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Abstract 

Inflammation is an essential defense mechanism in health; however, excessive inflammation contributes to the patho‑
physiology of several chronic diseases. Although anti-inflammatory drugs are essential for controlling inflammation, 
they have several side effects. Recent findings suggest that naturally derived compounds possess physiological activi‑
ties, including anti-inflammatory, antifungal, antiviral, anticancer, and immunomodulatory activities. Therefore, this 
study aimed to investigate the anti-inflammatory effects and molecular mechanisms of 2,5,6-trimethoxy-p-terphenyl 
(TP1), extracted from the Antarctic lichen Stereocaulon alpinum, using in vitro models. TP1 treatment decreased 
the production of nitric oxide (NO) and reactive oxygen species (ROS) in LPS-stimulated Raw264.7 macrophages. 
Additionally, TP1 treatment significantly decreased the mRNA levels of pro-inflammatory cytokines (IL-1β, TNF-α, IL-6) 
and the mRNA and protein levels of the pro-inflammatory enzymes (inducible nitric oxide synthase and cyclooxyge‑
nase-2). Moreover, TP1 suppressed lipopolysaccharide-induced phosphorylation of the NF-κB and MAPK signaling 
pathways in Raw264.7 macrophages. Conclusively, these results suggest that TP1 ameliorates inflammation by sup‑
pressing the expression of pro-inflammatory cytokines, making it a potential anti-inflammatory drug for the treatment 
of severe inflammatory diseases.
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Introduction
Inflammation, the body’s “natural defense system” against 
injury and disease, has five representative signals: fever, 
redness, dysfunction, swelling, and ache [1]. Although 
inflammation is essential to maintain health, excessive 

inflammation can damage host cells and cause diseases 
[2]. Pattern recognition receptors (PRRs) recognize 
pathogen-associated molecular patterns (PAMPs), spe-
cialized motif of bacteria, viruses, and fungi, and trigger 
inflammatory responses through intracellular signaling 
[3]. Toll-like receptors (TLRs) are the most well-known 
members of the PRR family [4]. TLR4 recognizes lipopol-
ysaccharides (LPS) [5]. LPS is a major component of the 
cell wall of gram-negative bacteria and can trigger the 
release of numerous inflammatory cytokines, result-
ing in an acute inflammatory response [6]. The binding 
of LPS to TLR4 induces the formation of myeloid differ-
entiation primary response protein 88 (MyD88), inter-
leukin-1 receptor-associated kinases (IRAKs), and TNF 
receptor-associated factor 6 (TRAF6) complex [7]. These 
processes can trigger intracellular signaling cascades 
by stimulating the AKT/NF-κB and mitogen-activated 
protein kinase (MAPK) signaling pathways, including 
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ERK1/2, JNKs, and p38 MAPKs [8]. Stimulation of these 
pathways can induce the expression of pro-inflammatory 
mediators, such as pro-inflammatory cytokines (inter-
leukin-6 [IL-6], IL-1β, and tumor necrosis factor-alpha 
[TNF-α]) and pro-inflammatory enzymes, such as induc-
ible nitric oxide synthase (iNOS) and cyclooxygenase-2 
(COX-2) [9].

Sepsis, one of the deadliest diseases worldwide, is an 
acute inflammatory disease caused by an uncontrolled 
inflammatory response [10]. Over the years, the inci-
dence of sepsis has increased, and LPS is a major cause 
of sepsis [11, 12]. Although extensive studies have been 
performed to treat sepsis, no effective treatment has been 
developed [13]. Currently, sepsis is mainly managed using 
antibiotics, intravenous fluids, and vasoactive drugs [14]. 
Although ceftriaxone and vancomycin are commonly 
used antibiotics for sepsis treatment [15, 16], they have 
several side effects, including urolithiasis, nephrolithi-
asis, and maculopapular or erythematous rashes [17, 18]. 
Therefore, it is crucial to develop novel anti-inflamma-
tory drugs with low toxicity for treating sepsis.

Natural compounds are recognized as sources of ther-
apeutic agents owing to their structural diversity [19]. 
Moreover, 13 drugs based on natural products were 
approved for clinical use between 2005 and 2007 [20]. 
Antarctic plants produce secondary metabolites with 
various physiological activities as a survival strategy in 
extreme environments with low temperatures and high 
ultraviolet rays [21]. For example, lobaric acid, a metab-
olite of Streocaulon alpinum, inhibits protein tyrosine 
phosphatase 1B (PTP1B) [22]. Libertellenone G and lib-
ertellenone H, isolated from the Arctic fungus Eutypella 
sp., have high cytotoxicity and antibacterial activity 
[23]. New steroid compounds isolated from the Antarc-
tic October coral Anthomastus bathyproctus exhibited 
anticancer effects on the human cancer cell lines MDA-
MB-23, A-549, and HT-29 [24]. However, there is limited 
understanding of the biological activities of samples from 
the polar regions [25]. Therefore, natural compounds 
from polar regions are untapped resources for the devel-
opment of natural compound-based medicines [26].

2,5,6-trimethoxy-p-terphenyl (TP1) is isolated from 
the Antarctic lichen S. alpinum, with a p-terphenyl back-
bone. p-Terphenyls are 1,4-diphenyl benzene derivatives 
with three phenyl rings connected by a single C–C bond 
[27]. p-Terphenyls possess several biological activities, 
including neuroprotective, antithrombotic, and anti-
coagulant activities [28]. However, studies have not yet 
investigated the anti-inflammatory effects and molecular 
mechanisms of several bioactive p-terphenyls. Therefore, 
this study aimed to investigate the anti-inflammatory 
effects and molecular mechanisms of TP1 in LPS-stimu-
lated Raw264.7 macrophages.

Materials and methods
Reagents
TP1 was extracted by the Korea Polar Research Institute 
and dissolved in dimethyl sulfoxide (DMSO). Dulbecco’s 
modified Eagle’s medium (DMEM; high glucose) was 
obtained from Hyclone Laboratories Inc. (Marlborough, 
MA, USA), Fetal bovine serum (FBS) was purchased 
from Corning (Corning, NY, USA). Penicillin–strep-
tomycin–glutamine (PSQ) was proucured from Gibco 
(Waltham, MA, USA). MTT and LPS from Escherichia 
coli O127:B8, N-(1-naphthyl) ethylenediamine dihydro-
chloride, phosphoric acid, sulfanilic acid, and nitrite ion 
standard solutions were purchased from Sigma-Aldrich 
Co. (St. Louis, MO, USA). Dulbecco’s phosphate-buffered 
saline (DPBS) and Hank’s balanced salt solution (HBSS) 
were obtained from WELGENE (Gyeongsan, Korea). 
2′7-Dicholrodihydrofluorecsein diacetate (DCF-DA) was 
procured from Cayman Chemical Company (Ann Arbor, 
MI, USA). Primers for quantitative reverse transcription-
polymerase chain reaction (qRT-PCR) were purchased 
from Macrogen (Seoul, Korea). Primary antibodies 
against iNOS (#13120), COX-2 (#12282), phospho-p65 
(#13346), phospho-JNK (#9255), phospho-ERK (#4370), 
and β-actin (#8457) were obtained from Cell Signaling 
Technology Inc. (Danvers, MA, USA). Goat anti-rabbit 
IgG (5220-0036) and goat anti-mouse IgG (5220-0341) 
antibodies were purchased from SeraCare Life Sciences, 
Inc. (Gaithersburg, MD, USA).

Cell culture
The mouse macrophage cell line RAW264.7 was provided 
by Dr. Sung Ho Ryu’s lab (POSTECH, Korea). The cells 
were cultured in DMEM supplemented with 10% FBS 
and 1% PSQ at 37 ℃ in a 5% CO2 incubator.

Cell viability
Raw264.7 macrophages were seeded in a 48-well plate 
(3 × 104 cells/well). After 24 h, cells were pretreated with 
TP1 for 30  min, treated with 0.1  µg/mL of LPS, and 
incubated for 24 h at 37 °C under 5% CO2. After remov-
ing the culture medium, the cells were treated with the 
MTT solution (1  mg/mL) for 2  h. Thereafter, the MTT 
solution was removed, followed by the addition of 200 µL 
of DMSO to dissolve the formed formazan crystals. 
Absorbance was measured at 570 nm using a microplate 
reader (Varioskan LUX Multimode Microplate Reader, 
Thermo Fisher Scientific Co.).

Measurement of nitric oxide production
Nitric oxide (NO) levels in the cell culture supernatants 
were measured using the Griess assay. Briefly, Raw264.7 
macrophages were seeded in a 24-well plate (6 × 104 cells/
well). After 24 h, the cells were pretreated with 25 μM of 
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TP1 for 30 min, and then treated with LPS (0.1 μg/mL) 
and incubation at 37 °C in a 5% CO2 incubator for 24 h. 
The supernatants were collected from each well, trans-
ferred to a 96-well plate, and Griess reagent was added 
(reagents A and B at a 1:1 ratio). After 15  min, absorb-
ance was measured at 550 nm using a microplate reader.

Measurement of reactive oxygen species production
The DCF-DA assay was used to measure reactive oxy-
gen species (ROS) production. Briefly, Raw264.7 mac-
rophages were seeded in a 24-well (6 × 104 cells/well) and 
incubated for 24 h. Thereafter, the cells were pretreated 
with TP1 (25 μM) for 30 min, and then treated with LPS 
(0.1 μg/mL) and incubated at 37 °C in a 5% CO2 incuba-
tor for 24 h. Cells were treated with DCF-DA for 30 min 
at 37 °C, followed by three washes with HBSS. ROS levels 
were detected by a fluorescence microscope (Zeiss, Jena, 
Germany) and analyzed using FACS (BD FACSVerse™, 
BD Biosciences).

qRT‑PCR
Raw264.7macrophages were seeded in a 12-well plate 
(3 × 105 cells/well). After 24 h, cells were pretreated with 
TP1 (25  µM) for 30  min, and then treated with 0.1  µg/
mL of LPS. After 24  h, the cells were washed thrice 
with DPBS and harvested. Total RNA was isolated from 
the cells using TRIzol reagent and reverse-transcribed 
to generate cDNA using a SimpliAmp Thermal Cycler 
(Applied Biosystems Co., Waltham, MA, USA). qRT-PCR 
was performed on a StepOnePlus Real-Time PCR Sys-
tem Cycler (Applied Biosystems Co.) using a Power SYBR 
Green PCR mix Cycler (Applied Biosystems Co.) and 
specific primers. The threshold cycle (Ct) values for the 
genes of interest were standardized with respect to the 
β-actin reference.  The primer sequence for iNOS (For-
ward 5′-TGA​AGA​AAA​CCC​CTT​GTG​CT-3′, Reverse 
5′-TTC​TGT​GCT​GTC​CCA​GTG​AG-3′), COX-2 (For-
ward 5′-GAA​GAT​TCCCT CCG​GTG​TTT-3′, Reverse 
5′-CCC​TTC​TCA​CTG​GCT​TAT​GTAG-3′), Tnf-α (For-
ward 5′-ACG​TGG​AAC​TGG​CAG​AAG​AG-3′, Reverse 
5′-GGT​CTG​GGC​CAT​AGA​ACT​GA-3′), Il-1β (For-
ward 5′-AGG​TCA​AAG​GTT​TGG​AAG​CA-3′, Reverse 
5′-TGA​AGC​AGC​TAT​GGCA ACTG-3′), Il-6 (Forward 
5’-TCT​GAA​GGA​CTC​TGG​CTT​TG-3’, Reverse 5’-GAT​
GGA​T GCT​ACC​AAA​CTG​GA-3′), and β-actin (Forward 
5′-ATG​GAG​GGG​AAT​ACA​GCC​C-3′, Reverse 5′-TTC​
TTT​ GCA​GCT​CCT​TCG​TT-3’).

Western blot analysis
Raw264.7 macrophages were seeded in a 60  mm plate 
(6 × 105 cells/well). Cells were pretreated with TP1 
(25 µM) for 30 min, and then treatment with 0.1 µg/mL of 
LPS. Proteins were isolated from 100 µL of each sample 

at 30 min and 24 h intervals using RIPA buffer (10 mM 
Tris [pH 7.4], 150 mM of NaCl, 1 mM of EDTA [pH 8], 
1% Triton X-100, 1% sodium deoxycholate, 30  mM of 
NaF, 1.5  mM of NaVO4, 1  mM of PMSF, and 1  mg/mL 
each of aprotinin, leupeptin, and pepstatin A), followed 
by sonication for 5 s thrice. The cell lysate was centrifu-
gated at 130,000 rpm for 10 min at 4 ℃, and the protein 
content of the supernatant was collected and quantified 
using Bradford assay (Abcam, Cambridge, UK). Proteins 
were separated using sodium dodecyl sulfate–polyacryla-
mide gel electrophoresis and transferred onto nitrocellu-
lose (NC) membranes. Thereafter, the membranes were 
blocked with skim milk (5%) in 1X TBS-T buffer (Tris-
buffered saline with 0.1% Tween-20) containing NaN3 for 
30  min, followed by overnight incubation with primary 
antibodies at room temperature (RT). After washing with 
TBS-T for 30 min, the membranes were incubated with 
horseradish peroxidase (HRP)-conjugated anti-rabbit/
mouse IgG antibodies for 1 h at RT. Finally, the antibody 
reactions were detected using an ECL reagent (Cytiva, 
Malborough, MS, USA), and the bands were visualized 
using Chemidoc (iBright™ CL1500, Invitrogen). The 
intensities of the bands were analyzed using ImageJ soft-
ware, with β-actin as the loading control.

Immunocytochemistry
Raw264.7 macrophages were seeded in a 6-well plate 
(5 × 105 cells/well). Cells were pretreated with TP1 
(25 µM) for 30 min, and then treated with 0.1 µg/mL of 
LPS. After 30  min, the cells were washed with DPBS, 
followed by fixation with 4% paraformaldehyde (PFA, 
Sigma-Aldrich; Merck KGaA) for 20 min. Subsequently, 
they were incubated with 0.2% Triton X-100 and 0.1% 
citrate (Sigma-Aldrich, Merck KGaA) in PBS for 5  min. 
Thereafter, the cells were blocked with 2% bovine serum 
albumin (BSA; Sigma-Aldrich; Merck KGaA) for 30 min 
and probed with rabbit anti-p65 NF-κB antibody (1:500; 
cat. no. 8242; Cell Signaling Technology) for 2 h. Subse-
quently, washed the cells with 2% BSA, and then probed 
with fluorescein goat anti-rabbit IgG (H + L) cross-
adsorbed secondary antibody Alexa Fluor 555 (4 µg/mL; 
cat. no. A-21428; Invitrogen Inc., Middlesex, MA, USA) 
for 1 h. After washing, the nuclei were stained with 1 mg/
mL of DAPI solution for 5 min. Finally, fluorescence was 
visualized by a fluorescence microscope (Zeiss Micro-
scope, Carl Zeiss AC).

Data analysis
The results are presented as mean ± standard deviation 
(SD). The student’s t-test for comparisons between two 
groups. Statistical significance was defined at p < 0.05 (*).
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Results
TP1 inhibits the differentiation of Raw264.7 macrophage 
without inducing cytotoxicity
p-Terphenyls (Fig. 1A) are cytotoxic owing to their bio-
logical activities [29]. Therefore, we investigated the 
potential cytotoxic effects of TP1 in Raw264.7 mac-
rophages using an MTT assay and found that TP1 
treatment (5, 15, and 25  µM) for 24  h was not cyto-
toxic to Raw264.7 macrophages (Fig. 1B). Macrophage 
morphology has been linked to inflammation [30]. LPS 
treatment activates Raw264.7 macrophages, resulting 
in an increase in cell size and the formation of pseudo-
podia [31]. Macrophages, characterized by numerous 
fibrous cytoplasmic projections on their cell surface, 
are associated with the induction of inflammation [32, 
33]. TP1 treatment significantly suppressed the LPS-
induced transformation of Raw264.7 macrophages into 
the inflammatory phenotype compared with that in the 
LPS-only group (Fig. 1C).

TP1 suppresses LPS‑induced NO and ROS production 
in Raw264.7 macrophages
ROS and NO serve as central mediators of inflamma-
tory response [34]. Excessive ROS production leads to 
endothelial dysfunction and tissue injury [35]. NO plays 
multiple roles in inflammatory responses, including the 
regulation of leukocyte activity and tissue cytotoxic-
ity, which leads to vasodilation and edema formation 
[36]. To examine the anti-inflammatory effects of TP1, 
we measured the NO and ROS levels in Raw264.7 mac-
rophages. TP1 treatment caused a significant dose-
dependent decrease in LPS-induced NO production in 
Raw264.7 macrophages compared with that in the LPS-
only group (Fig. 2A). Additionally, FACS (Fig. 2B and C) 
and fluorescence microscopy (Fig.  2D) confirmed that 
TP1 decreased ROS production in a dose-dependent 
manner. Collectively, these data demonstrate that TP1 
can decrease NO and ROS production in LPS-induced 
Raw264.7 macrophages.
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Fig. 1  Effects of TP1 on the viability and morphology of Raw264.7 macrophages. a Chemical structure of TP1. b The cells were pretreated with TP1 
(0, 5, 15, and 25 µM) for 30 min, followed by treatment with LPS (0.1 µg/mL) for 24 h, after which cell viability was measured using MTT assay. The 
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TP1 decreases the mRNA expression of pro‑inflammatory 
enzymes and cytokines in LPS‑induced Raw264.7 
macrophages
LPS-induced activation of macrophages promotes the 
production of various inflammatory enzymes, such as 
iNOS and COX2, and inflammatory cytokines, includ-
ing IL-1β, TNF-α, and IL-6 [37]. iNOS is an important 
marker of inflammation that leads to NO production 
[38]. COX-2 produces prostaglandin E2 (PGE2), which 
mediates the inflammatory cascade [39]. These compo-
nents play pivotal roles in mediating inflammatory pro-
cesses [40]. Therefore, we investigated the effects of TP1 
on the mRNA expression of pro-inflammatory enzymes 
(iNOS and COX-2) and cytokines (IL-1β, TNF-α, and 
IL-6) using qRT-PCR. TP1 pretreatment significantly 
inhibited LPS-induced increase in the mRNA expres-
sion of pro-inflammatory enzymes (iNOS and COX-2) 
and cytokines (IL-1β, TNF-α, and IL-6) 24  h after LPS 
treatment (Fig. 3A–E). Overall, these data show that TP1 
downregulates the gene expression of pro-inflamma-
tory enzymes and cytokines in LPS-induced Raw264.7 
macrophages.

TP1 reduces the protein expression of pro‑inflammatory 
enzymes in LPS‑induced Raw264.7 macrophages
iNOS and COX-2 are crucial pro-inflammatory enzymes 
that play central roles in mediating inflammatory pro-
cesses [41]. The final products of iNOS and COX2 (NO 
and PGE2, respectively) can accelerate inflammation and 
are involved in the pathogenesis of inflammatory diseases 
[42]. Given that the mRNA levels of iNOS and COX-2 
were decreased by TP1, we examined the effect of TP1 
on the protein levels of iNOS and COX-2 in LPS-induced 
Raw264.7 macrophages. Consistent with the mRNA 
expression levels, TP1 treatment significantly decreased 
iNOS and COX-2 protein expression levels compared 
with those in the LPS group (Fig.  4). Collectively, these 
data show that TP1 downregulates the protein expression 
of pro-inflammatory enzymes.

TP1 modulates the phosphorylation of AKT/NF‑κB pathway 
proteins in LPS‑induced Raw264.7 macrophages
NF-κB is a key transcription factor that modulates 
immune cells, including inflammatory T cells, and trig-
gers the expression of pro-inflammatory enzymes and 
cytokines after LPS stimulation [43, 44]. AKT activation 
can trigger the degradation of the inhibitor of nuclear 
factor B (IκB) protein and enhance the phosphorylation 
of the p65 NF-κB subunit, facilitating its translocation to 
the nucleus. Moreover, inhibiting AKT downregulates 
the nuclear translocation of NF-κB [45]. Therefore, we 
investigated the effects of TP1 on AKT and p65 phos-
phorylation in LPS-induced Raw264.7 macrophages. 

Additionally, immune-cytochemistry was performed to 
assess the nuclear translocation of p65. TP1 treatment 
significantly decreased AKT and p65 phosphorylation 
and suppressed p65 nuclear translocation (Fig.  5A–E). 
Overall, these results indicate that TP1 effectively down-
regulates the AKT and NF-κB signaling pathways.

TP1 modulates the phosphorylation of MAPK pathway 
proteins in LPS‑induced Raw264.7 macrophages
The MAPK signaling pathway plays an important role in 
initiating cellular inflammatory responses, including the 
production of pro-inflammatory cytokines, in response 
to LPS stimulation [46]. ERK1/2, JNK, and p38 phospho-
rylation regulates the generation of pro-inflammatory 
cytokines, such as TNF-α and IL-6 [47, 48]. Therefore, 
we examined the effects of TP1 on ERK, JNK, and p38 
phosphorylation and found that TP1 treatment reduced 
LPS-induced phosphorylation of ERK in Raw264.7 mac-
rophages (Fig. 6). Overall, these results suggest that TP1 
exerts its anti-inflammatory effects by suppressing the 
ERK signaling pathway.

Discussion
Strategies for ameliorating inflammation may be effec-
tive in protecting host tissues from the negative effects 
of long-term or excessive inflammation [49]. Cur-
rently available anti-inflammatory drugs show diverse 
side effects depending on the individual and treatment 
duration and concentration [50]. Nonsteroidal anti-
inflammatory drugs (NSAIDs) used in the treatment of 
rheumatoid arthritis exert their therapeutic activity by 
inhibiting COX-2 [51]. For example, acetaminophen, a 
member of the NSAIDs family, selectively inhibits COX-
1/2. However, it is associated with serious side effects, 
such as upper gastrointestinal complications [52].

Polar organisms produce various secondary metabo-
lites for survival and adaptation to harsh environments, 
and these secondary metabolites possess several bio-
logical activities, such as antioxidant, anti-inflamma-
tory, and antiparasitic activities [25]. Therefore, polar 
regions are considered large reservoirs of bioactive 
compounds [53]. However, studies on the anti-inflam-
matory effects of compounds derived from these organ-
isms are limited. In the present study, TP1 treatment 
inhibited the expression of iNOS and COX2, crucial 
inflammatory enzymes, at both the mRNA and pro-
tein levels without causing any cytotoxic effects. The 
stimulation of PRRs on innate immune cells following 
pathogen infection or tissue damage triggers the acti-
vation of MAPKs, including the p38, ERK, and JNK 
subfamilies, resulting in the expression of multiple 
inflammatory genes [54]. To elucidate the potential 
anti-inflammatory mechanism of TP1, we examined 
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the phosphorylation of MAPKs (p38, ERK, and JNK). 
TP1 treatment decreased LPS-induced phosphoryla-
tion of ERK but did not affect LPS-induced JNK and 

p38 phosphorylation. The MAPK signaling cascade 
comprises three main kinases: MAPK kinase kinase 
(MAP3K), which activates MAPK kinase (MAP2K), 
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which in turn activates MAPK [55]. Each MAPK (ERK, 
JNK, and p38) is activated by distinct upstream MAP3K 
and MAP2K [56]. Therefore, the results of the present 
study suggest that TP1 can downregulate upstream 
molecules, including kinases that affect ERK but not 
p38 or JNK. Similar to TP1, tetrandrine derived from 
Stephania Tetrandra S. Moore inhibits inflammatory 
responses by modulating the ERK signaling pathway in 
primary rat mesangial cells [57].

Recently, several natural compounds have been stud-
ied for their ability to modulate inflammation and treat 
sepsis [58]. For example, 7-MCPA extracted from E. 
longifolia protected C57BL/6 mice against LPS-induced 

death [59]. Additionally, mangiferin from mangoes and 
papaya alleviates sepsis by reducing acute lung injury 
[60]. Moreover, silymarin isolated from milk thistle is 
effective in protecting mice against LPS-induced sepsis 
[61]. In line with these previous studies, it is anticipated 
that TP1 treatment could exert an anti-inflammatory 
effect in a murine model with LPS-induced sepsis.

Conclusively, the results suggest that TP1 exhib-
its anti-inflammatory effects in LPS-stimulated mac-
rophages via MAPK pathway-mediated suppression of 
pro-inflammatory mediators. Overall, TP1 has poten-
tial applications in the development of anti-inflamma-
tory drugs for treating inflammatory diseases such as 
sepsis.
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followed by treatment with LPS (0.1 µg/mL) for 24 h. a Protein expression levels were measured using western blot analysis. b and c iNOS/β-actin 
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