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Many studies on distributed resource-allocation algorithms have been conducted recently because of the increasing number
of network nodes and the rapidly changing network environments in the Internet of Things (IoT). In this paper, we propose
the multihop DESYNC algorithm, which is a bioinspired Time Division Multiple Access- (TDMA-) based distributed resource-
allocation scheme for distributed sensor networks. We define a detailed frame structure for the proposed multihop DESYNC
algorithm and a firing message, which acts as a reference for resource allocation. In addition, operating procedures for resource
allocation and collision detection avoidance under multihop DESYNC are explained. Simulations show that multihop DESYNC
effectively resolves the hidden-node problem and that it fairly shares resources among nearby nodes in multihop networks.
Moreover, it achieves better performance than the CSMA/CA algorithm in terms of channel reuse gain and average throughput.

1. Introduction

Currently, the industrial Internet of Things (IoT) is expected
to offer promising solutions in various systems, such as smart
buildings, smart factories, and smart grids [1]. In IoT net-
works, the internet connection is possible due to the built-in
communication technologies in various objects and sensors.
Considering the fact that there are so many devices that are
willing to communicate in an IoT environment, scalability
is a key consideration for the design of medium-access
control (MAC) protocol. Moreover, considering the inter-
ference among nearby nodes, the reuse of limited resources
is very important for enhancing the transmission efficiency
of IoT networks. Therefore, many studies have investigated
minimizing the interference and data transmission collisions
among nodes to increase the resource-allocation efficiency in
wireless sensor networks [2–4].

Contention-free protocols eliminate data transmission
collisions by preallocating transmission resources to the
nodes in sensor networks. Contention-free protocols include
Time Division Multiple Access (TDMA), Code Division
Multiple Access (CDMA), and Frequency Division Multiple
Access (FDMA). In TDMA, the entire bandwidth is allocated

to a user for a specific fraction of time. TDMA’s main advan-
tage is its better channel utilization at high load capacities,
compared to contention-based resource-allocation schemes,
such as Carrier Sense Multiple Access with Collision
Avoidance (CSMA/CA). Therefore, TDMA-based resource-
allocation algorithms in wireless sensor networks have been
studied.

Resource-allocation algorithms in wireless networks are
categorized as centralized or distributed. In centralized
resource allocation, a central controller, such as a base station,
manages the resource allocation of the nodes in a network.
The advantage of centralized resource allocation is its highly
efficient resource allocation; this is because it is assumed that
the centralized controller has all of the necessary information
about the entire network. However, considering centralized
resource allocation in the context of wireless sensor networks,
the adoption of these mechanisms has been limited, due to
the high overhead, cost, and complexity and the issues of
scalability, practicality, and flexibility.

In distributed resource allocation, the nodes exchange
the information necessary for resource allocation without a
central manager. The advantage of this type of algorithm is
that it is simple to implement and requires less overhead.
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Recently, studies on distributed resource-allocation algo-
rithms have been widely conducted because of the increasing
number of network nodes and the rapidly changing network
environment [3–7].

On the other hand, many scientists have applied biologi-
cally inspired (bioinspired) algorithms to solve various kinds
of engineering problems [8–11]. Bioinspired algorithms use
mathematical modeling of natural phenomena to apply the
simple and distributed behavior of natural objects to various
engineering fields. In these algorithms, convergent behavior
is observed as each autonomous agent repeatedly obeys very
simple rules based on local information, without the help of a
central controller.These bioinspired features can be applied to
distributed resource-allocation algorithms in wireless sensor
networks, where autonomous and distributed operations are
required. In this paper, we propose a bioinspired resource-
allocation algorithm, which is applicable to TDMA-based
sensor networks.

2. Related Work

The firefly algorithm, which was inspired by fireflies’ flashing
behavior, is the foremost example of a bioinspired algorithm
[12, 13]. The firefly algorithm has been applied to wireless
networks to synchronize the time of performing periodic
tasks or the time information of nodes in wireless networks.
On the other hand, desynchronization (DESYNC), which
is the logical opposite of the synchronization shown in the
firefly model, has been researched by Nagpal et al. to fairly
allocate resource in a distributed manner among nodes in
wireless networks [14–16]. While the entities in the firefly
algorithm always try to perform their tasks (firing) at the
same time, DESYNC entities try to perform their tasks as far
away as possible from all the other entities, which results in
evenly spaced time gaps between any two consecutive firing
phases.

Suppose there are 𝑁 nodes in a fully connected wireless
network. Each node performs a task periodically with a
period 𝑇. Let 𝜙

𝑖
(𝑡) ∈ [0, 1] denote the phase of node 𝑖 at time

𝑡, where the phases 0 and 1 are identical and 0 ≤ 𝑖 ≤ 𝑁 − 1.
When node 𝑖 reaches the node of its cycle (𝜙

𝑖
(𝑡) = 1), it fires to

indicate the termination of its cycle to the other nodes. After
firing, the node resets its phase to 𝜙

𝑖
(𝑡
+
) = 0. In the DESYNC

algorithm, node 𝑖 records the times of two firing events: the
event that precedes its own firing (𝜙

𝑖−1
(𝑡)) and the one that

follows it (𝜙
𝑖+1
(𝑡)). Node 𝑖 calculates themidpoint of its phase

neighbors 𝜙mid(𝑡) and moves its phase to 𝜙
𝑖
(𝑡 + 1) at the next

time, with a weight factor of 𝛼 on 𝜙mid(𝑡) and 1 − 𝛼 on the
current phase, as shown in (1) and Figure 1. In this way nodes
continually update their firing time. Finally, all nodes occupy
the time slots equally, as shown in Figure 1(b). Consider

𝜙


𝑖
(𝑡 + 1) = (1 − 𝛼) 𝜙𝑖 (𝑡) + 𝛼𝜙mid (𝑡) ,

where 𝜙mid (𝑡) =
1

2
[𝜙
𝑖+1 (𝑡) + 𝜙𝑖−1 (𝑡)] .

(1)

The DESYNC algorithm has been studied extensively. In
2008, Degesys and Nagpal extended their DESYNC algo-
rithm for multihop networks [17] and uncovered the hidden-
node problem. In 2009,Motskin et al. presented a lightweight
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Figure 1: Phase update in DESYNC algorithms.

computation model for network desynchronization (L-
DESYNC), which remained robust to link volatility and
node failure, without synchronizing a global clock [18].
They showed that even when severe limits were placed
on the allowable node computation and communication,
global desynchronization was nevertheless achieved quickly.
In 2009, Muhlberger and Kolla explained decentralized and
self-organizing multihop extensions in detail in an extended
DESYNC (E-DESYNC) algorithm [19].TheE-DESYNC algo-
rithm solves the hidden-node problem inmultihop networks.
In 2012, Lien et al. considered the desynchronization problem
in a system with an anchored node that did not adjust the
phase of its oscillator. They proposed a generic anchored-
desynchronization (A-DESYNC) algorithm that achieved a
rapid convergence rate using an anchored node [20].

Desynchronization algorithms have the advantage of
scalability, because each node sends a specific signal (“firing”
in DESYNC) only when it wants to transmit data. DESYNC
makes it possible to achieve convergent performance even in
dynamically changing network environments. In particular,
it is noticed that the performance of contention-based MAC
protocols, such as aCSMA/CA, degradeswhen the number of
nodes participating in the network increases, while DESYNC
shows stable performance and is thus suitable for sensor
networks.

The proposed algorithm operates in a distributedmanner
and is designed to resolve the hidden-node problem in
multihop networks.Themain characteristics of the proposed
algorithm are twofold: (i) to suggest the concept of “virtual
firing,” which means that the firing information of each
node is shared among nearby neighbor nodes via explicit
firing message conveyed in control channel, and (ii) to avoid
hidden-node problem by broadcasting the information of
one-hop neighbor nodes in the firing message. We define a
detailed frame structure for the proposedmultihopDESYNC
algorithm and a firing message. In addition, operational
procedures for resource allocation and collision detection
avoidance under the proposed algorithm are explained. The
proposed algorithm has different characteristics as compared
to previous multihop DESYNC algorithm as follows. First,
the proposed algorithm enables the reliable sharing of firing-
phase information among one- and two-hop neighbors, by
transmitting the firing phase in a virtual firing message. Also,
the proposed algorithm provides the mechanism to detect
and resolve the collision of control slots and firing phases
between even 2-hop neighbor nodes.



International Journal of Distributed Sensor Networks 3

Physical

Data time slot

Data time slot

Logical
firing

firing

Control channel
(control time slot)

(7) (14)(3) (5)

n3 n1 n4n2

n3 n1 n4n2

Figure 2: Physical and logical firing signals.

3. Proposed Algorithm

We propose the multihop DESYNC algorithm, whose main
feature is virtual firing. In previous DESYNC algorithms, a
node broadcasts its firing phase to its neighbor nodes by
sending a firing signal, which is a series of short “interrupt”
messages transmitted in a data time slot. In this paper, we
refer to this firing signal as a physical firing signal, as shown in
Figure 2. With virtual firing, the node phases (including the
phases of the node itself and its one-hop neighboring nodes)
are explicitly recorded in and transmitted by a firing message
via a control channel, while the node’s physical firing phase is
implicitly indicated by the location of the data slot where the
series of interrupt messages (physical firing) are transmitted,
as shown in Figure 2. To facilitate the concept of virtual
firing, we propose a new frame structure and firing message
structure and explain the detailed operational procedure for
virtual firing.

3.1. Frame Structure for Multihop DESYNC. We propose a
frame structure for multihop DESYNC, as shown in Figure 3.
Each frame consists of a control channel and a data channel.
The numbers of control time slots and data time slots are
𝐶 and 𝐷, respectively. Each node occupies a control time
slot and uses the same control time slot in subsequent
frames. The node broadcasts its own firing information and
its one-hop neighbor node’s firing information through the
firing message transmitted in the allocated control time slot.
Thus, the neighboring nodes are able to completely update
their two-hop neighbors’ firing-phase information. Through
this firing message, each node can update its firing phase
and allocate the data time slots. Two successive frames are
needed to update the complete two-hop neighbors’ firing-
phase information. Thus, the two frames are separated with
an odd and even frame, which creates a super-frame.

3.2. Firing Message Structure. A frame is divided into a
control channel and a data channel, where the number of
control slots in a control channel is𝐶 and the number of data
slots in a data channel is 𝐷. A single control slot carries a
firing message, which is partitioned into a control-slot infor-
mation area and a firing-phase information area, as shown
in Figure 4. The control-slot information area consists of 𝐶
consecutiveNode ID-Hop Information (N-H) pair fields.The
Node ID subfield is an unsigned integer that identifies the
node and the Hop Information subfield is a one-bit unsigned
integer that identifies the hop-count of the corresponding

node (0: itself, 1: one-hop). Each node writes the control-slot
information of both one-hop neighboring nodes and itself in
the control-slot information area of its own firing message.
For example, if node 5 succeeds in occupying the third control
time slot, it records its ownNode ID andHop Information (5,
0) in the third N-H pair of the control-slot information area.

In addition, each node writes the information of its one-
hop neighboring nodes in the N-H field, where the order of
the N-H field of a one-hop neighboring node in the control-
slot information area is the same as the order of the control
time slot occupied by the corresponding one-hop neighbor-
ing node. This frame structure and operational procedure
enable each node to recognize the information about the
control-slot occupation of the two-hop neighboring nodes
and help a node newly joining the network to avoid possible
collisions when occupying a control slot. For example, if
nodes 1 and 2, which are node 5’s neighboring nodes, occupy
the second and fourth control time slots, respectively, the
second and fourth N-H fields of the control-slot information
area of node 5’s firing message are set to (1, 1) and (2, 1),
respectively, as shown in Figure 4.

Similar to the control-slot information area, the firing-
phase information area consists of 𝐷 consecutive N-H pair
fields. Each node records the firing-phase information of
both one-hopneighboring nodes and itself in the firing-phase
information area. For example, if the firing phase of node 5
is 4, node 5 records its own Node ID and Hop Information
(5, 0) in the fourth N-H pair of the control-slot information
area. Further, each node writes the firing-phase information
of its neighboring nodes in the firing-phase information area
of its firing message, so each node can acquire the firing-
phase information of the two-hop neighboring nodes. For
example, suppose that nodes 1 and 2 are neighboring nodes of
node 5 and their firing phases are 5 and 2, respectively. Then,
node 5writes its neighboring nodes’ firing-phase information
((1, 1) and (2, 1)) in the fifth and second N-H fields of the
firing-phase slots information area, respectively; this is shown
in Figure 4. Each node transmits the firing message firing-
phase information for itself and its one-hopneighbors so each
node can recognize the firing phases of its one- and two-
hop neighbors, and the hidden-node problem in multihop
networks can be resolved.

3.3. Operating Procedure of Multihop DESYNC. The operat-
ing procedure of the proposed multihop DESYNC algorithm
is as follows: (1) control time-slot allocation, (2) firing-phase
allocation and update, and (3) data time-slot allocation, as
shown in Figure 5. This section explains each of these three
subprocedures.

3.3.1. Control Time-Slot Allocation

(1) Initial Control Time-Slot Allocation Process. A new node
entering the existing network listens to the firing messages in
the super-frame. Thus, the node can detect the control time-
slot information for all one- and two-hop neighbors. Then,
the node randomly chooses a control time slot that is not
occupied by its one- and two-hop neighboring nodes. In the
odd subframe, each node transmits its firingmessage through
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a preoccupied control time slot. Once a node succeeds in
occupying a control time slot, it uses the same control time
slot in every following frame.

Figure 6 shows a collision example for control time-
slot allocation when 𝐶 = 4 and 𝐷 = 8. Given the node
arrangement shown in Figure 6(a), suppose that 𝑛2 already
occupies the fourth control time slot and 𝑛1 and 𝑛3 try to
enter the network at the same time. If 𝑛1 and 𝑛3 choose the
third and second control time slots (Figure 6(b)), there is no
collision. However, if 𝑛1 and 𝑛3 choose the same control time
slot, a collision occurs and they cannot occupy a control time
slot, as shown in Figures 6(c) and 6(d).

(2) Control Time-Slot Collision Detection. Each node can
detect a control time-slot collision through the firing mes-
sages received from its neighboring nodes. If a node suc-
cessfully occupies a control time slot and transmits its
firing message, the neighboring nodes record its control-slot
information (Node ID and Hop Information) in the control-
slot information area of their firing messages, as shown
in Figure 6(b). However, if the control time-slot allocation
conflicts, the neighboring nodes do not record the node’s
control-slot information, as shown in Figures 6(c) and 6(d).
To summarize, a node can determine whether its control
time-slot occupation succeeds by checking the existence of
N-H fields for itself in the control-slot information area of the
neighboring nodes’ firing messages.

(3) Control Time-Slot Collision Detection Types

(a) Detecting a Collision in the Same Frame. If nodes 𝑛1 and 𝑛3
occupy the same control time slot, which is located in advance
of 𝑛2’s control time slot, at the same time (see Figure 6(c)),
𝑛2 can transmit a firing message that does not include the
control time-slot allocation information of these two nodes
in the same frame. Hence, nodes 𝑛1 and 𝑛3, receiving the
firing message from node 𝑛2, can detect a collision in the
same frame.

(b) Detecting a Collision in the Next Frame. If nodes 𝑛1 and
𝑛3 occupy the same fourth control time slot, which is not
located in advance of 𝑛2’s control time slot, at the same time
(see Figure 6(d)), 𝑛2 can transmit a firing message that does
not include the control time-slot allocation information of
these two nodes in the next frame. Hence, nodes 𝑛1 and
𝑛3, receiving the firing message from node 𝑛2, can detect a
collision in the next frame.
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Figure 6: Example of control time-slot collisions.
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Figure 7: Example of firing-phase time-slot collisions.

3.3.2. Firing-Phase Time-Slot Allocation and Update

(1) Initial Firing-Phase Time-Slot Allocation Process. After
each node succeeds in occupying a control time slot, it can
know the allocated firing-phase time-slot information for all
one- and two-hop neighbors. Each node randomly chooses
a firing-phase time slot that is not occupied by its one- and
two-hop neighboring nodes. If two or more nodes choose
the same firing-phase time slot, the firing message collision
occurs in terms of the logical mean. Figure 7 shows a collision
example during the firing-phase slot allocation when 𝐶 =
4 and 𝐷 = 8. Given the node arrangement shown in
Figure 7(a), suppose that node 𝑛2 already occupies the fourth
control time slot and 𝑛1 and 𝑛3 try to enter the network at the
same time. If 𝑛1 and 𝑛3 allocate control time slots without a
collision and choose the fourth and second firing-phase time
slots (Figure 7(b)), there is no collision. However, if 𝑛1 and
𝑛3 choose the same firing-phase time slot, a collision occurs
and they cannot occupy a firing time slot, as shown in Figures
7(c) and 7(d).

(2) Firing-Phase Time-Slot Update Process. The firing-phase
information of the node is transmitted in the next super-
frame. We define the firing phase of node 𝑖 in the 𝑛th super-
frame as 𝜙

𝑖
(𝑛), and 𝑁

2
(𝑖) is the set of neighbors within two

hops of node 𝑖. Then, we can define the right (next) firing-
phase reference of node 𝑖 as (𝑛(𝑖))and the left (previous)
firing-phase reference of node 𝑖 as (𝑝(𝑖)). The equations are
shown below:

𝑛 (𝑖) = argmin
𝑗∈𝑁
2
(𝑖)

(𝜙
𝑗 (𝑛) − 𝜙𝑖 (𝑛)) mod 𝐷,

𝑝 (𝑖) = argmax
𝑗∈𝑁
2
(𝑖)

(𝜙
𝑗 (𝑛) − 𝜙𝑖 (𝑛)) mod 𝐷.

(2)

A node updates the firing-phase time slot in the (𝑛 + 1)th
super-frame, as shown:

𝜙
𝑖 (𝑛 + 1) = ceil(

𝜙
𝑛(𝑖) (𝑛) + 𝜙𝑝(𝑖) (𝑛)

2
) . (3)
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In other words, node 𝑖 updates the firing-phase time
slot at the midpoint between the events of the right firing-
phase reference (𝜙

𝑛(𝑖)
(𝑛)) and the left firing-phase reference

(𝜙
𝑝(𝑖)
(𝑛)).

(3) Firing-Phase Time-Slot Collision Detection. Each node
can detect a firing-phase time-slot collision through the
firing messages received from its neighboring nodes. If
a node successfully occupies a firing-phase time slot, the
neighboring nodes record its firing-phase information (Node
ID and Hop Information) in the corresponding area of their
firing message, as shown in Figure 7(b). However, if a firing-
phase time-slot occupation conflicts, the neighboring nodes
do not record the node’s firing-phase information, as shown
in Figures 7(c) and 7(d). To summarize, a node can determine
whether its firing-phase slot occupation succeeds by checking
the existence of N-H fields for itself in the firing-phase slot
information area of the neighbor nodes’ firing message.

(4) Detection Type of the Firing-Phase Time-Slot Collision.
Similar to the control time-slot collision detection, there are
two types of logical firing-phase time-slot collision detection.
In otherwords, if the control time-slot allocation of twonodes
with colliding firing-phase time slots is located in advance of
the neighbor nodes’ control time slot, the neighbor node does
not include the firing-phase time-slot allocation information
of these two nodes in the same frame; thus, the two nodes
can detect a collision in the same frame. Otherwise, they will
detect the collisions in the next frame.

If the control time-slot allocation of a node that detects
the firing-phase time-slot collisions is located in advance of
the control time slot of the colliding firing-phase nodes, the
neighbor node does not include the firing-phase time-slot
allocation information of these two nodes in the next frame,
allowing the two nodes to detect a collision in the next frame.
This is to prevent data time-slot collisions due to firing-phase
time-slot collisions. Then, the colliding nodes will choose a
firing-phase time slot again in the next frame.

3.3.3. Data Time-Slot Allocation. Each node independently
determines the number of data time slots in each super-
frame. Each node calculates the midpoint between the events
of the left firing-phase reference (𝜙

𝑝(𝑖)
(𝑛)) and its own firing-

phase time slot (𝜙
𝑖
(𝑛)). This is calculated as shown below:

𝜙
𝑖 𝑙 (𝑛) = ceil(

𝜙
𝑝(𝑖) (𝑛) + 𝜙𝑖 (𝑛)

2
) . (4)

Each node also calculates the midpoint of the event of its
own firing-phase time slot (𝜙

𝑖
(𝑛)) and that of the right firing-

phase reference (𝜙
𝑛(𝑖)
(𝑛)). This is calculated as shown below:

𝜙
𝑖 𝑟 (𝑛) = ceil(

𝜙
𝑖 (𝑛) + 𝜙𝑛(𝑖) (𝑛)

2
) . (5)

Node 𝑖 occupies the data time slots between 𝜙
𝑖 𝑙
(𝑛) and

𝜙
𝑖 𝑟
(𝑛) in the 𝑛th super-frame.

4. Simulation

In this section, we perform a simulation that verifies that
the multihop DESYNC algorithm works well in multihop
networks. Every node in the cycle graph has a degree of 2,
as shown in Figure 8 on the left. Moreover, every node has
the same transmission range, and each node has symmetric
connectivity in the unit-disk graph, as shown in Figure 8 on
the right.

4.1. Performance Evaluation in Cycle Graph

4.1.1. Simulation Parameters. In the cycle graph (𝐶
6
), the

number of nodes is set to six, the number of control time
slots is set to five, and the number of data slots is set to 60.
We analyzed the simulation results regarding the changes in
firing phases and allocated data time slots.

4.1.2. Simulation Results. The simulation results showed four
desynchronized configurations for the cycle graph, as shown
in Figures 9, 10, 11, and 12. In the first configuration, shown in
Figure 9, the firing phases of twonodes that are twohops away
from each other converge to the same phases; there are three
such phase clusters among the six nodes. This configuration
represents the best case in terms of the data time-slot reuse
factor. This case results from consecutively allocating initial
firing-phase time slots, as shown in Figure 9. In this case, each
firing-phase cluster of the two nodes ultimately updates to the
same firing phase.

The second configuration is shown in Figure 10. Here,
the firing-phase time slots of all nodes converge to one of
four phase clusters, each of which includes either one or two
firing phases. As a result, each node is allocated five data
time slots in every frame. The third configuration is shown
in Figure 11. Here, the firing-phase time slots of all nodes
converge to one of five phase clusters. In this case, each
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Figure 10: Simulation results 2 in the cycle graph.

node is allocated four data time slots in every frame. The
fourth configuration is shown in Figure 12. Here, the firing-
phase time slots of each node converge to six different firing
phases.This configuration represents the worst-case scenario
in terms of the data time-slot reuse factor.

4.2. Performance Evaluation in the Unit-Disk Graph

4.2.1. Simulation Parameters. We evaluate the performance
of the proposed multihop DESYNC algorithm compared to
CSMA/CA in the unit-disk graph.The simulation parameters
are shown in Table 1. Ad hoc on-demand distance vector
(AODV) routing is used to decide the routing path, and the
normalized throughput performance, which is the ratio of
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Figure 11: Simulation results 3 in the cycle graph.

Node 1
Node 2
Node 3

Node 4
Node 5
Node 6

0

5

10

15

20

25

30

35

40

45

50

55

60
Fi

rin
g 

ph
as

e

0 4 6 8 10 12 14 16 18 202

Frame

Figure 12: Simulation results 4 in the cycle graph.

Table 1: Simulation parameters.

Simulation factor Value
The number of nodes 40
The number of control time slots 20
The number of data time slots 40
Transmission rate 1Mbps
Transmission range 100m
Network size 600 × 200m2

Packet size 280 bytes
Packet interval time 30ms

the total throughput across all given paths over the number
of paths, is obtained.
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Figure 13: Example of the data time-slot allocation in a unit-disk graph.
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Figure 14: Reuse-gain results.

4.2.2. Simulation Results. Figure 13 shows the simulation
results of node 1’s allocated data slots and its one- and two-
hop neighbor nodes when each node’s firing phase is desyn-
chronized. Node 1 is allocated the fifteenth to seventeenth
data time slots, and we can verify that the hidden-node
problem is solved by observing that no duplicate data time
slot is allocated within the two-hop neighboring nodes. From
the point of view of node 1, the node pairs (33, 3), (26, 15),
(26, 25), (19, 25), (19, 18), (11, 28), and (11, 13) are allocated the
duplicate data time slots. However, this simplymeans reusing
the channels, because the node pairs are far more than two
hops from each other, as shown in Figure 8.

Let 𝐵
𝑖
be the number of data time slots allocated to

node 𝑖. Then, we define the channel reuse gain as ∑𝑁
𝑖=1
𝐵
𝑖
/𝐷.

Figure 14 shows the reuse gain according to the number
of trials in the unit-disk graph environment described in
Figure 8. In fully connected networks, each node cannot
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Figure 15: Normalized throughput.

be allocated the duplicate data time slot, and each node is
allocated𝐷/𝑁 bandwidth, so the reuse gain is 1. On the other
hand, duplicate data time slots can be shared among nodes
that are far from more than two hops in multihop networks,
so the channel reuse gain is higher than 1. The simulation
result in Figure 14 shows the channel reuse gain per iteration;
the average channel reuse gain is 3.055, where the minimum
is 2.675 and the maximum is 3.425.

The normalized throughput results are shown in Fig-
ure 15. The multihop DESYNC algorithm achieves better
performance than the CSMA/CA algorithm in terms of the
normalized throughput. Both methods show degradation of
normalized throughput as the number of paths increases.
However, the result shows that the throughput of the pro-
posed multihop DESYNC is better than that of CSMA/CA.
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5. Conclusion

In this paper, we proposed a multihop DESYNC algorithm
that is a bioinspired TDMA-based distributed resource-
allocation scheme for IoT networks. We proposed a frame
structure and an operating procedure to solve the hidden-
node problem. A firing message is transmitted via a control
channel; this increases the reliability of the data transmission,
as each node is able to share the two-hop neighboring
node’s firing-phase information with its neighbor nodes. In
addition, it was verified that the proposed algorithm could
efficiently resolve two different types of collision: control-
channel allocation and data-channel allocation. Simulation
results showed thatmultihopDESYNC can effectively resolve
the hidden-node problem, and the throughput performance
of the proposed multihop DESYNC is better than that of
CSMA/CA.

In the contention-free based resource-allocation algo-
rithms such as TDMA, control overhead is inevitable in every
frame in order to forward control information necessary
for resource management. If the node density is high in a
multihop network and the number of neighboring nodes
increases, then the greater amount of control overhead is
required, which results in deterioration of bandwidth usage
efficiency [21]. In order to solve these problems, we have a
plan to research themethod to reduce the control overhead by
considering the activity of nodes and the trafficon/off tomake
opportunistic resource allocation. Also, we will consider the
loss of firing phases owing tomobility and link in futurework.

Competing Interests

The authors declare that they have no competing interests.

Acknowledgments

This research was supported by the Agency for Defense
Development (ADD-IBR-245) and partially supported by
the Chung-Ang University Excellent Student Scholarship in
2014.

References

[1] L. D. Xu, W. He, and S. Li, “Internet of things in industries: a
survey,” IEEE Transactions on Industrial Informatics, vol. 10, no.
4, pp. 2233–2243, 2014.

[2] Y. Xue, L. I. Baochun, and K. Nahrstedt, “Optimal resource
allocation in wireless ad hoc networks: a price-based approach,”
IEEE Transactions on Mobile Computing, vol. 5, no. 4, pp. 347–
364, 2006.

[3] A. Lozano and D. C. Cox, “Distributed dynamic channel
assignment in TDMA mobile communication systems,” IEEE
Transactions on Vehicular Technology, vol. 51, no. 6, pp. 1397–
1406, 2002.

[4] Y. Wang and I. Henning, “A deterministic distributed TDMA
scheduling algorithm for wireless sensor networks,” in Proceed-
ings of the International Conference on Wireless Communica-
tions, Networking and Mobile Computing (WiCOM ’07), pp.
2759–2762, Shanghai, China, September 2007.

[5] L. C. Pond and V. O. K. Li, “Distributed time-slot assign-
ment protocol for mobile multi-hop broadcast packet radio
networks,” in Proceedings of the IEEE Military Communications
Conference (MILCOM ’89), pp. 70–74, Boston, Mass, USA,
October 1989.

[6] C. D. Young, “USAP: a unifying dynamic distributed multi-
channel TDMA slot assignment protocol,” in Proceedings of the
Military Communications Conference (MILCOM ’96), pp. 235–
239, Mclean, Va, USA, October 1996.

[7] C. D. Young, “USAP multiple access: dynamic resource allo-
cation for mobile multihop multichannel wireless networking,”
in Proceedings of the IEEEMilitary Communications Conference
(MILCOM ’99), pp. 271–275, Atlantic City, NJ, USA, November
1999.

[8] M.Dorigo,M. Birattari, andT. Stützle, “Ant colony optimization
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