 4.25 × 0.02 λ0 at a
center frequency of 5.8GHz. The array antenna using a dual-
port multipole antenna for a wide scan angle is introduced in
detail in the next section.
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TABLE 1: Geometric parameters of the dual-port mutipole antenna.

Parameter mm Parameter mm Parameter mm

L1 60 L5 2 W4 4.2
L2 17.34 W1 60 W5 2.4
L3 8.07 W2 4 G1 1.2
L4 8.07 W3 9.8 G2 1.4
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4. Implementation and Experiment

In this section, the SWIPT system is verified by the method
proposed in the previous sections. For verification, the SWIPT
system is implemented and measured in the subsection below.

4.1. SWIPT System Implementation. The SWIPT transmitter
proposed in Figure 6 is implemented as shown in Figure 8a–e.
The 8× 8 wide-angle array antenna (Figure 8a) is mounted on
the front of the SWIPT transmitter, as shown in Figure 8e. In
the second layer, a feeder network connecting the beamformer
and antenna is integrated. The beamformer with 8 RF chains
includes a phase shifter and attenuator and is connected as a
third layer. Finally, the SHPO consists of a 4× 4MPA, a
feedback circuit, and a leakage cancelation circuit. These four
layers are interconnected through SMP-type connectors and
packaged into a case fabricated by a 3D printer. Additionally,
two 4× 1 array antennas are connected to the output of the
leakage cancelation circuit for information transmission. The
antennas use the same design and maintain the same element
spacing as the power array. As depicted in Figure 8e, the
antennas are arranged for information transmission in both
the xz-plane and the yz-plane. Figure 8e shows the prototype
of the proposed SWIPT transmitter, which is used to measure
wide-angle performance. An anechoic chamber and a reference
horn antenna were used as shown in Figure 8f.

4.2. Wide-Angle Performance Measurement. To evaluate the
performance of the wide-angle array antenna, a beamformer
with 8 RF chains is connected. Using an RF switch, the xz- and
yz-planes are electronically steered and measured. As shown in
Figure 8g,h, the array antenna achieves a maximum gain of
20.5 dBi. The symmetrical scan range reaches Æ79° in the xz-
plane and Æ75° in the yz-plane, based on a 3 dB gain drop.

Table 2 compares state-of-the-art wide-angle array anten-
nas, including this work. [17–19] achieved wide-angle scanning
using a single wide-angle antenna. [17] implemented wide-
angle scanning using a magnetic dipole with a wide angle. In
[18], wide-angle scanning was achieved by removing inherent
coupling using the coupling-cancelation method. [19] created
the desired pattern by using reflection-canceling vias and phas-
ing elements to obtain a tapered distribution in amplitude and
phase, thereby achieving wide-angle scanning. [20, 21] pre-
sented a wide-angle scanning method based on a conformal
array antenna. [20] achieved a wide-angle scanning perfor-
mance similar to that of a conformal array antenna by using
high-low alternate elements to proactively modulate the array
aperture. In [21], a planar pseudo-conformal array antenna
that mimics a wide-angle conformal array was proposed. [22,
23] achieved wide-angle scanning using a lens. [22] is a hemi-
spherical lens fed by a patch phased array antenna with eight
scanning angles simply achieved wide-angle scanning.
Although [23] did not perform beam scanning with electronic
control, it had a high gain and the widest scan angle among the
references through a lens array with a waveguide feeder. In
Table 2, this work shows a novel wide-angle array antenna
that has the widest scan angle when compared to the most
recent wide-angle array antennas.

4.3. SWIPT Experiment. Figure 9a illustrates the experimental
setup for evaluating the performance of the proposed SWIPT
system in an anechoic chamber. This setup includes the
proposed SWIPT transmitter, a universal software radio
peripheral (USRP), receiving antennas for power and
information, and a spectrum analyzer. The receiving antenna
is a single patch antenna operating at 5.8GHz with a gain of 6
dBi, as shown in Figure 9a. The received power and EVM are
measured based on the scan angle. As a result, the proposed
SWIPT transmitter can simultaneously transmit both
information and power. This implies that the array antennas
for power and information are operating concurrently.

The receiving antennas for power and information, which
are single patch antennas operating at 5.8GHz, are positioned
separately. These single patch antennas have a gain of approxi-
mately 6 dBi at 5.8GHz. As shown in Figure 9b, measurements
were taken at five distances (1, 2, 3, 4, and 5m) and seven scan
angles (− 75°, − 60°, − 30°, 0°, 30°, 60°, and 75°) in both the
xz-plane and yz-plane. As expected, received power decreases
with increasing distance and scan angle. A 64-QAMmodulated
signal is delivered to the antenna for information, as shown in
Figure 9c. The EVMs are measured at five distances (1, 2, 3, 4,
and 5m) and four scan angles (0°, 30°, 60°, and 65°). The
received power decreases as the distance and scan angle
increase, leading to a higher EVM. Nevertheless, the results
demonstrate that the EVM remains within 8%. The variation
in received power and EVM with respect to the scan angle is
small because the proposed SWIPT transmitter has a wide
angle.

The experiment proves that the proposed SWIPT system,
while being energy-efficient and wide-angle, can transmit
information and power simultaneously. The main contribu-
tions of this study are: Efficiency has been improved with a
new architecture for SWIPT, and the dual-port multipole
antenna array has the widest angle in the 2D plane. Future
research is expected to explore the SWIPT transmitter along
with energy-efficient relaying networks, new access technolo-
gies, etc. [33–35].

5. Conclusion

This paper has presented an energy-efficient and wide-angle
SWIPT system designed to address the challenges of high
power consumption and limited spatial coverage in conven-
tional architectures. The proposed architecture improves
energy efficiency by sharing the power amplifier, the most
power-consuming component, across both the information
and the power signal chains. This novel approach was theoreti-
cally analyzed and shown to outperform conventional designs
in terms of power efficiency. Another critical issue addressed in
this study is the distortion of information caused by strong
power transmission. By applying a leakage cancelation circuit,
the interference was successfully suppressed, enabling stable
and isolated information transfer. This improvement was con-
firmed through enhanced EVM performance. To support
wide-area IoT applications, a dual-port multipole antenna
was designed, achieving broad beam patterns in both the xz-
and yz-planes. Moreover, by incorporating an RF-switch-based
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scanning method, the system reduced the number of required
RF chains-halving the hardware complexity compared to con-
ventional sub-array approaches. The proposed system was
implemented as an 8× 8 transmitter array, composed of the
antenna, feeder network, beamformer, and SHPO. Measure-
ments conducted in an anechoic chamber demonstrated the
widest scan angles reported to date, along with effective simul-
taneous transmission of information and power over long dis-
tances and wide angles. In conclusion, the proposed SWIPT
system enhances energy efficiency, ensures robust signal integ-
rity, enables wide-angle transmission, and reduces hardware

complexity. These contributions position the system as a
practical and scalable solution for next-generation IoT
deployments.
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