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 A B S T R A C T

Cooling energy consumption constitutes a significant portion of total energy use in buildings 
located in hot and humid climates. This paper presents an AI-driven integrated strategy to 
optimize energy efficiency and indoor comfort while reducing carbon emissions in Kuala 
Lumpur, Malaysia. The key innovation differentiating this approach from existing studies lies in 
the integration of Multi-Input Bottleneck Architecture (MIBA)-based Long Short-Term Memory 
models, 5 min high-resolution real-time data processing, and Model Predictive Control systems 
incorporating adaptive comfort models. Unlike existing AI-based HVAC research that relies on 
hourly control or simple neural networks, this study utilizes environmental, control, and energy 
data sampled at 5 min intervals to forecast indoor conditions and optimize Air Conditioning 
and Mechanical Ventilation control strategies. Through Walk-Forward Validation across 21 
stages, the energy consumption prediction model achieves high accuracy (R2 > 0.88). The 
optimization algorithm reduces daily energy consumption from 10,306 kWh to 9,864 kWh 
and peak usage from 84 kWh to 82 kWh. Over one-month simulation, total energy savings 
reached 12,871 kWh, CO2 emissions decreased by 5,913 kg, and cost savings amounted to, RM 
6,304. Twenty-four-hour empirical validation confirmed simulation accuracy, demonstrating 
consistency between theoretical modeling and actual implementation. This study provides a 
practical solution addressing the comfort-efficiency trade-off problem and offers innovative 
building management approaches for achieving sustainable energy usage and contributing to 
long-term environmental sustainability in hot and humid climates.

1. Introduction

Building energy consumption accounts for approximately 37% of global energy use [1], with cooling demands representing a 
significant share in hot and humid regions. In countries such as Malaysia, air conditioning alone is responsible for more than 48% 
of the total energy consumption of buildings [2]. Given the high dependence on cooling systems in these climates, improving air 
conditioning efficiency is crucial for reducing energy consumption and achieving sustainable building operations. Developing and 
optimizing cooling technologies tailored to these conditions is, therefore, a critical challenge.

Achieving carbon neutrality through the efficient use of energy is a key objective in strategies for addressing climate change, 
both now and in the future [3]. Optimizing energy consumption in hot and humid regions can help reduce greenhouse gas emissions
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Nomenclature

𝛥𝐸𝑅, 𝛥𝐸𝑆 , 𝛥𝐸𝑇 Energy used in each phase during interval (kWh)
𝛥𝐸𝑡𝑜𝑡𝑎𝑙 Total energy used during interval (kWh)
𝛥𝑇max Maximum allowable temperature deviation (◦C)
𝑢̂(𝑡) Optimal control input at time 𝑡
𝜆1, 𝜆2 Weighting coefficients for energy and comfort in optimization
𝑢(𝑡), 𝑢̄(𝑡) Minimum and maximum allowable control input at time 𝑡
𝐴, 𝐵, 𝐶,𝐷,𝐸, 𝐹 ,𝐺 Coefficients for environmental response functions
𝐸𝑡 Energy consumption at time 𝑡 (kWh)
𝐸msb𝑘(𝑡) Energy consumption of MSB 𝑘 at time 𝑡 (kWh)
𝑓 (⋅) LSTM prediction function
𝑖 Floor or zone index
𝐼(𝑡) Indoor environmental function at time 𝑡
𝐽 Objective function for MPC optimization
𝑘 MSB number identifier
𝑁 Number of floors or zones
𝑛 Number of previous days for prediction
𝑃𝑅(𝑡), 𝑃𝑆 (𝑡), 𝑃𝑇 (𝑡) Instantaneous power at time 𝑡 for R, S, T phases (W)
𝑆schedule(𝑡) Scheduling data at time 𝑡
𝑆𝑇 ,𝑖(𝑡) Temperature satisfaction at floor 𝑖 and time 𝑡
𝑆𝑡𝑜𝑡𝑎𝑙(𝑡) Overall indoor environmental satisfaction at time 𝑡
𝑇set,𝑖 Set temperature at floor 𝑖 (◦C)
𝑇env(𝑡) Predicted indoor environmental value at time 𝑡
𝑇final Target final temperature (◦C)
𝑇initial Initial temperature (◦C)
𝑇outdoor(𝑡) Outdoor temperature at time 𝑡 (◦C)
𝑇𝑖(𝑡) Actual temperature at floor 𝑖 and time 𝑡 (◦C)
𝑢(𝑡) Control input at time 𝑡
𝑤𝑇 ,𝑖 Weight for temperature satisfaction at floor 𝑖
𝑋𝑡 Historical energy consumption data at time 𝑡
𝑌𝑡 Predicted energy consumption at time 𝑡
ACMV Air Conditioning and Mechanical Ventilation
AI Artificial Intelligence
ANN Artificial Neural Network
ARIMA Autoregressive Integrated Moving Average
ASHRAE American Society of Heating, Refrigerating and Air-Conditioning Engineers
BAS Building Automation System
BEMS Building Energy Management System
CI Confidence Interval
CO2 Carbon Dioxide
DL Deep Learning
EMS Energy Management System
ESS Energy Storage System
HVAC Heating, Ventilation, and Air Conditioning
IoT Internet of Things
LSTM Long Short-Term Memory (neural network)
MAE Mean Absolute Error
MIBA Multi-Input Bottleneck Architecture
ML Machine Learning
MPC Model Predictive Control
MSB Main SwitchBoard
PMV Predicted Mean Vote
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PPD Predicted Percentage of Dissatisfied
PV Photovoltaic
R2 Coefficient of determination (model accuracy metric)
RM Ringgit Malaysia (currency unit)
RMSE Root Mean Square Error
RNN Recurrent Neural Network
TR Ton of Refrigeration

by lowering the power demand of air-conditioning systems, which represents an important step toward a carbon-neutral society. 
However, in such climates, reducing reliance on air conditioning is nearly impossible, which makes it essential to enhance system 
performance while maintaining the effectiveness of existing systems. High temperatures and humidity necessitate the continuous 
operation of air-conditioning systems, which leads to a sharp increase in energy consumption. Therefore, advanced optimization 
technologies are required to maintain system performance while minimizing energy use.

One way to solve this problem is to introduce a smart cooling system [4]. A smart cooling system includes technology that 
monitors indoor temperature and humidity in real-time, and it controls cooling in an energy-efficient way. For example, pre-
cooling [5] is a method that predicts a building’s cooling demand in advance and reduces peak demand by pre-cooling during 
periods of low power usage. This approach allows for the efficient distribution of cooling energy. However, in hot and humid 
regions, a general pre-cooling strategy is often insufficient and may even increase energy consumption. Therefore, a control method 
tailored to these conditions is necessary.

In addition, implementing an Energy Management System(EMS) is essential for effective energy optimization in such climates [6]. 
An EMS enhances building efficiency through real-time data collection, analysis, and automated control [7]. In particular, efficient 
operation of the air-conditioning system is key in hot and humid environments, and the EMS is an important tool for this. However, 
to date, no customized EMS has been commercially used that fully accounts for the characteristics of such conditions. Existing EMS 
are mainly designed based on temperate climates, which limits their ability to effectively manage these unique climate conditions 
and energy consumption patterns. Therefore, it is necessary to develop specialized EMSs that take into account the characteristics 
of hot and humid regions such as Southeast Asia.

EMS combined with Artificial Intelligence(AI) enables more sophisticated energy optimizations [8]. Such systems dynamically 
adjust the operation of the air-conditioning system by taking into account key variables, including weather data, building usage 
patterns, and indoor environmental conditions. For example, a predictive control algorithm can be used to predict future air 
conditioning demand and proactively adjust and prepare the system.

This technological advancement has the potential to be applied to energy management in hot and humid regions. However, the 
commercialization of systems specifically designed for high-temperature, high-humidity environments has yet to be achieved. There-
fore, this paper proposes a cooling strategy for a customized energy management system that considers the unique characteristics 
of these climates and leverages the latest technologies. This approach aims to improve energy efficiency, enhance indoor comfort, 
and ultimately contribute to sustainable building energy management.

1.1. Related work

Research on air-conditioning strategies in hot and humid regions is being conducted from various perspectives. In particular, 
the rapid increase in air-conditioning demand and its associated energy consumption and environmental impact have become major 
concerns. As of 2018, electricity use for household air conditioning in Southeast Asia was about 50 TWh, but it is projected to rise to 
200 TWh by 2040, which accounts for about 30% of total electricity consumption [9,10]. In response, improving energy efficiency, 
developing innovative cooling technologies, and designing sustainable buildings have become key research priorities [11].

1.1.1. Features of air-conditioning-control technology that depends on the environment
Air-conditioning-control technology has been continuously developed, and recently, smart air-conditioning systems [12–14] 

using artificial intelligence and the Internet of Things [15–17] have been in the spotlight. Smart energy systems enable optimized 
heating and cooling by taking into account both indoor and outdoor temperatures, the presence of residents, the number of people, 
and lifestyle [18]. These systems use the outdoor temperature as a compensation value to improve heating efficiency and enable 
temperature and humidity control while considering the comfort index of the residents [19].

Air-conditioning-control technology is optimized based on environmental conditions, taking into account local climate char-
acteristics. In hot and humid regions, humidity control is especially important, and air-conditioning systems with enhanced 
dehumidification functions have proven effective [20]. In addition, research is exploring ways to reduce energy consumption by 
incorporating passive cooling [21,22], such as night ventilation in tropical climates.

1.1.2. Energy-consumption patterns in buildings
The characteristics of energy consumption in buildings vary depending on the purpose, scale, and region. In commercial 

buildings, cooling accounts for a significant portion of overall energy consumption, which makes it an important target for energy 
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efficiency [23]. Factors that affect a building’s energy consumption include the regional climate, the design of the building, the 
systems used in the building, and the way the building is operated [24]. In particular, high temperatures and high humidity tend to 
increase energy consumption because cooling systems need to be kept running continuously [25]. Technology is also being developed 
to efficiently manage buildings designed for various environments by integrating digital twin technology [26].

1.1.3. Energy Management System (EMS)
Many topics have been explored in the field of energy management [27]. Energy management systems play an important role 

in optimizing the energy use of buildings. An EMS efficiently manages energy consumption through real-time monitoring, data 
collection and analysis, automatic control/optimization, and predictive management [28]. Recently, an AI-based EMS has been 
developed, which enables more sophisticated energy optimization. The introduction of an EMS has multiple effects, including 
reduction of energy costs, protection of the environment, improvement of operational efficiency, compliance with regulations, and 
facilitation of certification [29]. In addition, research is conducted to reduce carbon emissions in conjunction with renewable energy 
such as solar power [30,31].

1.1.4. Pre-cooling
Pre-cooling is a method of reducing energy consumption during peak hours by cooling buildings in advance during times of low 

power demand [32]. This approach distributes the cooling load by using the building’s heat capacity. However, the effect of pre-
cooling may be small in hot and humid regions, so optimization is required to suit regional characteristics. Advanced technologies 
such as smart thermostats can be used to help implement pre-cooling strategies more effectively [33].

1.1.5. Analysis of energy consumption data
Recently, research has been conducted to analyze building energy consumption using big data. These studies analyze more 

accurate and detailed energy consumption patterns using regional energy-consumption data and the city’s sensor data [34]. This 
approach helps contribute to establishing more sophisticated energy management strategies, such as building data that is close 
to the actual perceived temperature by people and predicting the relationship with building energy consumption [35]. The data 
analysis helps understand the relationship between how a building is operated and its energy consumption patterns, which is key 
to developing more efficient energy-management strategies [36].

1.1.6. Building engineering
Building engineering research focuses on maximizing energy efficiency and reducing carbon emissions through passive and 

active strategies. While existing studies have demonstrated the energy-saving effects of passive elements such as building envelope 
improvements, enhanced insulation, natural ventilation, and shading design [37], applying these strategies to existing buildings 
(retrofitting) faces limitations due to high initial costs and structural constraints.

Consequently, the integrated application of active elements has emerged as a promising alternative. Smart HVAC systems, 
predictive control algorithms, and building automation systems (BAS) are being actively studied to achieve additional energy savings 
and carbon reduction by analyzing and optimizing energy consumption patterns in real time [38]. Notably, AI-based active systems 
complement the physical limitations of passive elements and demonstrate potential to overcome economic and technical barriers in 
retrofitting existing buildings.

1.1.7. AI-based energy management frameworks
Recent studies in AI-based HVAC control and carbon emission reduction have focused on fault diagnosis and predictive mainte-

nance strategies to enhance system efficiency [39]. However, these works predominantly emphasize fault detection and maintenance 
optimization, with limited integration of real-time environmental variables (e.g., temperature, humidity) and occupancy fluctuations 
into comprehensive energy management frameworks. Furthermore, while data-driven AI algorithms have demonstrated potential in 
reducing HVAC energy consumption while maintaining thermal comfort [40], their validation in hot and humid climates remains 
insufficient.

Most existing research has focused on either fault diagnostics or temperate-climate applications, which leaves a significant gap 
in truly integrated energy-management frameworks capable of synchronizing occupancy patterns, environmental dynamics, and 
comfort metrics for efficient operation in tropical climates. Although data-driven AI techniques such as predictive maintenance have 
proven effective at improving system reliability and reducing downtime, only a handful of studies incorporate real-time occupancy 
information alongside predictive control to jointly optimize both energy consumption and user comfort under hot, humid conditions.

1.2. Purpose of the study and contributions

This study aims to present a building-energy-management strategy that is specific to the hot and humid climate of Southeast Asia 
to address the rapidly increasing energy consumption and the resulting environmental problems. In particular, we aim to develop 
an ACMV (Air Conditioning and Mechanical Ventilation) optimization control strategy that can maximize energy efficiency while 
maintaining indoor comfort in buildings with high cooling energy consumption.

Research on building energy management in tropical climates remains fragmented, as most studies examine either passive design 
strategies or AI-based energy prediction models without integrating real-time environmental data and occupant comfort metrics 
into a unified framework. Many prior works also depend on temperate climate datasets or simplified simulations, limiting their 
4 
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applicability in tropical regions with significant latent heat challenges. Energy-efficiency and thermal comfort are often set as 
trade-offs, hindering holistic solutions for practical retrofitting scenarios. To address these gaps, this study proposes an AI-driven 
ACMV optimization strategy that simultaneously balances energy savings and indoor comfort, validated in a Southeast Asian case 
study. Additionally, we develop a retrofit-compatible, hardware-agnostic control framework, offering a scalable solution for existing 
buildings that yields measurable improvements in energy efficiency, carbon reduction, and sustainable operation in hot and humid 
environments. 

1. AI-based Real-time Energy Consumption Pattern Analysis and Optimization: This paper presents a novel AI-driven approach 
that utilizes artificial intelligence and optimization techniques to analyze real-time energy consumption patterns at 5-min 
intervals and develop a data-driven cooling control algorithm, maximizing energy efficiency and minimizing carbon emissions.

2. Development of an Optimization Framework for Simultaneously Predicting Indoor Environment and Energy Efficiency: 
Unlike existing studies that focus on energy consumption prediction or indoor environment analysis separately, this research 
develops a framework that simultaneously predicts both factors, quantitatively evaluating and optimizing indoor comfort. 
This approach achieves both energy savings and indoor environmental improvements.

3. Optimization and Performance Verification of the ACMV System in Hot and Humid Environments: An ACMV control algorithm 
is developed to minimize energy consumption while maintaining indoor comfort in hot and humid climates. The algorithm’s 
performance is verified through simulation, offering a more efficient control solution compared to existing systems, thus 
providing a climate-optimized solution.

4. Analysis of Energy Savings, Carbon Emission Reduction, Economic Impact, and Sustainable Building Management: By 
applying the optimized ACMV control strategy to an actual building, this study quantitatively analyzes energy savings, carbon 
emissions reduction, and cost-saving effects. It also proposes a sustainable building energy management approach utilizing 
smart control technologies, considering not only economic factors but also environmental sustainability.

This paper is expected to contribute academically, technically, and socially in the following ways: First, this study provides 
practical guidelines for building an energy management system specific to hot and humid climates, which can also contribute to 
the formulation of energy policies in Southeast Asia. Second, the ACMV-control algorithm developed in this study can be easily 
integrated into existing systems and can contribute to reducing energy management costs, reducing carbon emissions, and improving 
indoor comfort. Third, this study suggests the possibility of using AI in the field of building energy management and that it can 
contribute to the development of core technologies to build smart cities in the future. In addition, the data set constructed in this 
study will be used as important data for future research on building energy management in hot and humid climates.

2. Methods

This section describes the collection environment for data analysis in a hot and humid environment and the design of a simulator 
for optimizing the ACMV system [41]. First, real-time energy and environmental data were collected to analyze energy consumption 
patterns and indoor environmental patterns in hot and humid regions. Then, based on this, a control strategy for the air-conditioning 
system is developed. Subsequently, a simulator was built to evaluate and verify the optimized control plan and to derive the optimal 
control scenario for ACMV in such environments.

2.1. Data-collection environment and analysis

In order to collect data on air-conditioning energy use in the hot and humid regions of Southeast Asia, energy meters and 
environmental sensors (temperature, humidity, motion detection, fine dust) were installed in a building in Kuala Lumpur, Malaysia. 
In addition, external environmental data (temperature, humidity) were collected to analyze regional characteristics.

Fig.  1 shows a schematic of sensor and energy meter installations for data collection in a building located in Kuala Lumpur, 
Malaysia, a hot and humid environment. The building has 28 levels above and one floor below ground. Because installing sensors on 
all levels was impractical, sensors were placed in key locations to collect environmental data: the lobby (which has high foot traffic), 
the second level (lower part of the building), the 13th floor (middle of the building), the 28th level (upper part of the building), 
and the rooftop. In order to maximize the efficiency and convenience of sensor installation, communication with the gateway was 
established using wireless communication (Zigbee) [42], while wired communication (RJ45) was used for data transmission from 
the gateway to the database for storage and management [43]. As shown in the Level 1 layout in Fig.  1, two groups of sensors 
are installed on each level, with Group 1 positioned on the left side of the building and Group 2 on the right. In addition, one 
sensor group is installed on the rooftop to collect outdoor environmental data. Each indoor environmental sensor group collected 
temperature, humidity, motion detection, fine dust, and ultrafine dust. In this study, the indoor environment was analyzed using 
temperature and humidity. For the outdoor environment, temperature, humidity, and solar radiation were collected. In this study, 
the outdoor environment was analyzed using external temperature and humidity. The control status was collected every five minutes 
through the ACMV control panel located at Level 1 to collect the ACMV control data. Energy data were collected by installing meters 
in each of the building’s four main switchboards (MSBs).

2.1.1. Data collection and pattern analysis
Based on the installation environment shown in Fig.  1, data were collected in 5-min intervals from June 2024 to January 2025. 

The collected data were divided into environmental data, control data, and energy data. Environmental data were collected from 
5 



S. Kim et al. Journal of Building Engineering 111 (2025) 113415 
Fig. 1. Schematic of the installation environment of the studied building.

eight different groups and used to analyze the indoor environment: two groups, each from the upper levels (Level 28), middle 
levels (Level 13), lower levels (Level 2), and lobby (Level 1) of the building. Control data were collected through the ACMV Control 
Panel installed at Level 1, which allows the operational status of the ACMV installed in all spaces in the building to be monitored 
and controlled. Energy data could also be analyzed for various energy sources (water, gas, etc.), but this study focused on power 
data directly related to the air-conditioning system. To this end, data were collected and analyzed based on the building’s main 
switchboard.

Environmental data. Environmental data were collected for indoor/outdoor temperature and humidity. There are eight collection 
points for the indoor and one collection point for the outdoor environment.

Fig.  2 shows the weekly profiles of temperature data by sensing point, averaged for each day of the week.  The colors in the 
graph represent the days of the week: Monday (deep blue), Tuesday (orange), Wednesday (red), Thursday (cyan), Friday (dark 
green), Saturday (gold), and Sunday (purple). In the graph below, the colors for each day of the week are represented in the same 
way. (a) and (b) denote the lobby, (c) and (d) represent low-rise, (e) and (f) middle-rise, while (g) and (h) represent high-rise data. 
The sensor at (d) was installed in a part that was directly connected to the passageway to the next train station. Consequently, the 
temperature change was minimal, and the sensing point at (h) on the top floor shows the highest daily temperature difference.

Fig.  3 shows the weekly profiles of humidity data, averaged for each day of the week, collected from sensing points inside the 
building.  The colors of the graph indicating the day of the week are the same as in Fig.  2. Data from lobby (a) and (b), lowe-rise 
(c) and (d), middle-rise (e) and (f), and high-rise (g) and (h) are shown. The difference in humidity is mainly dependent on the 
presence or absence of ACMV, and high humidity is maintained outside of operating hours.

Fig.  4 presents a graph showing the weekly profiles of external environment data collected from sensor points installed on the 
rooftop, averaged for each day of the week. The data are represented by temperature and humidity, with colors for each day of the 
week matching those in Fig.  2. (a) represents the outside temperature, and (b) represents the outside humidity. The temperature 
gradually decreases over time while the humidity remains relatively constant.

The statistics of each collection point, as shown in Table  1, indicate that the Middle-rise (Level 13) had the most stable fluctuation 
range. In addition, the rooftop data confirm that the external environment is characterized by high temperature and humidity.
Control data. A total of 60 controllers control the ACMV, and data on each control status are collected at 5-min intervals. Of 
these, 54 controllers are installed on each floor (Levels 3–4, Level 13 to Level 28), with the exception of the parking lot (Levels 
5–12), Ground, Level 1, and Level 2. Two controllers are installed on each of the Ground, Level 1, and Level 2 floors, totaling six 
controllers. No ACMV facilities are installed in the parking lot (Levels 5–12).
6 
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Fig. 2.  The following graphs show the weekly profiles of temperature data by sensing point, averaged for each day of the week: (a) Lobby Point 1,(b) Lobby 
Point 2, (c) Low-rise Point 1, (d) Low-rise Point 2, (e) Middle-rise Point 1, (f) Middle-rise Point 2, (g) High-rise Point 1, (h) High-rise Point 2.  (For interpretation 
of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 3.  The following graphs show the weekly profiles of humidity data by sensing point, averaged for each day of the week: (a) Lobby Point 1, (b) Lobby Point 
2, (c) Low-rise Point 1, (d) Low-rise Point 2, (e) Middle-rise Point 1, (f) Middle-rise Point 2, (g) High-rise Point 1, (h) High-rise Point 2.  (For interpretation of 
the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 4.  The following graph shows the weekly profile of rooftop external environmental data, averaged by day of the week. (a) Outdoor temperature, (b) 
Outdoor humidity.  (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
7 
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Table 1
Summary of sensor data (Minimum ∼Maximum (Average)).
 Floor Temperature (◦C) Humidity (%)  
 Lobby(Level-1) 29.4∼19.5 (25.3)a, 27.7 ∼21.3 (25.3)b 97.7∼49.2 (76.4)a, 95.6∼49.4 (75.9)b 
 Low-rise(Level-2) 28.1∼20.6 (25.2)a, 27.8 ∼23.5 (26.0)b 98.8∼60.6 (79.0)a, 94.0∼53.7 (76.3)b 
 Middle-rise(Level-13) 28.8∼23.2 (26.3)a, 28.7 ∼22.0 (25.8)b 86.2∼47.0 (70.0)a, 96.5∼50.6 (74.6)b 
 High-rise(Level-28) 29.6∼20.5 (25.9)a, 29.5 ∼19.2 (24.7)b 90.5∼47.5 (72.7)a, 96.7∼57.6 (78.9)b 
 Roof 36.1∼21.6 (27.7) 99.3∼38.5 (75.6)  
a Sensing point 1.
b Sensing point 2.

Fig. 5. ACMV Group-specific operation graph.

Fig.  5 shows a graph illustrating the total usage of time slots for each group of ACMV facilities. Twelve controllers manage the 
lower floors in the Low (Bottom) Group, 24 controllers manage the middle floors in the Middle Group, and 24 controllers manage 
the upper floors in the Top Group. Usage is highest between 07:00 and 18:00 and lowest at 10:00.
Energy data. Energy data is were collected at 5-min intervals via a three-phase meter that measures the energy entering the 
building. The installation environment is capable of monitoring all energy usage within the building through four primary 
switchboards, with data collected by a meter in each MSB. The meter collects instantaneous power (W) in 5-min intervals and 
calculates the energy usage based on the accumulated energy value (kWh). The following formula is employed used to calculate 
determine energy usage (𝐸𝑡): 𝐸𝑡 = (𝑃𝑅(𝑡), 𝑃𝑆 (𝑡), 𝑃𝑇 (𝑡)), where 𝑃𝑅(𝑡), 𝑃𝑆 (𝑡), 𝑃𝑇 (𝑡) are the instantaneous power values collected measured 
at time 𝑡 from the three-phase meter (𝑅𝑝ℎ𝑎𝑠𝑒, 𝑆𝑝ℎ𝑎𝑠𝑒, 𝑇 𝑝ℎ𝑎𝑠𝑒). 

𝛥𝐸𝑅 =
(

𝑃𝑅(𝑡) ×
5
60

)

× 0.001

𝛥𝐸𝑆 =
(

𝑃𝑆 (𝑡) ×
5
60

)

× 0.001

𝛥𝐸𝑇 =
(

𝑃𝑇 (𝑡) ×
5
60

)

× 0.001

(1)

𝛥𝐸total = 𝛥𝐸𝑅 + 𝛥𝐸𝑆 + 𝛥𝐸𝑇 (2)

The above equation summarizes the energy usage of each MSB’s t-hour as follows: 

𝐸msb𝑘(𝑡) =
5
60

⋅
(

𝑃R, msb𝑘(𝑡) + 𝑃S, msb𝑘(𝑡) + 𝑃T, msb𝑘(𝑡)
)

× 0.001 (3)

Here, 𝑘 is the MSB number, and the above formula can be used to calculate the energy consumption (kWh) of each MSB.
Fig.  6 shows the weekly average profiles of energy consumption data collected from each MSB of the building, averaged for each 

day of the week. The colors in the graph correspond to the days of the week, following the same scheme as in Fig.  2. The graph 
for (a) MSB1 shows energy consumption patterns, revealing two distinct groups during lunchtime on weekdays. From Monday to 
Thursday, the grouping aligns with Zuhr, the general Islamic prayer time, while Friday’s prayer time is longer due to the inclusion 
of Juma prayer time [44]. (b) MSB2 represents energy usage and is displayed in the graph using hollow circles during the afternoon 
period (11:00 a.m. to 5:00 p.m.). This is a phenomenon where energy usage temporarily decreases because the solar panels are 
connected to the meter. In addition, energy is used for ESS charging in the early morning (3:00 a.m. to 5:00 a.m.) and late evening 
(9:00 p.m. to 11:00 p.m.), while discharging helps maintain low energy use during the morning hours. The graph for (c) MSB3 
8 
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Fig. 6.  The following graph presents the weekly average profiles of energy usage by meter, averaged for each day of the week:. (a) MSB1, (b) MSB2, (c) MSB3, 
(d) MSB4.  (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Table 2
Summary of energy consumption patterns by MSB.
 Meter Maximum value at peak (kWh) Maximum daily usage (kWh) Baseline energy (kWh)a 
 MSB1 24.5 3479.5 4  
 MSB2 38.2 4894.8 2  
 MSB3 70.8 8180.3 2  
 MSB4 89.0 13547.3 1  
a The average value used when there is no energy use.

shows a consistent pattern by day of the week. The graph for (d) MSB4 shows a consistent energy-usage pattern throughout the 
week.

Table  2 provides a summary of the meter data measured at each MSB, including the peak maximum value in 5-min intervals, 
the daily maximum usage, and the 5-min interval base power. MSB4 recorded the highest energy usage of all meters, while MSB1 
showed relatively low energy usage. In terms of baseline power, MSB4 showed the lowest value, which represents the average when 
energy usage is relatively low compared to other meters.

As a result of analyzing the energy-consumption patterns according to the four MSBs, each MSB showed different characteristics 
depending on the connected energy-consumption sources. The number of connections of the ACMV the primary connected 
energy-consumption source is summarized in Table  3.
 High temperature, high humidity, and energy consumption Hot and humid environments are characterized by a combination 
of high temperatures and humidity, which directly impact energy consumption. These conditions can increase discomfort, which 
can lead to higher cooling demand. While energy consumption generally varies depending on the season or time of day, energy 
consumption in hot and humid areas remains consistently high because modifications are required continuously. In particular, the 
use of air conditioning and humidity control equipment such as air conditioners and dehumidifiers is increasing, and buildings with 
collected data can optimize their indoor environments via the ACMV system.

Therefore, energy management here requires optimal operation of the air-conditioning system, efficient temperature and 
humidity control, and adaption of energy use to changes in the external environment. Optimization is required to efficiently reduce 
energy while maintaining indoor environmental conditions.
9 
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Table 3
Status of major devices and ACMV connections for the different MSBs.
 Meter Primary devices ACMV  
 MSB1 Office equipment, lighting, etc. –  
 MSB2 ESS, PV, ACMV (Low-rise group), water pump 12 (E1 to 12)a 
 MSB3 ACMV (Middle-rise group), elevator 24 (13 to 36)b 
 MSB4 ACMV (High-rise group), cooling tower 24 (37 to 60)c 
a ACMV: E1, E2, E3, E4, E5, E6, E7, E8, E9, 10, 11, 12.
b ACMV: 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 
36.
c ACMV: 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 
60.

Fig. 7. Schematic illustrating the entire simulation process.

2.2. Simulation

A simulator was designed to efficiently reduce energy consumption while maintaining indoor conditions in a hot and humid 
environment. This simulator is designed to predict indoor environments as well as energy consumption according to the ACMV 
schedule, analyze the indoor comfort level accordingly, and derive an optimized ACMV schedule. Fig.  7 illustrates the entire 
simulation process. The energy optimization simulator takes in the ACMV scheduling variables, energy consumption prediction 
variables, and scheduling control variables. It then outputs the optimized prediction results based on these inputs. This simulator 
consists of four major components: indoor environment prediction, indoor comfort analysis, energy consumption prediction, and 
scheduling control.

2.2.1. Predicting the indoor environment
The analysis of data related to the indoor environment in a building with a hot and humid environment confirms that the patterns 

of changes in temperature and humidity can be described by different mathematical models [45] depending on whether the ACMV 
is in operates or not.

Specifically, when the ACMV is active, both indoor temperature and humidity change in a logistic function form [45,46]. This 
form reveals a pattern of gradually converging to the target temperature over time. On the other hand, when the ACMV is stopped, 
changes in temperature and humidity tend to follow a logarithmic function form [45,47].

Based on these analysis results, the indoor environmental function 𝐼(𝑡) can be defined as follows: 

𝐼(𝑡) =

⎧

⎪

⎨

⎪

⎩

𝑇final −
𝐴

1+𝑒−𝐵(𝑡−𝐶) , if ACMV is ON; 𝐵 > 0

𝐶 ⋅ ln(𝐷 ⋅ 𝑡 + 𝐸) + 𝐹 ⋅ 𝑒−𝐺⋅𝑡, if ACMV is OFF
(4)

The set target temperature 𝑇final, represents the desired final temperature to be maintained in the indoor environment. 𝐴 denotes 
the difference between the initial temperature and the target temperature and indicates the time required for the system to reach 
the set temperature. 𝐵 is a coefficient that affects the rate of temperature change, which determines how quickly the temperature 
changes in the logistic function. 𝐶 denotes the central point of the logistic function, which plays an important role in setting the 
point where the target temperature is reached or where a rapid change occurs.

In addition, 𝐷, 𝐸, 𝐹 , and 𝐺 are coefficients that are determined by the impact of the external environment and the structural 
characteristics of the interior. These are important factors in defining the pattern of changes for both temperature and humidity 
10 
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when the ACMV is turned off. These coefficients are the values needed to accurately model the patterns of changes in temperature 
and humidity over time. They can vary depending on various variables, such as the location, structure, and external climate of/near 
the building.

This paper only considers the prediction of indoor environmental changes in terms of temperature. This function is used to model 
changes in temperature and humidity according to the ACMV’s operating status (ON/OFF). When the ACMV is operating, the indoor 
temperature gradually converges to the target temperature according to a logistic function. In addition, when the ACMV is stopped, 
it quickly follows the outdoor temperature according to a logarithmic change pattern.

In the simulator, the scheduling data of the ACMV for one day was input, and the indoor environment was predicted using a 
model tailored to the characteristics of each space.

2.2.2. Indoor-comfort index
In a hot and humid environment, indoor comfort is a very important factor, and it is an indicator that is directly linked to energy 

efficiency and user satisfaction. Several metrics exist to measure comfort, as well as various environmental factors. These include 
temperature, humidity, and air quality, which generally have an impact [48]. Existing methods for measuring comfort are usually 
evaluated based on a standard set based on standard environmental conditions, typically PMV (Predicted Mean Vote), PPD (Predicted 
Percentage of Dissatisfied) [49], or questionnaire responses based on the responses of occupants [50]. While these methods are useful 
to account for the satisfaction and comfort of building occupants, they are suboptimal when it comes to reflecting real-time indoor 
changes that may depend on changes outside the building or the time of day.

In this paper, we use a method that calculates the satisfaction level of indoor comfort based on existing environmental conditions 
(temperature) and predicts it based on the PMV. The relevant formula is: 

𝑆total(𝑡) =
𝑁
∑

𝑖=1
𝑤𝑇 ,𝑖𝑆𝑇 ,𝑖(𝑡) (5)

Here, 𝑆total(𝑡) denotes the indoor environmental satisfaction of the entire building at time 𝑡. It is defined as the weighted sum 
of the temperature satisfaction for each floor 𝑆𝑇 ,𝑖(𝑡). Here, 𝑤𝑇 ,𝑖 represents the weight for temperature satisfaction, which can be 
adjusted according to the environmental conditions of the building. In this study, the analysis is conducted by applying the same 
weight to all floors because the experiment was conducted at high temperatures and high humidity.

Indoor temperature satisfaction is defined based on the difference between the set temperature and the temperature. The 
temperature satisfaction 𝑆𝑇 ,𝑖(𝑡) at a certain floor 𝑖 can be calculated as follows: 

𝑆𝑇 ,𝑖(𝑡) = 1 −
|𝑇𝑖(𝑡) − 𝑇set|

𝛥𝑇max
(6)

Here, 𝑇𝑖(𝑡) denotes the actual temperature (unit: ◦C) of layer 𝑖, which is the temperature value of the corresponding layer 
measured in real-time. 𝑇set,𝑖 represents the set temperature of layer 𝑖 (unit: ◦C), which is the target temperature that the system is 
trying to maintain. In addition, 𝛥𝑇max is the maximum allowable temperature deviation. If the difference between the set temperature 
and the actual temperature exceeds this value, the satisfaction decreases rapidly.

At this time, 𝛥𝑇max may vary depending on the sensitivity of the occupant to the indoor environment. For example, a person 
who is sensitive to temperature changes may be significantly less satisfied with even smaller temperature differences, while a less 
sensitive person may be able to tolerate larger temperature differences. Moreover, this sensitivity difference may vary depending 
on the individual, activity level, and clothing, and it is more pronounced in hot and humid environments.

This satisfaction function is structured so that as the difference between the set temperature and the actual temperature increases, 
satisfaction decreases. When there is no temperature difference, satisfaction is one, indicating a comfortable state. If the satisfaction 
level is below one or negative, it represents a very uncomfortable condition. On the other hand, if the satisfaction level exceeds one, 
it indicates a condition that is below the set temperature. This represents a comfortable condition in a hot and humid environment.

The simulator receives a daily temperature input, then calculates the comfort level in 5-min increments and outputs the comfort 
index pattern for the day using the data.

2.2.3. Prediction of the energy consumption
Building energy consumption forecasts depend on each Main SwitchBoard (MSB) operating schedule. To accurately predict this, 

an effective time series prediction model based on Long Short-Term Memory (LSTM) networks [51] is employed.
The evolution of machine learning models for building energy consumption prediction has progressed from traditional statistical 

approaches, such as linear regression and ARIMA, to advanced machine learning (ML) and deep learning (DL) algorithms. Early 
statistical models faced limitations in capturing nonlinear relationships and long-term dependencies inherent in energy consumption 
data. The introduction of artificial neural networks (ANNs) enabled the modeling of complex nonlinear patterns. Subsequently, 
recurrent neural networks (RNNs) and their specialized variant, Long Short-Term Memory (LSTM) networks, effectively addressed 
the challenge of learning long-term temporal dependencies, which are critical in energy consumption forecasting.

In this study, the LSTM-based model was adopted for its proven capability to process sequential data and maintain memory of 
temporal relationships over extended periods, thereby overcoming the constraints of conventional methods. This approach enables 
precise modeling of dynamic energy consumption behaviors influenced by factors such as occupancy schedules, weather conditions, 
and equipment operational cycles [52].
11 
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Fig. 8.  Hierarchical multi-input processing and bottleneck optimization structure of MIBA-based LSTM.

Specifically, the model predicts energy consumption by taking as input the scheduling data and energy consumption records 
of the previous three days, as well as the scheduling data for the target prediction day. Additionally, the training data includes 
predicted values for temperature and humidity obtained from indoor environment forecasting, further improving the accuracy of 
energy consumption predictions. The configuration of the LSTM model used in this study is as follows: 

𝑌𝑡 = 𝑓
(

𝑋𝑡, 𝑋𝑡+1,… , 𝑋𝑡+𝑛,

𝑆schedule(𝑡), 𝑆schedule(𝑡 + 1),… , 𝑆schedule(𝑡 + 𝑛),

𝑇env(𝑡), 𝑇env(𝑡 + 1),… , 𝑇env(𝑡 + 𝑛)
)

(7)

Here, 𝑌𝑡 denotes the energy consumption at the predicted time 𝑡, and 𝑋𝑡, 𝑋𝑡+1,… , 𝑋𝑡+𝑛 represent the energy consumption over 
the past 𝑛 days. Moreover, 𝑆schedule(𝑡), 𝑆schedule(𝑡 + 1),… , 𝑆schedule(𝑡 + 𝑛) represent the scheduling data for each time zone, and 
𝑇env(𝑡), 𝑇env(𝑡 + 1),… , 𝑇env(𝑡 + 𝑛) are the indoor environmental prediction values (temperatures). Based on this, the LSTM model 
learns the energy consumption pattern over time and predicts a pattern for the future.

The LSTM model used in this research consists of the following main components for each cell:

1. Input gate: Evaluates the importance of new information and decides whether to add it to the cell state. It considers the 
current energy consumption 𝑋𝑡, scheduling data 𝑆schedule(𝑡), and indoor environment prediction values 𝑇env(𝑡).

2. Forget gate: Assesses the relevance of existing information and decides whether to retain or remove it. This filters out 
unnecessary information from past energy consumption patterns for the current prediction.

3. Cell state: Stores the model’s long-term memory. It maintains important patterns from the past 𝑛 days of energy consumption, 
scheduling data, and indoor environment data, learning long-term dependencies.

4. Output gate: Determines which information from the current cell state should be output. This ultimately predicts the energy 
consumption 𝑌𝑡 at time 𝑡.

Through the interaction of these components, the LSTM model can effectively learn and predict complex energy consumption 
patterns over time.

The AI model used in this research is based on a basic LSTM structure. The simulator uses this model to predict the day’s energy 
consumption by inputting energy data from three days prior, building scheduling data (including weekdays and holidays), and 
indoor environment prediction data. While this model has certain limitations in predicting absolute energy consumption values, it 
is effective in identifying energy consumption increase and decrease patterns and overall trends when coupled with scheduling data.

This approach provides sufficient performance for more accurately understanding and predicting building energy usage patterns, 
particularly useful in grasping the overall trends of consumption increases and decreases. These characteristics of the LSTM model 
are suitable for capturing and predicting the dynamic changes in complex building energy systems.

2.2.4. Scheduling control
In order to optimize the operation of the air-conditioning system, the ACMV scheduling optimization part of the simulator based 

on model predictive control (MPC) [53] was designed. MPC uses a dynamic model of the system to calculate the optimal control 
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input within a given prediction interval, thereby generating an optimized operation schedule that considers both energy consumption 
and indoor comfort.

The MPC predicts the system status at 5-min intervals and calculates the optimal control input. This allows the ACMV system to 
maintain a constant indoor environment while minimizing energy consumption. The key objectives of scheduling optimization are 
twofold: First, the aim is to operate the system efficiently by minimizing energy consumption, and second, an environment needs 
to be provided that makes users feel comfortable by maintaining a comfortable indoor environment.

The corresponding objective function can be expressed as follows: 

𝐽 =
𝑁−1
∑

𝑡=0

(

𝜆1 ⋅ 𝐸𝑡 + 𝜆2 ⋅𝐷𝑡
)

(8)

Here, 𝐸𝑡 is the energy consumption at time 𝑡, 𝐷𝑡 is denotes the indoor comfort index at time 𝑡, and 𝜆1 and 𝜆2 are represent the 
weights for each item. Based on this objective function, the optimal control input can be calculated to maximize the efficiency of 
the system and maintain the comfort level indoors.

The following is an algorithm that derives optimal control-scheduling data by reflecting the above objective function:

Algorithm 1 MPC-based ACMV optimization control algorithm
1: Input: Energy-consumption-prediction data 𝐸𝑡, indoor-comfort-prediction data 𝐷𝑡, constraints, objective function
2: Output: Optimal control input 𝑢̂(𝑡)
3: Step 1: Entering the predicted data.
4: Enter the energy consumption prediction data 𝐸𝑡 and the indoor comfort prediction data 𝐷𝑡
5: Step 2: Calculating the target function.
6: Calculate the target function 𝐽 based on the input data:

𝐽 =
𝑁−1
∑

𝑡=0

(

𝜆1 ⋅ 𝐸𝑡 + 𝜆2 ⋅𝐷𝑡
)

7: 𝐸𝑡 denotes the energy consumption at time 𝑡, 𝐷𝑡 is the indoor comfort index at time 𝑡, and 𝜆1 and 𝜆2 represent weights.
8: Step 3: Reflecting the constraints.
9: Reflect the limits on control inputs, taking into account the system’s constraints (precooling time, set temperature, maximum 
allowable range of temperature deviation)

10: Step 4: Solving the optimization problem
11: Calculate the optimal control input based on the objective function 𝐽 and constraints:

min
𝑢̂(𝑡)

𝐽 =
𝑁−1
∑

𝑡=0

(

𝜆1 ⋅ 𝐸𝑡 + 𝜆2 ⋅𝐷𝑡
)

12: with the following conditions:
𝑢(𝑡) ≤ 𝑢(𝑡) ≤ 𝑢(𝑡)

13: Here, 𝑢(𝑡) and 𝑢(𝑡) represent the minimum and maximum values for the control input.
14: Step 5: Updating the control input.
15: Apply the optimized control input 𝑢̂(𝑡) to the system to update it to a new state
16: Step 6: Repeating.
17: It updates control inputs in real time every hour and solves the optimization problem by reflecting changes in the system status.
18: Repeating this process minimizes the system’s energy consumption and keeps the indoor environment comfortable.
19: Step 7: Returning the result.
20: Returns the optimal control input 𝑢̂(𝑡).

2.2.5. LSTM model and optimization details
This study proposes an LSTM model based on Multi-Input Bottleneck Architecture (MIBA) to solve the long-term dependency 

problem inherent in time series data (energy consumption 𝑋𝑡, scheduling 𝑆𝑡, environmental sensors 𝑇𝑡) of ACMV systems. 
Considering the limited computing resources of existing Building Management Systems (BMS) and real-time processing requirements, 
each data stream (𝑋𝑡, 𝑆𝑡, 𝑇𝑡) is processed through independent LSTM branches and then undergoes hierarchical compression.

Specifically, each input branch (energy, schedule, environment) passes through separate LSTM layers to extract time-
contextualized features. The extracted features are then integrated in a Concatenate layer and aggregated through subsequent LSTM 
and Dense layers with bottleneck structure. This replaces the complex structures required by tree-based models such as XGBoost 
and reduces the real-time processing load on BMS.

The layer-wise data processing mechanism of the proposed architecture is specified in Fig.  8, structurally demonstrating the 
process by which dynamic interactions of multi-input streams and hierarchical feature compression through bottleneck structure 
achieve optimal balance between energy prediction accuracy and computational efficiency.
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Table 4
Space-specific optimal weight settings and pre-cooling strategy.
 Space zone Operation hours Energy weight (𝜆1)a Comfort weight (𝜆2)b Characteristics and environmental 

considerations
 

 West Zone (Right) 8:00–18:00 0.45∼0.55 0.55∼0.45 Strong afternoon solar radiation, high 
heat gain through walls and windows

 

 20:00-5:00 0.50∼0.60 0.50∼0.40  
 East Zone (Left) 8:00–18:00 0.25∼0.35 0.75∼0.65 Morning solar radiation, relatively 

shaded in afternoon
 

 20:00-5:00 0.40∼0.50 0.60∼0.50 Relatively low cooling load  
 North Zone (Front) 8:00–18:00 0.35∼0.45 0.65∼0.55 Moderate solar influence, high impact of 

outdoor temperature and humidity
 

 20:00-5:00 0.45∼0.55 0.55∼0.45 Important ventilation and humidity 
control, moderate comfort requirements

 

 Lobby/Common area 00:00–24:00 0.55∼0.65 0.45∼0.35 High floating population, significant 
outdoor air infiltration. Energy saving 
while maintaining basic comfort

 

 Morning pre-cooling 5:00–8:00 0.20∼0.25 0.80∼0.75 Pre-cooling before work hours for initial 
comfort, high-efficiency cooling utilizing 
lowest outdoor temperature

 

 Evening pre-cooling 18:00–20:00 0.30∼0.40 0.70∼0.60 Removal of accumulated heat load 
during daytime

 

All weight pairs satisfy 𝜆1 + 𝜆2 = 1.0 and are set to reflect hot and humid tropical climate and office building characteristics.
a Energy weight (𝜆1).
b Comfort weight (𝜆2).

Fig. 9. Simulation results of the indoor environment with and without ACMV operation: (a) ACMV operating, (b) ACMV stopped.

Model training was performed as an independent learning process for four MSBs (Main Switch Boards). To minimize seasonal 
bias effects during dataset construction, the entire data from June 2024 to January 2025 was divided into training (June-September), 
validation (October), and test (November–January) periods while preserving temporal order.

Hyperparameter optimization was performed using walk-forward validation technique, applying settings of initial window 40 
days, step size 5 days, and prediction period 7 days. Adam (Adaptive Moment Estimation) optimizer was used for model training, 
and the temporal dependency processing capability and generalization performance of the proposed model were verified through 
evaluation using validation and test data.

Based on energy consumption data predicted through the LSTM model, this study proposes an optimization algorithm that 
achieves optimal balance between energy efficiency and indoor comfort of air conditioning systems using Model Predictive Control 
(MPC) framework. As presented in Algorithm 1, the main control process consists of three core mechanisms.

In the first stage (Step 2 of the algorithm), an objective function (𝐽 ) combining space-specific energy consumption data (𝐸𝑡) 
and comfort index (𝐷𝑡) predicted from the LSTM model is constructed and stored in the database to secure basic data for space-
specific control. The optimal weights (𝜆1, 𝜆2) for each space are set to default values according to space-specific characteristics and 
dynamically adjusted within the range presented in Table  4.

In the second stage (Step 3), space-specific dynamic constraints were defined based on data collected from actual space users. 
Specifically, pre-cooling availability periods, temperature setpoint ranges, and maximum allowable temperature deviations were 
dynamically configured to reflect space-specific characteristics and user preferences.

In the final stage (Step 4), the objective function and constraints are integrated to generate optimal control schedules for 24-h 
periods, outputting comfort-optimized temperatures based on minimum and maximum temperature ranges. Additionally, during 
14 



S. Kim et al. Journal of Building Engineering 111 (2025) 113415 
Fig. 10. Indoor-comfort simulation results: (a) Indoor-comfort hourly change graph, (b) Overall-comfort sum graph depending on the temperature deviation.

operation, a feedback loop is implemented that adjusts the control plan for the corresponding space with a 24-h delay when user 
discomfort complaints occur, simultaneously ensuring real-time comfort maintenance and system stability.

3. Results and discussion

This section analyzes and discusses the results of experiments conducted using the developed simulator. The experiments 
consist of indoor environment modeling, indoor comfort analysis, energy data analysis, ACMV-optimized scheduling evaluation, 
and long-term simulation. After presenting the results for each stage, the performance of the entire system is comprehensively 
evaluated.

First, the impact of the ACMV operation on changes in temperature and humidity will be analyzed via indoor-environment 
modeling. Based on this, an indoor-comfort assessment is conducted to examine the effect of an optimized cooling strategy on 
maintaining the indoor environment. Next, the relationship between ACMV operation and energy consumption patterns is identified 
by analyzing energy data in 5-min intervals, and the performance of ACMV-optimized scheduling is evaluated by comparing it with 
the existing method. This will output the optimal cooling strategy that considers both energy savings and indoor environmental 
maintenance. Finally, long-term simulations using one month of data will be conducted to examine whether the optimization strategy 
proposed in this study can be continuously applied in the real world.

3.1. Indoor-environment simulation and comfort evaluation

The indoor-environment prediction model was used to assess whether the ACMV was operating. The results showed that when 
the ACMV was active, the predicted heat load varied based on the operating temperature and the set temperature. When the ACMV 
was inactive, the heat load was influenced by the outdoor temperature and duration.

Fig.  9 shows the results of the simulations for each floor when the indoor environment was set to a constant temperature of 
23 ◦C and the ACMV was either running or stopped. Fig.  9(a) shows that the temperature quickly adjusts to a lower temperature 
as the height increases. Fig.  9(b) shows that when the ACMV stops operating, the temperature changes more rapidly as the height 
increases and then changes more slowly as it approaches the outside temperature.

The results of the indoor comfort assessment based on the simulation results are shown in Fig.  10. The comfort assessment was 
conducted for the same period as the indoor-environment simulation time (𝑡 = 200). Fig.  10(a) is a graph of comfort calculated on a 
time basis that depends on the indoor changes. When the indoor temperature is kept constant at 23 ◦C, the comfort index remains at 
one, and as the temperature deviation decreases from 2.0 to 0.5, the comfort index changes rapidly. Fig.  10(b) is a graph showing 
the sum of the total comfort index for a period of based on the temperature deviation. The most comfortable environment was 
achieved when the set temperature was maintained, and the comfort index was the highest. The comfort index tended to decrease 
as the temperature deviation increased.

3.2. Energy-consumption-forecast results

In this paper, we analyzed the characteristics of 5-min energy data and derived energy usage patterns by time of day and day of 
week. We identified the relationship between ACMV operation and the building’s overall energy consumption and found potential 
for optimization.

The energy-consumption forecast model was used to forecast the energy consumption of each MSB using walk-forward validation 
methodology, and the results are shown in Fig.  11. The validation process consisted of 21 time periods with initial window of 40 
days, step size of 5 days, and prediction period of 7 days to ensure robust model evaluation.

When we analyze the prediction results using walk-forward validation across 21 time periods, we observe that all models 
demonstrate robust performance with R2 scores ranging from 0.880 to 0.926 (as detailed in Table  5). The confidence intervals 
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Table 5
Energy consumption prediction model performance comparison through walk-forward validation.
 MSB Validation steps RMSE MAE R2 Score CI (R2)a  
 MSB1 21 2.248 1.989 0.908 (0.900–0.917) 
 MSB2 21 4.212 3.522 0.880 (0.868–0.891) 
 MSB3 21 7.459 6.284 0.920 (0.912–0.928) 
 MSB4 21 10.762 9.572 0.926 (0.920–0.932) 
a 95% confidence intervals (CI) for R2 scores.

Fig. 11. Simulation results using the energy consumption prediction model (blue is the actual energy consumption and red is the predicted result): (a) MSB1, 
(b) MSB2, (c) MSB3, (d) MSB4.  (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

indicate consistent model reliability across different validation periods, confirming the temporal stability of the proposed LSTM 
architecture.

An analysis of the error indicators RMSE and MAE reveals that the MSB1 model achieves the highest prediction accuracy with 
the lowest RMSE (2.248) and MAE (1.989), demonstrating exceptional performance for this specific electrical distribution system. 
The MSB2 model, while showing higher absolute errors (RMSE: 4.212, MAE: 3.522), maintains good predictive capability with an 
R2 score of 0.880.

Interestingly, MSB3 and MSB4 models, despite exhibiting higher absolute errors due to their larger energy consumption scales, 
demonstrate superior R2 scores of 0.920 and 0.926 respectively. This suggests excellent model fit and explanatory power for 
these higher-consumption systems, indicating that the MIBA-based LSTM architecture effectively captures the complex energy 
consumption patterns regardless of scale differences.

The model predicting MSB1 demonstrates optimal performance in terms of absolute error metrics, making it highly suitable 
for precise energy management applications. Conversely, MSB4 shows the highest R2 score (0.926), indicating excellent variance 
explanation capability and robust pattern recognition for large-scale energy systems.

These findings confirm the efficacy of the proposed energy-consumption-prediction model in learning and predicting the energy 
usage patterns of each MSB across different scales and operational characteristics, as illustrated in Fig.  11. The prediction model 
showed trends closely matching actual energy consumption patterns (where blue represents the actual energy consumption and red 
denotes the predicted result).

Notably, the high prediction accuracy across all MSBs, with R2 scores consistently above 0.88, suggests that the MIBA-based 
LSTM architecture successfully captures both temporal dependencies and scale-specific characteristics of building energy systems. 
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Table 6
ACMV optimization simulation results (One month).
 Performance metric Savings Savings percentage (%) 
 Energy savings (kWh) 12,870.76 2.64%  
 Carbon emission reduction (kg) 5912.83 2.55%  
 Normal usage cost reduction (RM) 4697.83 2.63%  
 Peak usage cost reduction (RM) 1605.90 2.12%  
 Total cost savings (RM) 6303.73 2.63%  

The variation in absolute error metrics (RMSE and MAE) primarily reflects the different operational scales of each MSB rather than 
model inadequacy.

The findings serve as fundamental data for the enhancement of building energy management systems and the development 
of effective energy-utilization strategies. The robust performance across different MSB scales demonstrates the scalability and 
adaptability of the proposed forecasting framework. Subsequent research should examine the integration of these prediction models 
with real-time control systems and explore methods to further enhance the temporal resolution of predictions for more granular 
energy management applications.

3.3. Daily ACMV-optimized scheduling

The ACMV-optimized control algorithm was verified using indoor predictions, indoor comfort values, and energy consumption 
predictions that had been verified. As illustrated in Fig.  12, the simulation results for ACMV-control scheduling at Level 28 were 
analyzed. The sequence of graphs in Fig.  12 is as follows: existing scheduling data, indoor environment graph, indoor comfort 
graph, energy consumption graph, and optimized control-scheduling graph. Previously, ACMVs No. 58 and 60, installed at Level 
28, operated from 8:00 to 18:30, and No. 59 was not used as a spare. The application of the ACMV-optimization-control algorithm 
resulted in the pre-cooling process being initiated 30-min earlier and the introduction of three off periods to derive the optimal 
control scheduling. The simulation results demonstrated that the indoor environment could be optimized by commencing pre-cooling 
at 7:30 a.m., which results in the indoor comfort level converging to a comparable level (as observed in the standard schedule). 
With respect to energy consumption, while the initial usage increased due to the pre-cooling, the overall average usage per 5-min 
interval decreased. This led to a decline in total daily usage from 10,305.83 kWh to 9863.87 kWh and a daily peak from 84.33 kWh 
to 81.69 kWh.

The findings of this study demonstrate the efficacy of the proposed ACMV-optimization-control algorithm in achieving a balance 
between energy conservation and indoor comfort.

3.4. Results of long-term simulations

The results of the ACMV optimization simulation for one month for the entire floor are shown in Table  6. These findings provide 
a good amount of data to enable the analysis of the effects of the ACMV optimization strategy over an extended period and for the 
evaluation of energy and cost savings.

The simulation yielded a 12,870.76 kWh decrease in energy consumption and a 5912.83 kg CO2 reduction in carbon emissions. 
The carbon emissions calculation employed the 2022 national greenhouse gas emission factor of 0.4747 kg CO2/kWh [54], which 
represents the emission factor for the consumption stage.

The financial analysis was conducted in Malaysian ringgit (RM). The fundamental rate [55] was RM 0.365 per kWh, and for 
peak usage, a rate structure was applied that charges RM 30.3 per kWh for the maximum monthly peak. The calculation yielded a 
total savings of RM 4697.83 for normal usage and RM 1605.90 for peak usage, which amounts to a total of RM 6303.73.

The findings of these long-term simulations indicate that the ACMV-optimization strategy has the potential to enhance energy 
efficiency and reduce costs to a considerable extent. Moreover, the reduction in carbon emissions is anticipated to exert a favorable 
effect on environmental sustainability. However, these results have been derived only from simulations, and additional verification 
is necessary for practical applications to account for various factors, such as seasonal variations and alterations in building-usage 
patterns.

3.5. Real-time operational verification results

As a result of applying the proposed optimization to optimal control of one AHU (East Zone) for 24 h, a new optimal control 
range differentiated from the conventional general comfort range was established and operated. Through the verification results, 
control was effectively applied within dynamic temperature constraint ranges, and pre-cooling (05:00-08:00) and evening control 
(18:00-20:00) strategies operated normally to reduce the energy burden for the following day.

Fig.  13 shows the 24-h real-time control performance of the East Zone AHU. In the upper graph, it can be confirmed that 
the actually measured temperature is stably controlled within the dynamically set constraint range (orange shaded area), and 
the lower graph represents the ON/OFF operation pattern of the AHU. Particularly in the pre-cooling section (05:00-08:00), 
preliminary cooling was performed in preparation for daytime operation through active cooling operation, and during nighttime 
hours (20:00-05:00), only minimal operation was conducted for energy conservation.
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Fig. 12. Results of the daily scheduling graph for the Level 28 ACMV (daily-scheduling graph - MSB4 scheduling with High-rise group sensors).

Table 7
MPC optimal control system performance comparison results (Daily operation basis).
 Performance metric Conventional system MPC optimal control system Improvement rate (%) 
 Daily operation time (h) 10.0 9.83 1.7  
 Energy consumption (kWh) 24,705 24,695 0.04  

As can be confirmed through Table  7, while the general AHU operation time was 10 h, using the proposed MPC-based system 
achieved operation for 9 h and 50-min, accomplishing approximately 10-min of operation time reduction.

More importantly, it was confirmed that the system operates stably within the dynamic temperature control range set by 
Algorithm 1. As shown in the upper graph of Fig.  13, temperature is adaptively controlled according to time-varying constraints, 
and it can be confirmed that the lower AHU operation pattern also efficiently responds to these temperature control requirements.
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Fig. 13.  East Zone AHU MPC-based temperature control and operation pattern (24-h operation results).  (For interpretation of the references to colour in this 
figure legend, the reader is referred to the web version of this article.)

The energy consumption measured in this verification, 24,695 kWh, represents the total energy consumption of the target 
building, achieving a reduction effect of 10 kWh (0.04%) compared to the conventional system. When these verification results 
are applied to all 60 AHUs, a total daily reduction of 600 kWh is expected, which is evaluated as fundamental verification results 
for achieving the 2.64% energy reduction rate predicted in the previously conducted simulation studies. This is judged to be an 
important step in confirming the consistency between the theoretical modeling of the proposed MPC algorithm and actual application 
results.

3.6. Applicability to different climates and limitations

While the proposed ACMV optimization strategy was specifically developed and validated for hot and humid climates such as 
Kuala Lumpur, its modular and data-driven framework allows for adaptation to other climate zones. In temperate regions, the 
algorithm can be recalibrated to prioritize sensible cooling and heating loads, with humidity control logic simplified or omitted. In 
arid climates, the focus would shift toward maximizing cooling efficiency and potentially integrating evaporative cooling methods, 
while humidity constraints become less critical. Therefore, with appropriate adjustment of control parameters and retraining using 
local environmental and operational data, the core methodology can be extended to a wide range of climatic conditions, though 
the specific control priorities and anticipated energy savings may differ by region.

However, there are several limitations to practical implementation. First, the proposed framework relies on high-frequency data 
collection (every 5-min), which may not be feasible in buildings lacking IoT sensors or advanced BMS (Building Management System) 
infrastructure. Second, real-time optimization and control require integration with modern BMS platforms capable of actuator-level 
control, which may not be available in older or less-equipped buildings. These factors may limit the immediate scalability of the 
approach. Future research should explore solutions such as lower-frequency data adaptation, cloud or edge computing integration, 
and cost-effective retrofit strategies to broaden the applicability of the proposed methodology. 

4. Conclusions

This paper proposes a cooling strategy optimized for the hot and humid climate characteristics of Southeast Asia, seeking 
regionally customized sustainable solutions. The simulation and empirical validation results integrating indoor environment 
modeling, comfort analysis, energy consumption prediction, and ACMV (Air Conditioning and Mechanical Ventilation) optimization 
scheduling have led to the following key conclusions:

1. The impact of ACMV operation on indoor temperature and humidity was analyzed through indoor environment simulation. 
Temperature changes occurred more rapidly as building height increased, suggesting this is a critical factor to consider when 
establishing ACMV control strategies.
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2. Comfort evaluation results demonstrated that replacing conventional simplified PMV/PPD-based models with an Adaptive 
Comfort Model based on actual user temperature preference data achieved optimal comfort levels while maintaining ASHRAE 
Standard 55 [49] compliance. This represents a practical solution that ensures international standard conformity while 
maximizing actual user satisfaction.

3. AI-based Energy Consumption Prediction Model Performance: Walk-Forward Validation across 21 validation stages 
achieved exceptional performance with MSB1 (R2 = 0.908, RMSE = 2.248), MSB2 (R2 = 0.880, RMSE = 4.212), MSB3 (R2 =
0.920, RMSE = 7.459), and MSB4 (R2 = 0.926, RMSE = 10.762). All MSB systems recorded R2 scores above 0.88, validating 
the temporal dependency processing capability and scalability of the MIBA-based LSTM architecture.

4. Real-time Operational Verification Results: 24-h empirical experiments on East Zone AHU achieved 1.7% operation time 
reduction (10 h → 9 h 50-min) and 0.04% energy consumption reduction. When scaled to all 60 AHUs, daily savings of 600 
kWh are expected, providing fundamental validation for achieving the 2.64% energy reduction rate predicted in simulations.

5. The long-term simulation over one month demonstrated a reduction in energy consumption of 12,870.76 kWh (2.64%) 
compared to the baseline system, which translated to a decrease of 5912.83 kg in CO2 emissions (2.55%) and cost 
savings of RM 6303.73 (2.63%). While these achievements are relatively modest compared to the average reduction rates 
(4.9–30.2%) reported in existing HVAC optimization studies [40], they represent the outcome of a conservative approach that 
prioritizes user comfort, thereby demonstrating high applicability in real operational environments. Future implementation 
of metaheuristic optimization techniques such as reinforcement learning or genetic algorithms is expected to yield additional 
energy savings while maintaining occupant comfort levels.

Methodological Innovation and AI Integration Contributions: This research establishes unprecedented technical foundations 
through high-precision energy consumption prediction using Multi-Input Bottleneck Architecture (MIBA)-based LSTM models. The 
implementation of Walk-Forward Validation methodology with temporal dependency preservation across 21 validation stages 
presents a rigorous model evaluation framework that significantly advances the field. The integration of time-differentiated 
temperature constraints for nighttime, pre-cooling, and daytime periods, combined with real-time response system implementation 
through 5-min high-resolution data processing, demonstrates exceptional technical sophistication. Particularly, the validation of 
consistency between theoretical modeling and actual implementation results through empirical experiments establishes research 
reliability and presents a pioneering case study that effectively resolves the chronic comfort-efficiency trade-off problem in existing 
HVAC optimization research through AI-based adaptive control and empirical validation.

Comprehensive Impact of Carbon Neutrality Achievement through AI Integration: The AI-based ACMV optimization 
strategy proposed in this research presents an innovative and practical solution for sustainable building energy management in 
Southeast Asia. Based on empirical results, scaled implementation is expected to achieve approximately 95 tons of annual CO2
reduction, and when applied to similar-scale Malaysian commercial buildings, it possesses substantial regional-level carbon reduction 
potential. The 5-min interval real-time data-based AI control system provides dramatically enhanced responsiveness compared to 
conventional hourly control systems, establishing critical technological infrastructure for achieving smart city and carbon neutrality 
policy objectives. The annual carbon reduction effect of approximately 71 tons calculated from monthly 5.9 tons demonstrates 
substantial environmental contribution potential when applied across the entire region.

Practical Applicability and Scalability Validation: Through comprehensive validation combining simulation and empirical 
verification, high consistency between predicted energy reduction effects and actual experimental results was confirmed. Stable 
operation within dynamic temperature control ranges set by the proposed algorithm demonstrates system reliability, while single 
AHU empirical results establish the foundation for performance prediction across all 60 AHU systems. The application of comfort 
models meeting ASHRAE Standard 55 [49] criteria ensures international standard compliance while demonstrating the practical 
applicability of the proposed MPC algorithm through stable real-time temperature control performance.

This research focused on implementing real-time response systems utilizing 5-min interval data. Although the data collection 
period spans approximately 8 months, Malaysia’s consistent annual climate patterns enable effective real-time control. Currently, 
single AHU empirical validation has established the foundation for phased integrated validation across all 60 building AHUs. Scale 
expansion validation targets additional 20%–30% efficiency improvements through progressive implementation in Phase 1 (3 AHUs-
1 floor), Phase 2 (18 AHUs-6 floors), and Phase 3 (60 AHUs-28 floors), utilizing load diversity and inter-system optimization for 
multi-AHU synergy effects.

The research results highlight building energy efficiency improvement potential in Southeast Asia’s hot and humid climate while 
acknowledging the possibility of unforeseen variables in actual operational environments. Future research should focus on long-term 
validation and improvement through actual building implementation. As the scalability of the developed ACMV optimization strategy 
and simulation model accuracy have been empirically validated, more sophisticated prediction and control system development 
becomes possible. Future implementation of metaheuristic optimization techniques such as reinforcement learning or genetic 
algorithms is expected to achieve additional energy savings while maintaining occupant comfort levels.

In conclusion, this paper establishes a robust and reliable technological foundation for sustainable building energy management 
in Southeast Asia through rigorous research methodology integrating simulation and empirical validation, providing practical and 
innovative insights that can accelerate future energy policy formulation and carbon neutrality goal achievement, demonstrating 
substantial potential for regional-scale environmental impact and sustainable development advancement.
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