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Abstract

We propose a secure and scalable file-encryption scheme for cloud systems by integrating
Post-Quantum Cryptography (PQC), Quantum Key Distribution (QKD), and Advanced
Encryption Standard (AES) within a distributed architecture. While prior studies have
primarily focused on secure key exchange or authentication protocols (e.g., layered PQC-
QKD key distribution), our scheme extends beyond key management by implementing a
distributed encryption architecture that protects large-scale files through integrated PQC,
QKD, and AES. To support high-throughput encryption, our proposed scheme partitions
the target file into fixed-size subsets and distributes them across slave nodes, each perform-
ing parallel AES encryption using a locally reconstructed key from a PQC ciphertext. Each
slave node receives a PQC ciphertext that encapsulates the AES key, along with a PQC
secret key masked using QKD based on the BB84 protocol, both of which are centrally gen-
erated and managed by the master node for secure coordination. In addition, an encryption
and transmission pipeline is designed to overlap I/O, encryption, and communication,
thereby reducing idle time and improving resource utilization. The master node performs
centralized decryption by collecting encrypted subsets, recovering the AES key, and exe-
cuting decryption in parallel. Our evaluation using a real-world medical dataset shows
that the proposed scheme achieves up to 2.37× speedup in end-to-end runtime and up to
8.11× speedup in encryption time over AES (Original). In addition to performance gains,
our proposed scheme maintains low communication cost, stable CPU utilization across
distributed nodes, and negligible overhead from quantum key management.

Keywords: Post-Quantum Cryptography; Quantum Key Distribution; Advanced Encryption
Standard; cloud system

1. Introduction
The volume and diversity of data have been growing rapidly across domains such

as AI, healthcare, finance, and scientific simulation [1–5]. Traditional data are typically
structured and well defined, such as relational tables and transaction logs. In contrast,
modern data are dynamic, unstructured, and continuously generated from diverse sources,
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including real-time sensor streams, financial transactions, and user interactions. These
data streams contain sensitive information, including patient vitals, account credentials,
and behavioral patterns [6–9].

Additionally, unstructured data continue to grow rapidly due to real-time generation
and continuous accumulation in data-intensive applications [10,11]. This continued growth
in volume and sensitivity has made the ability to securely process such large-scale files a
critical system requirement.

As data become increasingly large-scale, complex, and security-critical, computing
infrastructures have adopted distributed and heterogeneous architectures. Cloud systems
such as AWS, Google Cloud, and Azure [12–14] support scalability and high availability,
while also providing robust security environments. These platforms implement protocols
like TLS [15] for secure transmission and Identity and Access Management (IAM) [16] for
account control.

The emergence of quantum computing, however, introduces new security threats,
as these infrastructures typically rely on classical encryption methods to protect sensi-
tive data [17–19]. Quantum computers offer high computational efficiency but undermine
core assumptions of existing classical cryptographic algorithms. For example, Shor’s al-
gorithm [20] breaks RSA and ECC by solving prime factorization and discrete logarithms,
while Grover’s algorithm [21] accelerates brute-force key searches against symmetric
schemes like AES [22]. Although AES remains relatively secure under quantum attacks
with sufficient key length (e.g., AES-256), its security depends on the assumption that
the symmetric key is established securely. However, since RSA or ECC is commonly
used to exchange AES session keys, the entire encryption becomes vulnerable if the key-
exchange mechanism is broken by quantum adversaries. To address this challenge, encryp-
tion schemes should be designed to provide security and compatibility in both classical and
quantum computing environments. Among available solutions, Post-Quantum Cryptogra-
phy (PQC) [23] and Quantum Key Distribution (QKD) [24] are the most widely utilized
techniques for quantum-resilient security. PQC relies on hard mathematical problems to
resist quantum attacks [25–27], while QKD uses quantum mechanics to distribute keys
securely [28–31].

However, both PQC and QKD face limitations when used independently. PQC can
securely encapsulate AES keys for data encryption, but lacks mechanisms to verify the
integrity of the encapsulated key or prevent tampering. In distributed systems where the
same key is broadcast to multiple nodes, PQC without additional authentication cannot
ensure the origin or integrity of the transmitted key, making it vulnerable to man-in-the-
middle (MITM) attacks and ciphertext forgery [32–34]. In contrast, QKD enables secure key
exchange using quantum channels but offers no way to verify the identity of the sender.
Without authentication support, a receiver cannot confirm the origin of the key, leaving
the system open to impersonation or interception. QKD is fundamentally designed for key
distribution and lacks mechanisms to store, format, or directly apply keys in encryption
workflows [28,35,36]. For practical data protection, it should be integrated with a symmetric
encryption method.

To overcome these limitations, recent studies have actively explored combining these
techniques to strengthen cryptographic systems. Table 1 summarizes recent approaches
integrating quantum and classical cryptography. Specifically, Zeng et al. [37] proposed
a hybrid key-distribution protocol combining PQC and QKD to ensure security even if
one scheme fails, focusing on theoretical key security models and vulnerability metrics.
Yang et al. [38] designed a QKD-enabled authentication framework for Internet of Vehicles
by integrating BB84-based key exchange with lattice-based digital signatures, emphasizing
mutual authentication and resistance to quantum attacks. Zeydan et al. [39] presented a
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blockchain-based service-orchestration platform that secures network-management logs us-
ing PQC-enhanced digital signatures and evaluates the performance of Blockchain Network
(BCN) operations under quantum-safe computations. Ricci et al. [40] proposed a concrete
FPGA implementation of a 3-key combiner that integrates keys from pre-quantum, post-
quantum, and QKD sources using a dual-PRF construction. Wang et al. [41] experimentally
verified using a PQC-based digital signature to authenticate the classical channel in a QKD
network, solving the key-management problem for large-scale networks. Rani et al. [42]
proposed a prototype QKD system that employs sequential encryption, first with a QKD
key and then with AES-256, to ensure security even if one of the primitives fails. Al-
though it does not explicitly adopt PQC algorithms, AES-256 is used as a quantum-resilient
encryption method, providing post-quantum level security against quantum attacks.

Table 1. Comparison of recent cryptographic approaches integrating quantum and classical techniques.

Paper Crypto Combination Target Scope

Zeng et al. [37] PQC, QKD Key Exchange

Yang et al. [38] QKD, Digital Signature Key Exchange

Zeydan et al. [39] PQC, Digital Signature Blockchain-based Security

Ricci et al. [40] PQC, QKD Key Exchange

Wang et al. [41] PQC, QKD Key Exchange

Rani et al. [42] QKD, AES File Transmission

Our Study PQC, QKD, AES File Encryption

Our study distinguishes itself from previous studies by combining classical and
quantum cryptographic techniques into a unified, distributed file encryption. While earlier
approaches have primarily focused on secure key exchange or communication protocols,
we implement a practical encryption scheme that integrates PQC, QKD, and AES to protect
large-scale files. Our proposed scheme decouples key management from encryption by
assigning centralized PQC-based key encapsulation and QKD-based key masking to the
master node, while enabling parallel AES encryption at slave nodes through an offset-aware
partitioning method. Overlapped encryption and transmission pipelines reduce latency,
and parallel decryption and reassembly at the master improve scalability and throughput
across the cluster. Additionally, our scheme addresses the growing demand for secure and
efficient encryption of large-scale files in distributed cloud systems, where conventional
methods struggle with scalability and quantum resilience. By decoupling key management
from data encryption and leveraging parallel processing, it ensures that large-scale files can
be securely handled without compromising performance or long-term security.

In this paper, we propose a secure, scalable, and quantum-resilient encryption scheme
designed for large-scale file protection in a cluster. The goal of our scheme is (1) to enable
efficient encryption of the target file through offset-aware partitioning and parallel process-
ing, (2) to ensure long-term security by integrating both PQC and QKD, and (3) to reduce
latency and system overhead by overlapping encryption and transmission. To achieve
this, the target file is divided into fixed-size subsets and distributed to slave nodes, where
each subset is independently encrypted using an AES key that has been encapsulated via
Kyber-based PQC. The encapsulated PQC secret key is then masked using a QKD-derived
key transmitted. The encrypted subsets are asynchronously returned to the master node,
where decryption is performed by decapsulating the AES key and unmasking it using the
QKD key. Our evaluation results using real-world datasets confirm that, even with the
added complexity of multi-layered key protection combining PQC and QKD, our scheme
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outperforms conventional AES by up to 8.11× in encryption speed. This highlights that
strong quantum-resilient security can be achieved without sacrificing performance, ensuring
efficient and secure processing across both classical and quantum computing environments.

Our contributions are as follows:

• We design a scalable encryption scheme for large-scale file protection, which enhances
key security by integrating Kyber-based post-quantum key encapsulation with BB84-
based quantum key distribution.

• We design and implement an offset-aware partitioning distributed encryption frame-
work that performs subset-level AES encryption in parallel across multiple slave
nodes, while decoupling key generation and transmission through centralized master
node coordination.

• We demonstrate that our scheme achieves up to 8.11× faster encryption performance
compared to conventional AES, while maintaining stable CPU utilization under real-
world workloads.

2. Background
2.1. Post-Quantum Cryptography

As quantum computing advances, existing encryption methods used in classical com-
puters, such as RSA, AES, and ECC [22,43,44], are becoming increasingly vulnerable. While
these methods are effective against conventional mathematical attacks, they can be rendered
ineffective by quantum algorithms that exploit entanglement and parallelism [45–48]. To ad-
dress this, many industries and researchers most widely used post-quantum cryptography
(PQC) algorithms to ensure secure encryption in the quantum era. PQC algorithms are
based on mathematical problems that are difficult to solve even with quantum computing,
such as lattice and multivariate polynomial problems. In addition, PQC can be integrated
into existing computing systems, offering practical compatibility and flexibility during the
transition to quantum-safe security technologies [26,49,50].

Among various PQC approaches, lattice-based cryptography is based on computation-
ally hard problems such as the Shortest Vector Problem (SVP) and Learning With Errors
(LWE), which remain intractable even for quantum computers [51,52]. These problems
are defined in high-dimensional Euclidean space and are resistant to known quantum
algorithms. A lattice-based encryption algorithm is used for key encapsulation to ensure
secure key exchange. Kyber [53], based on the LWE problem and selected for NIST stan-
dardization, offers strong security and efficient performance. Kyber uses compact key sizes,
performs structured matrix operations over polynomial rings, and supports parallel compu-
tation through simple and regular arithmetic patterns. These properties allow compatibility
with classical systems and internet protocols, and enable efficient execution on manycore
architectures such as modern CPUs and GPUs. Kyber is suitable for secure integration into
distributed and cloud systems.

2.2. Quantum Key Distribution

Quantum Key Distribution (QKD) is a key-exchange method based on quantum me-
chanics [24]. It enables two parties to securely share a key by transmitting quantum states
that reveal any eavesdropping through observable disturbances. The BB84 protocol [54] is
most widely used, using qubits (i.e., single photons) encoded in two bases (e.g., rectilinear
and diagonal). After transmission, the parties compare part of the results over a classi-
cal channel to detect interception. Unlike classical methods (e.g., Diffie-Hellman [55] or
RSA [22]), QKD provides information-theoretic security against quantum attacks.

Figure 1 shows a symmetric encryption architecture integrated with QKD. This archi-
tecture is composed of four key components: a client that initiates requests, a symmetric-key
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encryptor that performs the encryption operation, a symmetric-key decryptor that recovers
the original file, and QKD modules that handle quantum key generation and distribu-
tion. The encryptor and decryptor are connected through classical and quantum channels.
The quantum channel enables the secure exchange of a session key using quantum states,
while the classical channel carries the encrypted data. This ensures that the data path from
the key path allows the encryption and key-exchange processes to proceed independently.

Symmetric-key Symmetric-key 
Encryptor

QKDQKD
Transmitter

Symmetric-key Symmetric-key 
Decryptor

QKDQKD
Receiver

Classical Channel

Quantum Channel

CipherFile

…

Original File

…

Original File

…

Request Return

Key

Client

Key

Figure 1. Quantum Key Distribution.

Specifically, as shown in the figure, the client first sends a request to initiate encryption.
The symmetric-key encryptor then generates the cipher file using a symmetric encryption
algorithm. Simultaneously, a quantum key is generated and transmitted from the QKD
Transmitter to the QKD Receiver through a quantum channel. The generated key is used to
encrypt the file, and the resulting cipher file is sent to the decryptor via a classical channel.
The symmetric-key decryptor retrieves the corresponding key from the QKD Receiver and
applies it to decrypt the file. Once decryption is complete, the original file (Decryption) is
returned to the client. While QKD offers strong security against quantum threats, it requires
specialized hardware and is noise sensitive [56–58]. To improve practicality, recent efforts
aim to enhance protocol efficiency and integrate QKD into classical infrastructures [59,60].

However, in real-world cloud systems, where communication may occur over un-
trusted classical networks, authentication mechanisms are required to prevent active attacks.
In such cases, post-quantum digital signatures such as Dilithium [61] can be integrated
to provide quantum-secure authentication and ensure session integrity. Although phys-
ical QKD systems face challenges such as channel noise and hardware constraints, our
proposed scheme avoids these limitations by adopting a software-emulated QKD model
using Qiskit Aer 0.6.0 [62]. The software-based approach enables practical integration
and reproducible evaluation, while preserving the conceptual security guarantees of QKD.
Thus, our proposed scheme adopts a software-based approach that combines QKD with
PQC using the Qiskit Aer simulator [62]. This layered architecture enhances the overall
robustness of key management in cloud systems by integrating cryptographic techniques
that address both classical and quantum threats.

2.3. Challenges in Large-Scale File Encryption

Advanced Encryption Standard (AES) [22] is widely used for file encryption due to its
strong security and efficient symmetric-key structure. However, when applied to large-scale
files in distributed or cloud systems, conventional AES-based implementations face several
limitations. AES is typically deployed on a single node, where the entire file is loaded into
memory and processed sequentially. As file sizes increase to tens or hundreds of gigabytes,
this approach leads to I/O bottlenecks, excessive memory usage, and limited parallelism
due to the lack of distributed processing [63–65].
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However, AES is a block-based encryption scheme that supports subset-level process-
ing through modes such as CTR [66] and CBC [67]. Even in these cases, several constraints
arise, including key reuse management, initialization vector (IV) synchronization, and out-
put ordering [68–70]. For example, in CBC mode, each block depends on the ciphertext of
the previous block, making parallel processing infeasible. If the IV is not properly shared
or is duplicated across nodes, ciphertext consistency will be compromised. While CTR
mode enables parallel processing by treating block indices as nonces, strict key and IV
scheduling is required to avoid offset collisions between nodes, which can limit parallelism.
In addition, AES encryption is typically structured as a sequential process, where the tight
coupling of key generation and data encryption limits parallelism in multi-node cloud
systems [65,71–73]. For example, when a master node generates an AES session key and
distributes it to slave nodes before encryption can begin, the need to synchronize the
encryption startup across all nodes introduces initialization overhead and delays, which di-
rectly affect overall system performance. To address this, offset-aware partitioning, parallel
AES processing, and centralized key coordination are essential. Our proposed scheme is
designed to satisfy these challenges with scalable and secure file encryption in distributed
and cloud systems.

3. Design
We propose a distributed file-encryption scheme that integrates Post-Quantum Cryp-

tography (PQC), Quantum Key Distribution (QKD), and AES-CTR-based encryption for
cloud systems composed of a master node and multiple slave nodes. The scheme enables
quantum-resilient key distribution and scalable encryption performance through offset-
aware partitioning and parallel encryption processing. The design is structured as a layered
cryptographic stack with clearly separated roles and interfaces among PQC, QKD, and AES,
which avoids redundant coverage and enables modular composition of secure components.

3.1. Overall Architecture

Figure 2 shows the overall architecture of the proposed distributed encryption scheme.
Our proposed scheme consists of a single master and multiple slaves, connected through
MPI-based communication.

Security model and threat assumptions: We assume a semi-honest threat model where
the master node is trusted to perform key generation and distribution. Our threat model
specifically considers an adversary equipped with a quantum computer, capable of breaking
classical public-key algorithms such as RSA and ECC. This threat is critical because these
algorithms are traditionally used to exchange symmetric keys (e.g., for AES), which could
compromise the entire encryption workflow. To address this, our proposed scheme is
designed to be resilient against such quantum attacks on the key-exchange mechanism
through a layered integration of Kyber-based PQC for key encapsulation and QKD for
protecting key transmission.

In addition, slave nodes may be partially compromised, but cannot access complete key
materials due to the use of secret sharing and QKD-based key masking. All communication
occurs over classical channels without built-in confidentiality. To ensure secure transmission,
key materials and data subsets are encrypted before being sent. QKD operations are
simulated using Qiskit Aer, and session validity is verified through QBER-based rejection.
Trust in the quantum channel is limited to the eavesdropping detection properties of the
BB84 protocol.
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Figure 2. Overall architecture of our proposed scheme.

Master: The master is responsible for secure key generation, offset partitioning and assign-
ment, and coordination of encryption and decryption across all slaves.

The master includes the following components: UnifiedCryptoModule and Coordinator.
First of all, to improve key confidentiality, UnifiedCryptoModule assigns distinct roles to
PQC and QKD. It generates a symmetric AES key and encapsulates it using a Kyber-based
PQC key pair (e.g., public and secret keys). The encapsulated key is shared with each slave,
while the PQC secret key is masked using a BB84-based QKD key. The QKD key is securely
established through a BB84-based protocol between the master and each slave. To improve
fault tolerance, the masked PQC secret key can optionally be divided using Shamir’s secret
sharing [74,75] and distributed across multiple slaves. This layered design protects different
parts of the keying process against separate threats: PQC resists quantum decryption of
key exchange, and QKD prevents the secret key from exposure during distribution.

Second, Coordinator manages both encryption and decryption stages. During encryp-
tion, Cipher Dispatcher logically partitions the target file into fixed-size subsets (e.g., 4, 8,
or 16 MB) and assigns byte-range offsets (e.g., offset_start, offset_end) to each slave.
To support parallelism, each slave independently encrypts its assigned byte range with-
out requiring inter-node synchronization. This enables globally distributed encryption,
as disjoint offsets prevent overlap and remove the need for coordination among nodes.
Cipher Sender on the master transmits the assigned offset ranges along with encryption
metadata such as the PQC ciphertext and QKD-masked secret key to each slave, enabling
local AES key reconstruction and subset encryption. During decryption, Cipher Receiver
asynchronously gathers encrypted subsets from all slaves. The collected subsets are then
reordered by the Cipher Sorter based on subset indices (e.g., subset_idx). The recovered
AES key is then used to decrypt all subsets in parallel using a thread pool, where each
decrypted subset is immediately written to the recovered file at its designated offset. This
streaming-based and offset-aware decryption approach eliminates the need to aggregate all
decrypted data in memory, thereby preventing memory exhaustion and ensuring efficient
and stable memory usage even when handling large files.

Slave: Each slave performs streaming encryption of its assigned file into the offset range
and asynchronously returns encrypted subsets to the master. Each slave consists of the
following components: Cipher Reader, AES Encryptor, and Cipher Sender.

Cipher Reader sequentially reads the assigned file region in units of a predefined subset
size (e.g., 4, 8, or 16 MB). For each subset, AES Encryptor reconstructs the AES key using the
received ciphertext and the QKD-unmasked secret key, then encrypts the subsets using AES
in CTR mode. Cipher Sender batches the resulting encrypted subsets and asynchronously
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transmits them back to the master using MPI’s non-blocking isend() interface. The three
components operate as a pipeline, overlapping disk I/O, encryption, and communication
to hide latency and maximize throughput during distributed encryption.

3.2. Layered Key Initialization and Data Partitioning

Figure 3 shows the procedure for secure key initialization and offset-aware file par-
titioning prior to distributed encryption. Our proposed scheme starts with generating a
symmetric AES key. AES Generator creates a random 256-bit key [76,77] (❶). Then, PQC
Generator performs key-pair generation using Kyber. A public key and a secret key are
created. The AES key is encapsulated using the PQC public key, resulting in a PQC ci-
phertext. This encapsulated ciphertext enables the AES key to be securely transferred to
each slave node without revealing its plaintext. The PQC ciphertext is included in the
metadata sent to each slave, while the corresponding PQC secret key is securely retained at
the master in protected form for later AES key recovery. To prevent leakage of the PQC
secret key during transmission, QKD Generator runs a BB84-based protocol to generate
a QKD session key. QKD session key is used to XOR-mask the PQC secret key before
transmitting it. Masked secret key can be recovered only by a slave that holds the same
QKD session key. Even if intercepted, the masked secret key remains secure, as it cannot
be used without the corresponding QKD session key. For fault tolerance and resilience
against node failure, the masked secret key is optionally split into multiple fragments
using Shamir’s (t, n) secret sharing scheme. These fragments are distributed to n slaves,
such that any t of them can later reconstruct the original masked key (❷). Although all
slaves receive a fragment and reconstruct the masked secret key to perform AES encryp-
tion, only a designated subset of t nodes is authorized to retain the reconstructed key
beyond the encryption phase. The remaining slaves discard the key immediately after
encryption, preventing long-term exposure even under partial compromise. This strategy
enables fault-tolerant key recovery while preserving post-execution confidentiality. After
key encapsulation and masking, the master sends the PQC ciphertext and the masked
secret key to each slave. This is because the secret key is never exposed in plaintext and is
recoverable only through QKD-protected masking. Our scheme maintains confidentiality
even during key distribution. These cryptographic components are delivered before file
partitioning begins, enabling each slave to focus solely on subset-level encryption without
participating in key generation or coordination (❸).

Cipher Dispatcher

Quantum Encryptor…
Original File

Original File
 (Decryption)

…
Transform AES Generator

PQC Generator (Kyber)

Key Generation

…

Symmetric Key

QKD Generator (BB84)

Key-pair Generation QKD Generation 
Generation 
AES Key Encapsulation Secret 

key 
Shamir Secret Sharing

Split …

Masking Send Send

…

Subset Size: 4, 8, 16 MB

Subset List

…

…

…

…

………

Size: Filesize (e.g., 100 GB)

Slave 0 Slave 1 Slave 2 Slave N
Slave 0 Slave 1 Slave 2 Slave N

… … … …

Read subset file Read subset file Read subset file Read subset file
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Generate 
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Figure 3. Layered key initialization and offset-aware partitioning for distributed encryption.

Once key transmission is complete, Cipher Dispatcher performs data preparation and
partitioning for parallel encryption. The target file is first converted into binary, and its
total size is measured. Based on the number of participating slave nodes, the master
computes logical start and end offsets for each node, effectively dividing the file into
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disjoint byte-range regions. These regions are designed to support concurrent access by
slave nodes during subset-level encryption without overlap or contention. Following offset
computation, the file is conceptually divided into fixed-size subsets (e.g., 4, 8, and 16 MB),
and the total number of subsets is determined from the file size and subset configuration.
The resulting subset layout defines the unit of encryption and completes the preparation
phase for distributed execution (❹). Once offset ranges are defined and the file is segmented
into fixed-size subsets, each slave receives its designated offset information for file access.
During encryption, each slave reads the file from the assigned offset range in a streaming
manner, processing the data in fixed-size subsets. For each subset, the AES key is locally
reconstructed by decapsulating the received PQC ciphertext using the masked secret key.
The reconstructed AES key is then used to encrypt each subset in CTR mode, and the
resulting encrypted subsets are prepared for transmission to the master node (❺).

3.3. Parallel File Encryption in Distributed Architecture

Procedure: Figure 4 describes how our proposed scheme performs parallel file encryption
across distributed slaves. After key transmission, the master calculates the start offset for
each slave based on the total file size and the number of participating slaves. Each slave
uses this offset information to perform file encryption independently.

As shown in the figure, each slave from 0 to N reads its assigned file segments from
offset_start to offset_end in a streaming manner. The file is read in fixed-size subset
units, and each subset is encrypted using AES-CTR within the AES Encrypt. The encrypted
subsets are placed into a dedicated Cipher Queue on each slave. When the queue reaches
the predefined batch size, encrypted subsets are grouped into a batch and asynchronously
sent to the master using MPI_Isend(). This overlapping of encryption and communication
enables continuous processing without idle resources.
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Figure 4. The procedure of offset-based parallel processing and transmission in distributed
AES encryption.

After receiving encrypted subsets, the master appends them to the Receive Queue.
Each slave sends multiple subsets in a batch, and the master collects them. Receive Queue
manages incoming batches from all slaves. Subsets in the queue are then forwarded to
the Cipher Sorter, which performs global reordering based on subset index sequence.
For example, subsets (e.g., 1-0, 1-1 from slave 1 and N-0, N-1 from slave N) may arrive out
of order, but Cipher Sorter restores the correct sequence before decryption. The sorted
subsets are then processed in the Decryption. The AES key for decryption is reconstructed
by first unmasking the PQC secret key using the QKD session key. The recovered secret
key is then used to decapsulate the PQC ciphertext, yielding the AES key. This key is then
used to decrypt all subsets in parallel using a thread pool.
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Execution model: Algorithm 1 shows the overlapped execution model used by each slave
node for AES encryption and subset transmission. Our proposed scheme separates file
reading and subset sending into two concurrent paths, enabling encryption and communi-
cation to proceed in parallel. This design maximizes I/O throughput by minimizing idle
time between subset production and transmission, and supports scalable performance even
as the number of nodes or data size increases.

Algorithm 1 Overlapped AES encryption and subset transfer in slave node.
1: Function SlaveProcess(filepath, offset_start, offset_end, aes_key)
2: current← o f f set_start, subset_idx ← o f f set_start/subset_size
3: Init CipherQueue← dedicated queue, StopToken← object()
4: Spawn Thread AESReaderThread()
5: function AESREADERTHREAD
6: Open file in binary mode
7: while current < o f f set_end do
8: read_size← min(subset_size, o f f set_end− current)
9: data← read(read_size)

10: enc_subset← AES_Encrypt(data, aes_key)
11: CipherQueue.put(subset_idx, enc_subset)
12: current← current + read_size, subset_idx ← subset_idx + 1
13: end while
14: CipherQueue.put(StopToken)
15: end function

16: Init BatchBuffer← empty list, PendingRequests← empty list
17: while True do
18: (i, c)← CipherQueue.get()
19: if (i, c) == StopToken then
20: break
21: end if
22: BatchBuffer.append(i, c)
23: if len(BatchBuffer) == batch_size then
24: r ← MPI.isend(BatchBuffer, dest=0, tag=...)
25: PendingRequests.append(r), BatchBuffer.clear()
26: if len(PendingRequests) ≥ 32 then
27: MPI.Request.Waitall(PendingRequests), PendingRequests.clear()
28: end if
29: end if
30: end while
31: if BatchBuffer not empty then
32: MPI.isend(BatchBuffer, ...), PendingRequests.append()
33: end if
34: MPI.Request.Waitall(PendingRequests)

As shown in the algorithm, the SlaveProcess function initializes the current file
position and subset index (Line 2). CipherQueue is created to buffer encrypted subsets
between the reader and sender components (Line 3), and a separate reader thread is
spawned to handle encryption (Line 4). The AESReaderThread function opens the target
file in binary mode (Line 6) and sequentially reads the assigned region in fixed-size subset
units (Lines 7–8). Each subset is encrypted using the AES key reconstructed from the
PQC ciphertext and QKD-masked secret key (Line 10), and the resulting ciphertext is
inserted into the CipherQueue along with its subset index (Line 11). Once the entire file
range [offset_start, offset_end] is processed, a StopToken is pushed into the queue
to signal completion (Line 14).

While the reader thread generates encrypted subsets, the main thread concur-
rently dequeues items from CipherQueue (Line 17) and appends them to a BatchBuffer
(Line 22). When the batch reaches a predefined size, a non-blocking send is triggered
using MPI_Isend() (Line 24), and the request handle is added to the PendingRequests



Appl. Sci. 2025, 15, 7782 11 of 25

list (Line 25). When the number of outstanding requests exceeds a threshold (e.g., 32),
MPI_Waitall() is invoked to ensure network buffer safety and avoid congestion (Line 27).
After all encrypted subsets are processed and the StopToken is detected (Lines 19–20),
any remaining batch is transmitted (Lines 31–32), and a final MPI_Waitall() ensures com-
pletion of all asynchronous transmissions (Line 34). Our proposed scheme leverages an
overlapped pipeline design, allowing parallel encryption and transmission to proceed con-
currently with minimal blocking. This enables efficient and scalable distributed encryption
even under high I/O and communication loads.

3.4. Implementation

We implemented our proposed scheme by designing a parallel file encryption and
centralized decryption framework that integrates post-quantum cryptography (PQC),
quantum key distribution (QKD), and AES-based symmetric encryption across a distributed
architecture for cloud systems. To support subset-level processing, overlapped encryption
and transmission, and centralized decryption, we implemented approximately 270 lines of
Python 3.9 code using mpi4py, oqs-python, qiskit, and pycryptodome.

Our implementation includes the following key components:

• Layered Key Initialization: We used the Kyber512 algorithm from the Open Quantum
Safe (OQS) library [78] to generate a PQC key pair. The AES key is encapsulated using
the PQC public key. The PQC secret key is XOR-masked using a QKD session key
simulated with Qiskit Aer [62], and optionally split via Shamir’s secret sharing for
fault-tolerant recovery.

• Parallel and Overlapped Subset Encryption: Each slave node performs AES encryp-
tion and transmission in parallel by overlapping file reading, encryption, and com-
munication. Encrypted subsets are streamed to the master using non-blocking MPI
operations, allowing continuous processing without idle time. This structure improves
resource utilization and enables high-throughput distributed encryption.

• Centralized Decryption Pipeline: The master node receives encrypted subsets, re-
orders them based on subset indices, and reconstructs the AES key by decapsulating
the PQC ciphertext and unmasking the PQC secret key. Subsets are decrypted in
parallel using a thread pool and merged to restore the original file.

We open-source our implementation at: https://github.com/changjongkim/Hybrid-
Encrpytion-Scheme.git, accessed on 6 July 2025 .

4. Evaluation
4.1. Experimental Setup

For evaluation, we used a cluster composed of 8 physical compute nodes, each
equipped with an AMD EPYC 7713 processor (64 cores/128 threads @ 2.0 GHz), 130 GB of
DDR4 memory, and a Seagate FireCuda 530 NVMe SSD with 2TB capacity. All nodes run
Ubuntu 22.04.3 LTS with Linux kernel version 6.6.2. All nodes communicate through the
Message Passing Interface (MPI).

To evaluate subset-level encryption under realistic conditions, we used the ECU-IoHT
dataset [79]. We gradually increased the file size from 10 GB to 100 GB to assess scalability
across various data volumes. For key management, we adopted the Kyber512 algorithm
from the OQS library [78] for PQC-based encapsulation of a 256-bit AES key [76,77],
and used the Qiskit Aer simulator [62] to emulate BB84-based QKD session key gener-
ation for secret key masking. To create a realistic evaluation scenario, we used a macro-
benchmark from real application environments to assess the feasibility of our proposed
scheme. We utilized the Yahoo Cloud Serving Benchmark (YCSB) [80], which is widely used
for read/write-intensive workloads in cloud systems. For key-value storage, we configured

https://github.com/changjongkim/Hybrid-Encrpytion-Scheme.git
https://github.com/changjongkim/Hybrid-Encrpytion-Scheme.git
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YCSB with RocksDB. During evaluation, we executed YCSB workloads A, B, C, and D
under two separate conditions: once while running AES (Original) and once while running
our proposed scheme. This allows for measuring and comparing the encryption overhead
imposed on application-level performance.

4.2. Throughput

End-to-End: Figure 5 shows the end-to-end runtime performance of our proposed scheme
compared to AES (Original) across different subset sizes (e.g., 4 MB, 8 MB, and 16 MB).
The x-axis represents the input file size ranging from 10 GB to 100 GB, and the y-axis
represents the total runtime in seconds. The legend distinguishes AES (baseline, single-
node execution) and our proposed scheme evaluated on 4, 6, and 8 nodes (e.g., one master
and multiple slaves), respectively. The end-to-end runtime for AES includes file read,
encryption, decryption, and output generation on a single node. In contrast, our proposed
scheme includes file read, quantum-resilient security, which includes PQC-based AES key
encapsulation and QKD-based session key masking, parallel AES encryption, inter-node
communication, decryption at the master, and the generation of the final output file.
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Figure 5. End-to-End Performance comparison between AES (Original) and Proposed (PQC + QKD +
AES) across multi-node.

As shown in the figure, our proposed scheme consistently achieves lower runtime than
the AES (Original) baseline across all subset sizes and file sizes. For 100 GB file, the runtime
is reduced from 432.01 to 302.28 s with 4 MB, from 408.38 to 270.44 s with 8 MB, and from
451.86 to 190.86 s with 16 MB, achieving 1.43×, 1.51×, and 2.37× speedups, respectively.
Overall, our proposed scheme shows 1.43× to 2.37× improvement over AES (Original),
depending on the subset size. However, the end-to-end runtime does not scale linearly
with the number of nodes, primarily because the decryption phase is centrally performed
at the master node. The master node centrally manages the Kyber-decapsulated AES key
and QKD-masked secret keys, with the goal of minimizing exposure to key compromise
during recovery. Despite this centralized decryption overhead, our scheme shows consistent
performance gains across all file sizes, demonstrating its effectiveness in balancing security
requirements with parallel execution efficiency.

Encryption: Figure 6 shows the encryption-only runtime performance of our proposed
scheme compared to AES (Original) across various subset sizes (e.g., 4, 8, and 16 MB).
As shown in the figure, the encryption stage exhibits linear scalability as the number of
nodes increases, enabled by offset-aware partitioning that assigns disjoint byte ranges to
each slave, allowing AES encryption to proceed independently without inter-node syn-
chronization and centralized bottlenecks. For 70 GB file, encryption is faster as more
nodes are used. With 4 MB sizes, the encryption runtime is reduced from 163.34 s (AES)
to 133.83, 128.83, and 88.61 s on 4, 6, and 8 nodes, respectively, achieving 1.26× to 1.84×
speedups. With 8 MB, it is reduced from 155.16 (AES) to 114.67, 72.09, and 20.09 s, showing
improvements of 1.35× to 7.72×. The most significant gain is observed with 16 MB, where
the encryption runtime decreases from 155.92 (AES) to 54.25, 31.41, and 17.98 s, yielding
2.87× to 8.67× speedups depending on the number of nodes. A similar trend is observed
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for the 100 GB file. With 4 MB, runtime is reduced from 228.86 s (AES) to 220.67, 204.36,
and 159.74 s on 4, 6, and 8 nodes, resulting in 1.04× to 1.43× speedups. With 8 MB, it is
reduced from 198.73 (AES) to 176.16, 156.10, and 114.99 s, showing 1.13× to 1.73× improve-
ments. For 16 MB, the runtime decreases from 252.62 (AES) to 153.41, 43.34, and 31.17 s,
achieving 1.65× to 8.11× speedups.
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Figure 6. Encryption Performance comparison between AES (Original) and Proposed (PQC + QKD +
AES) across multi-node.

Decryption: Figure 7 shows the decryption runtime performance of our proposed scheme
compared to AES (Original), evaluated with 100 GB input across different subset sizes
(e.g., 4, 8, and 16 MB). As decryption is centrally performed at the master node, the de-
cryption runtime is primarily bounded by the master’s local execution, regardless of the
number of slave nodes. With 4 MB, AES (Original) requires 180.71 s, while our scheme
achieves 174.90, 146.11, and 120.58 s on 4, 6, and 8 nodes, respectively, yielding up to a 1.50×
speedup. For 8 MB, the runtime is reduced from 189.93 AES (Original) to 174.50, 164.58,
and 134.17 s, achieving up to a 1.41× improvement. With 16 MB, decryption time decreases
from 179.52 AES (Original) to 169.65, 165.59, and 139.92 s, resulting in a maximum speedup
of 1.28×. Although both the AES (Original) and our proposed scheme perform centralized,
thread-based decryption, our scheme shows improved or comparable performance for
large files. This is primarily due to structural overlap between communication, memory
preparation, and computation. While the master node receives encrypted subsets over the
network, it concurrently prepares in-memory buffers and sorts incoming data, allowing
decryption to start immediately after reordering. This overlap reduces idle time and enables
more efficient use of computational resources. In contrast, AES (Original) performs decryp-
tion directly on data loaded from disk, which introduces I/O latency that becomes more
pronounced with larger file sizes, such as 70 and 100 GB. In addition, our proposed scheme
adopts a streaming-based and offset-aware design to prevent memory exhaustion during
decryption. Each decrypted subset is immediately written to the recovered file at the corre-
sponding offset, without aggregating all data in memory. our design maintains stable and
efficient memory usage regardless of dataset size and supports large-scale data processing.
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Figure 7. Decryption Performance comparison between AES (Original) and Proposed (PQC + QKD +
AES) across multi-node.

4.3. Node-Level Encryption Performance and Variability

To evaluate the internal scalability, we examine how encryption and communication
workloads are distributed across slave nodes as the number of participating nodes in-
creases. As the number of nodes increases, additional slave nodes are introduced into the
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encryption pipeline. We analyze whether these slave nodes exhibit consistent encryption
and communication performance, and whether increasing the number of nodes affects
per-node performance variability or leads to workload imbalance.

Figure 8 shows the encryption and communication time for each slave under 2, 4,
and 8-node configurations (excluding the master) using 70 GB Datasets. Each slave is
responsible for encrypting its assigned subset independently using AES-CTR and trans-
mitting the encrypted data back to the master via MPI. As shown in the figure, node-level
encryption and communication times remain highly consistent across all configurations. For
3 Nodes (1 master and 2 slaves), the two slaves completed encryption in 115.89 and 120.79 s,
and communication in 5.20 and 5.23 s, respectively. With 4 nodes, encryption times across
slaves ranged from 46.66 to 47.06 s, and communication from 3.44 to 3.64 s. In the 8-node
configuration, all slaves completed encryption within 19.65 to 19.95 s, and communication
from 1.47 to 1.55 s.
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Figure 8. Node-Level encryption and communication time across different node configuration (1 mas-
ter, all other nodes as slaves).

These results demonstrate that our offset-aware partitioning and parallel AES process-
ing strategy achieve balanced workload distribution. The low variance in encryption time
across slaves indicates that no single node becomes a bottleneck, even as the number of
participating slaves increases. In addition, communication overhead increases predictably
with node count, reflecting the benefits of using non-blocking MPI transfers and streaming
batch transmission. Notably, increasing the number of nodes reduces per-node encryption
time nearly linearly, as the total file is divided into smaller subsets. This ensures that the
proposed design supports efficient scaling without incurring synchronization overhead or
load imbalance.

4.4. Communication Cost

Figure 9 presents the communication time measured under varying numbers of nodes
and subset sizes, using 70 GB and 100 GB files. The x-axis represents the number of nodes,
and the y-axis shows the communication time in seconds required to transfer encrypted
subsets from all slave nodes to the master via non-blocking MPI. As shown in the figure,
the communication time remains consistently low across all configurations. For the 70 GB,
the time ranges from 8.88 to 12.57 s, depending on the number of nodes and subset size.
With 4 MB, the time ranges from 10.89 s (for 2 nodes) to 11.33 s (for 4 nodes), showing
only a 1.04× difference. With 8 MB, the time range is from 11.66 s (for 4 nodes) to 12.57 s
(for 8 nodes), corresponding to a 1.08× difference. For 16 MB, the time varies from 8.88 s
(for 8 nodes) to 10.21 s (for 2 nodes), resulting in a 1.15× difference. For the 100 GB case,
communication time ranges from 15.43 to 18.69 s. With 4 MB, the time ranges from 16.30 s
(for 2 nodes) to 18.69 s (for 4 nodes), a 1.15× difference. With 8 MB, the cost ranges from
17.89 s (for 2 nodes) to 18.66 s (for 6 nodes), showing a 1.04× difference. For 16 MB, the time
ranges from 15.43 s (for 2 nodes) to 16.06 s (for 4 nodes), also showing a 1.04× difference.

Across all subset sizes and file sizes, the variation in communication time remains
minimal, demonstrating that communication overhead is both stable and scalable. This
stability stems from our use of non-blocking MPI, which allows each slave node to transmit
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pre-encrypted subset data independently and in parallel. This is because all data is securely
encrypted before transmission, eliminating the need for additional encryption or secure
channel protocols during communication. Our design preserves security guarantees while
keeping the communication layer lightweight and efficient.
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Figure 9. Communication time comparison of the proposed scheme (PQC + QKD + AES) with varying
subset sizes across different node counts.

4.5. Time Analysis

It is critical for our proposed scheme to reduce processing overhead while maintaining
secure communication and centralized coordination. To analyze the runtime composition
of each subcomponent, Figure 10 presents the execution time breakdown when encrypting
a 100GB file using 16 MB subset size across 2, 4, and 8 nodes. We observe the runtime of five
major components: Encryption, Decryption, BB84 Protocol, PQC Generation and Encapsulation,
and Communication.
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Figure 10. Time analysis using 100 GB file (subset: 16 MB).

As shown in the figure, Encryption accounts for the largest portion of runtime in the
2-node case, taking 252.62 s, which corresponds to 54.7% of the total time. As the number
of nodes increases to 4 and 8, the encryption time decreases to 153.41 s (39.6%) and 31.17 s
(11.8%), respectively. This corresponds to a 39.3% reduction from 2 to 4 nodes, and an
87.7% reduction from 2 to 8 nodes, demonstrating strong scalability through distributed
subset encryption. In contrast, Decryption shows limited scalability due to its centralized
execution at the master node. The decryption time decreases from 179.52 s at 2 nodes to
169.65 s (5.5% reduction) at 4 nodes and 119.92 s (33.2% reduction) at 8 nodes. Although de-
cryption is centralized and not parallelized across nodes, our scheme mitigates potential
bottlenecks by decoupling communication and computation. While encrypted subsets are
being received, the master prepares in-memory buffers and schedules decryption tasks,
enabling immediate processing after sorting is complete. This structure reduces idle time
and improves overall throughput, especially for large files.

The BB84 Protocol time remains relatively small and does not show a clear correlation
with the number of nodes. It varies between 4.23 and 7.23 s across configurations, primarily
due to the probabilistic nature of quantum key generation rather than node-level scaling.
This range indicates stable runtime behavior under simulated QKD conditions. The PQC
Encapsulation time remains stable at approximately 1 s across all configurations. This is
because key encapsulation is performed once during the initialization phase on the master
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node, independent of the number of slave nodes, and introduces negligible overhead within
the overall encryption pipeline. Finally, Communication shows minimal variation, measured
as 15.49 s at 2 nodes, 16.06 s at 4 nodes, and 15.51 s at 8 nodes. This stability comes from
transmitting only pre-encrypted subset data using non-blocking MPI without additional
protocol overhead. Since all data is encrypted before transmission and secured through
PQC-based key encapsulation and QKD-based masking, no additional secure channel like
TLS is required. As a result, communication cost remains low regardless of the number
of nodes.

4.6. QKD Runtime Variability

Figure 11 shows the runtime variability of the QKD key generation phase across
25 independent BB84 protocol sessions. The x-axis represents the session number, the y-axis
indicates the runtime in seconds, and the values inside each bar indicate the retry loop
count to generate a valid key under the QBER threshold. Each session generates a 128-bit
key using an identical quantum circuit structure and performs post-processing under the
condition that the quantum bit error rate (QBER) remains below 11%. As shown in the
figure, the runtime remains relatively stable across sessions. The minimum and maximum
runtimes are 3.35 and 6.79 s, respectively, with an average of 4.49 s and a standard deviation
of 0.88 s. Most sessions fall between 4 and 5 s, resulting in only a 2.03× difference between
the fastest and slowest cases. QKD sessions with runtimes of 3 to 4, 4 to 5, and over 6 s
completed in 4–5, 6–8, and up to 12 loops, respectively.

Figure 11. QKD Runtime Variability.

This consistent runtime shows that the QKD key generation latency is not significantly
affected by the inherent randomness of the BB84 protocol. Within the full encryption
routine of our proposed scheme, the QKD Key generation phase incurs negligible overhead
and shows low variability, validating its practicality for repeated use in cloud systems.
In addition, to ensure QBER compliance, the key generation loop is retried until the
extracted key satisfies the <11% threshold. Despite this retry mechanism, the total runtime
remains low due to parallel execution across multiple thread workers. This enables fast
key agreement with minimal latency, making the QKD Key generation phase suitable for
secure large-scale encryption without incurring significant performance overhead.

4.7. Computation Overhead

In many cloud systems, large-scale file-encryption tasks (e.g., securing logs, analytical
datasets, or backups) are performed asynchronously in the background, while real-time
computation workloads continue to run concurrently. Although small-sized file operations
typically incur minimal and short-lived system costs (e.g., transient memory usage or
localized I/O), large-scale file encryption can introduce sustained I/O pressure, memory
contention, and CPU competition. To identify the practicality of our scheme in cloud
systems, we evaluate whether background encryption interferes with concurrently running
applications under realistic cloud workloads.

While our proposed scheme enhances security by integrating PQC and QKD with
AES, it may affect overall performance by incurring computational overhead. To evaluate
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this impact, we measured the workload running time across four YCSB workloads: A, B, C,
and D. Each workload reflects a distinct access pattern: workload A (update-heavy), B (read-
mostly), C (read-only), and D (read-latest). In addition, each workload was executed using
the YCSB with request distribution set to Zipfian. Three configurations were compared: a
baseline YCSB workload execution with no encryption (Vanilla), execution under AES-only
encryption (AES (Original)), and execution under our proposed scheme integrating PQC,
QKD, and AES. In all configurations, the YCSB workload was executed on the identical
master to ensure consistency. While Vanilla and AES (Original) performed encryption on a
single node, our proposed scheme executed distributed encryption across 4 nodes, with the
master handling the workload and coordination.

Table 2 presents the runtime results for all three configurations, averaged over five runs.
As shown in the table, both AES (Original) and our proposed scheme increase workload
processing time compared to Vanilla, but our proposed scheme consistently incurs lower
overhead than AES (Original). In workload A, the runtime for Vanilla, AES, and Proposed
is 255.65, 291.43, and 267.74 s, corresponding to a 14.01% increase for AES and 4.72% for
Proposed. In workload B, the runtimes are 168.86, 209.65, and 182.34 s, resulting in a
24.17% increase for AES and 7.98% for Proposed. In workloads C and D, the runtime
for Vanilla, AES, and Proposed is 115.55, 173.61, and 153.32 s in workload C, and 111.06,
146.62, and 132.17 s in workload D. These correspond to increases of 50.23% (AES) and
32.73% (Proposed) in workload C, and 31.98% (AES) and 19.02% (Proposed) in workload
D, respectively. These results show that while both AES and our proposed scheme incur
overhead compared to unencrypted execution, our proposed scheme consistently reduces
the overhead impact, demonstrating its efficiency and practicality.

Table 2. Runtime of Vanilla, AES (Original), and Proposed (PQC + QKD + AES).

Workload Vanilla AES (Original) Proposed (PQC + QKD + AES)

workload A 255.65 291.43 267.74

workload B 168.86 209.65 182.34

workload C 115.55 173.61 153.32

workload D 111.06 146.62 132.17

4.8. CPU Utilization

Figure 12 shows the average CPU utilization during encryption for AES (Original)
and our proposed scheme with 4, 6, and 8 nodes. The x-axis represents runtime (sec-
onds), and the y-axis shows CPU utilization in percentage (%). As shown in the figure,
the AES (Original) exhibits higher variation and sustained CPU activity over a longer
runtime. The execution completes in approximately 440 s, with CPU utilization ranging
from 5.00% to 75.76%. This indicates uneven processing and frequent spikes due to the
sequential workload on a single node. In contrast, our proposed scheme shows lower and
more stable CPU usage with shorter runtimes across all configurations. Node 4 completes
in 314 s with utilization ranging from 13.84% to 62.10%, Node 6 in 140 s with 26.73% to
59.54%, and Node 8 in 85 s with 20.80% to 63.46%. Compared to AES (Original), the CPU
utilization patterns of our proposed scheme demonstrate improved load balancing and
lower processing overhead across nodes.

These results demonstrate the advantages of our proposed scheme in terms of scalabil-
ity and resource efficiency. Unlike AES (Original), which concentrates the entire encryption
workload on a single node, our design distributes subset-encryption tasks across multi-
ple nodes, enabling concurrent processing and reducing overall execution time. Despite
utilizing more CPUs, our scheme maintains moderate and balanced usage across nodes,



Appl. Sci. 2025, 15, 7782 18 of 25

avoiding excessive load on any single core. This reduces bottlenecks and ensures that
increasing the number of nodes leads to faster runtime without causing resource satura-
tion. In addition, although CPU utilization remains moderate rather than saturated, such
behavior does not indicate idle time or resource under-utilization. Rather, the reduced
utilization reflects effective parallelism and reduced workload per node (e.g., in an 8-node
processing a 100 GB file, each node encrypts only approximately 12.5 GB independently
as a subset). The consistent runtime improvements across 4, 6, and 8 nodes confirm that
performance scales with added resources without incurring communication bottlenecks or
wait-time stalls.

0
20
40
60
80

100

0 100 200 300 400

C
P

U
 U

ti
l. 

(%
)

Runtime (Sec)

AES Node 4 Node 6 Node 8

Figure 12. CPU utilization comparison between AES (Original) and our proposed scheme (PQC +
QKD + AES) across multiple nodes.

5. Related Works
5.1. Cryptographic Integration Approaches for Cloud System Security

Various studies have been proposed for combining file encryption in cloud systems
with advanced cryptographic algorithms to enhance security. Atikah et al. [81] proposed
an encryption technique combining AES and RC4, leveraging the strong security of AES
and the high processing speed of RC4 to improve the avalanche effect and overall file
protection. An et al. [63] focused on increasing encryption performance for large-scale
data through parallel optimization by combining XTS and AES, utilizing GPU-based
parallelism to accelerate encryption and improve scalability. Abbas et al. [82] proposed
combining AES and RSA encryption with steganography to hide encrypted data within
image files, adding a layered security model that enhances confidentiality and integrity
in cloud-based storage systems. Zeng et al. [37] proposed a hybrid PQC-QKD protocol
for secure key distribution across networked systems. Their work constructs tree-based
protocol compositions using XOR and secret sharing to evaluate key rate and vulnerability
across multiple communication paths, focusing on protocol-level optimization in hybrid
quantum-classical networks.

Our work is in line with these studies in proposing an encryption scheme for cloud
systems. However, it also addresses the limitations of existing approaches by considering
both classical and quantum security threats. By integrating Kyber-based post-quantum key
encapsulation with BB84-based Quantum Key Distribution (QKD), our scheme provides a
layered encryption architecture optimized for secure and scalable encryption in distributed
cloud systems. While Zeng et al. [37] proposed a hybrid PQC-QKD protocol focusing on
the key-distribution layer and protocol modeling, their work does not address practical
encryption workflows or system-level integration for file protection. In contrast, our study
designs a unified encryption framework for file-level protection that tightly integrates key
generation, AES-based data encryption, and transmission coordination, enabling secure
and scalable execution across cloud systems. Thus, our proposed scheme enables scalable
and secure file protection by decoupling key management from data encryption, support-
ing parallel AES encryption across slave nodes while maintaining quantum-resilient key
confidentiality through centralized coordination and multi-layered key masking.
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5.2. Accelerating Security Processing in Cloud Systems with Innovative Cryptographic Methods

Several studies have designed various approaches to effectively accelerate the process
of encrypting data in cloud systems. Velmurugadass et al. [83] proposed a blockchain-based
security enhancement using elliptic curve encryption and cryptographic hash algorithms
to protect IoT devices in cloud systems. Thabit et al. [84] proposed a lightweight encryption
algorithm by combining block and stream encryption with optimal block and key sizes. Mo-
hammed et al. [85] focused on reducing computational overhead by lowering operational
costs in the data-encryption process through fast hashing and key-exchange mechanisms.

Our paper is in line with the goal of optimizing performance to accelerate encryption
and decryption processes in cloud systems. However, our proposed scheme implements a
layered encryption architecture that combines Kyber-based post-quantum key encapsula-
tion and BB84-based quantum key distribution with parallel AES encryption. By assigning
subset-level encryption tasks to slave nodes and overlapping encryption with transmission,
it minimizes computational overhead and maximizes parallel efficiency. This structure
enables consistent runtime performance regardless of file size, while the integration of a
quantum-secure key masking layer mitigates vulnerabilities in traditional key exchange
and enhances system scalability. In addition, although our scheme uses standard MPI
channels without built-in security guarantees, all encryption keys are protected via Kyber
encapsulation and QKD-based masking during distribution, and all subsets are transmit-
ted in encrypted form. This eliminates the need for secure channels and ensures data
confidentiality throughout the communication phase.

5.3. Integrated Cryptographic Approaches for Next-Generation Data Security

There have been studies exploring emerging encryption approaches to enhance privacy
and security in image and sensitive data processing. Chen et al. [86] proposed an image-
encryption method that combines the Piecewise Linear Chaotic Map (PWLCM) with the
Standard Map to exploit both one-dimensional and two-dimensional chaotic behaviors for
increased key sensitivity and diffusion. Mirzajani et al. [87] proposed a chaos-DNA hybrid
model that utilizes DNA encoding and logic operations to further obscure the relationship
between plaintext and ciphertext. Lin et al. [88] introduced a diversified memristive Hop-
field Neural Network (HNN) that generates complex multi-butterfly chaotic attractors to
secure Internet of Medical Things (IoMT) data. Similarly, Ding et al. [89] proposed a hidden
multiwing HNN system that produces high-dimensional chaos suitable for encrypting
remote sensing images. These studies exemplify a research trend focused on enhancing
security by increasing algorithmic complexity within the classical computing domain.

Our paper is in line with these studies in the goal of designing advanced encryption
schemes to provide robust security for specialized data, such as images and large-scale
files. However, our study distinguishes itself by primarily addressing the security threats
posed by quantum computing, a challenge not covered by the chaos-based classical ap-
proaches of these studies. By integrating Kyber-based Post-Quantum Cryptography (PQC)
for key encapsulation and BB84-based Quantum Key Distribution (QKD) for key masking,
our proposed scheme constructs a layered quantum-classical cryptographic framework
designed to enhance security in distributed cloud systems. Additionally, our proposed
scheme is designed for high-performance, scalable cloud systems. It enables secure and
efficient large-scale file protection by decoupling key management from data encryption
and supporting parallel AES encryption across distributed slave nodes. This is achieved
through centralized coordination and multi-layered, quantum-resilient key masking, a sys-
temic approach designed to balance next-generation security with practical throughput,
unlike the algorithm-centric focus of the compared existing works.
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6. Limitation and Future Works
Integrity verification mechanism: Our proposed scheme ensures safe key distribution
and secure data delivery through a layered structure that combines Kyber-based key en-
capsulation, QKD-based masking, and optional Shamir secret sharing. (1) Each AES key is
never exposed in plaintext. It is encapsulated via PQC, while the corresponding secret key
is QKD-masked and optionally fragmented, making unauthorized key reconstruction infea-
sible even under partial node compromise. (2) All encrypted subsets are transmitted only
after local encryption with securely reconstructed keys, and communication occurs over
pre-encrypted data without relying on secure channels, thereby preventing eavesdropping
and key leakage in practice. Additionally, each subset is encrypted in CTR mode using a
randomly generated nonce, which supports freshness and prevents ciphertext duplication
across sessions.

However, our study lacks cryptographic integrity verification to detect tampering
or replay attacks on encrypted subsets or keys, such as when a compromised slave node
encrypts and transmits manipulated data. Our plan for future work is to implement post-
quantum digital signatures, such as Dilithium [61], to authenticate the origin and ensure
tamper resistance of both key materials and encrypted subsets. To do this, each key and
encrypted subset will be signed at the master and verified by each slave node, enabling
full-path integrity checking from key generation to distributed encryption. In addition,
we will bind the existing AES nonce to the digital signature or augment it with explicit
timestamps to strengthen freshness guarantees and replay protection.

Non-elastic communication structure in cloud systems: Our proposed scheme adopts MPI-
based communication between a master and fixed slave nodes (e.g., number of nodes: 2, 4,
6, 8), which has shown effective in stable, high-throughput performance under controlled
cloud workloads such as YCSB (e.g., workload A, B, C, D). (1) This structure enables efficient
coordination and predictable communication by leveraging deterministic message passing,
resulting in minimal runtime variability across nodes and strong throughput scalability as
demonstrated in our evaluation. (2) While this design meets the requirements of large-scale
file encryption in a fixed-resource environment, it provides limited elasticity in dynamic
cloud-native platforms such as Kubernetes [90], where autoscaling, container migration,
and fault-tolerant recovery are essential.

Our plan for future work is to support elastic and fault-tolerant execution in cloud-
native systems by modularizing communication and coordination using gRPC [91] and
distributed key-value stores such as etcd. To achieve this, we will decouple encryption
scheduling and metadata exchange from static MPI bindings, enabling seamless adaptation
to elastic cloud infrastructure while maintaining the stable performance characteristics of
the existing design.

Centralized decryption and performance-security trade-off: Our decryption strategy is
performed at the master node using the AES key recovered through Kyber decapsulation
and QKD unmasking, with both operations strictly confined to the master node to mini-
mize key exposure and ensure coordinated trust. Although all slave nodes are capable of
reconstructing the AES key from QKD-masked secret shares, only a selected slave nodes
retain the key during execution, and the rest discard it immediately after encryption. As a
result, decryption cannot be performed by slave nodes alone, which effectively eliminates
unauthorized decryption paths and strengthens security against node compromise and
replay-based attacks.

However, centralizing decryption introduces a performance bottleneck. As the number
of slave nodes increases, the master node receives more encrypted subsets via MPI. For large
files, this leads to concentrated communication, index-based reordering, and sequential
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decryption, creating I/O and compute contention that limits scalability. To address the
limits of scalability, our planned future works will distribute decryption across multiple
trusted nodes using threshold cryptography. Each node will handle only its assigned
subsets using partial key shares, without access to the complete AES key. In addition,
we plan to offload selective stages of decryption, such as AES pre-processing or partial
decryption, to slave nodes under controlled policies that restrict key visibility, enforce task
isolation, and prevent unauthorized reconstruction. This enables parallel execution while
maintaining strict key confidentiality.

7. Conclusions
In this paper, we propose a secure and scalable file-encryption scheme that integrates

quantum-resistant key encapsulation and quantum key distribution with distributed AES
encryption for enhanced protection and parallel performance. Our evaluations show that
the proposed scheme achieves up to 2.37× speedup in end-to-end runtime and up to
8.11× speedup in encryption time compared to AES (Original), while maintaining low
communication cost, stable CPU utilization, and consistent QKD key generation latency.
These results demonstrate its scalability and practicality for large-scale secure file processing
in cloud systems, such as protecting medical archives, financial logs, or research datasets
under background encryption.

To further extend our proposed scheme, we plan to integrate post-quantum signatures
for subset integrity, enable elastic communication for dynamic cloud systems, and dis-
tribute decryption using threshold cryptography to improve scalability while preserving
key confidentiality.
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