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We present a wireless-inertial-measurement-unit- (WIMU-) based hand motion analysis technique for handwriting recognition
in three-dimensional (3D) space. The proposed handwriting recognition system is not bounded by any limitations or constraints;
users have the freedom and flexibility to write characters in free space. It uses hand motion analysis to segment hand motion
data from a WIMU device that incorporates magnetic, angular rate, and gravity sensors (MARG) and a sensor fusion algorithm
to automatically distinguish segments that represent handwriting from nonhandwriting data in continuous hand motion data.
Dynamic time warping (DTW) recognition algorithm is used to recognize handwriting in real-time. We demonstrate that a user
can freely write in air using an intuitive WIMU as an input and hand motion analysis device to recognize the handwriting in 3D
space. The experimental results for recognizing handwriting in free space show that the proposed method is effective and efficient
for other natural interaction techniques, such as in computer games and real-time hand gesture recognition applications.

1. Introduction

Recent advances in computing technology and user interfaces
have led to remarkable growth in interactive applications,
such as gestural interfaces in virtual environments. In day-to-
day life, the use of gestural devices, which use hand motion
data to control interactive interfaces, has increased over the
years. Vision-based 3D gesture interaction interfaces, such
as Microsoft Kinect and Leap Motion, use a depth-camera
to track a user’s hand in a constrained environment. The
user must perform the gesture action in the visibility of the
device to interactwith the applications, which limits the range
of motion. Vision-based techniques suffer from occlusion
problems, being limited to wearability, computational costs,
and sensitivity to lighting conditions.

Low-cost sensor technology devices and user-friendly
human-computer interaction (HCI) techniques are being
rapidly developed using inertial sensing methods, such as
gesture recognition, activity recognition, motion tracking,
and handwriting recognition. Compared to conventional

keyboard and touch screen—based input methods, hand-
writing character recognition in three-dimensional (3D)
space using inertial sensors is an emerging technique. Many
researchers have proposed handwriting character recognition
using accelerometer-based devices. Most of the research is
limited to handwritten digit, simple gestures, or character
recognition in two-dimensional (2D) space.

Generally, accelerometers show similar acceleration sig-
nals for different handmotions, and variations in acceleration
data can be found among different users, which decrease
the overall recognition performance of such systems. To
recognize complex gestures such as the English alphabet, 3D
accelerometer-based techniques are ineffective and inefficient
because English letters are more complex than digits and
simple gestures, which contain similarly shaped characters.
However, using an inertial sensor-based device, users can
freely write characters in 3D space. We propose an inertial
sensor-based system for handwriting recognition in 3D space
without a constrained environment or writing space. The
system uses a WIMU device for hand gesture tracking and
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motion analysis to recognize handwritten lowercase letters of
the English alphabet and digits in free space.

TheWIMU device is embedded with MARG sensors and
a sensor fusion algorithm, which provides intuitive and accu-
rate hand motion data recognition through linear accelera-
tions, angular velocities, and orientations of themoving hand.
The user can write in free space on an imaginary screen using
our WIMU motion sensor. In this paper, we present a two-
stage approach for spotting and recognizing handwriting in
3D space. Our proposed approach uses hand motion analysis
for automatic segmentation of hand motion data to spot
significant handwriting data. Furthermore, we implement a
multidimensional handwriting recognition algorithm using
DTW, which measures similarity by computing the distance
between two signals that might vary in time or speed, to
recognize handwriting in real-time.

The remainder of this paper is organized as follows.
Section 2 briefly describes existing inertial sensor-based
handwriting recognition methods and related works. We
present the WIMU motion sensor in Section 3. In Section 4,
we explain the WIMU device as a handwriting interface
that automatically spots handwriting segments and performs
handwriting recognition. Experimental results are presented
with user-independent test in Section 5, and Section 6 con-
cludes our paper.

2. Related Work

Many researchers have used vision-based sensors in hand
gesture recognition applications [1–3]. Inertial sensor-based
HCI techniques for gesture recognition and handwriting
recognition have also been used by many researchers [4–
6]. Compared to vision-based sensors, inertial sensor-based
techniques have the advantages of being ubiquitous and
having low latency and computation cost. Amicroelectrome-
chanical system (MEMS), accelerometer-based nonspecific-
user hand gesture recognition system, is presented in [7].
Akl et al. [8] presented an accelerometer-based gesture
recognition system that used DTWwith affinity propagation
methods. Liu et al. [9] used a single three-axis accelerometer
and the DTW algorithm for gesture recognition. They eval-
uated their system using more than 4000 samples for eight
gesture patterns collected from eight users. Choi et al. [10]
presented a pen-style hardware, which has an accelerometer,
to recognize the 10 Arabic numerals. They used both the
hiddenMarkovmodel (HMM) andDTWfor recognition. An
accelerometer-based pen device for online handwriting digit
recognition using DTW is also presented in [11].

An accelerometer-based digital pen for 2D handwrit-
ten digit and gesture trajectory recognition applications is
presented in [12], which extracts the time and frequency-
domain features from the acceleration signals and then
identifies the most important features to reduce the feature
dimensions. The reduced features were then sent to a trained
probabilistic neural network for recognition. Reference [13]
presented a study on the effectiveness of combining accel-
eration and gyroscope data on mobile devices for gesture
recognition using classifiers with dimensionality constraints.

An inertial-measurement-unit-based pen and its associated
trajectory recognition algorithm for handwritten digits and
gesture recognition are presented in [14, 15].

The fusion of multiple sensors has been adapted to
enhance the gesture tracking and recognition performance of
the system. Liu et al. [16] presented a method for fusing data
from inertial and vision depth sensors within the framework
of an HMM for hand gesture recognition. Reference [17]
proposed the fusion of a MEMS inertial sensor and a
low-resolution vision sensor for 2D gesture tracking and
recognition. Fusion of three-axis accelerometer and multi-
channel electromyography sensors was used to recognize sign
language in [18]. However, the fusion of multiple sensors
increases the computational load and cost of a system.

In hand gesture recognition or handwriting recognition
using inertial sensors, spotting and recognizing the signifi-
cant data from the continuous data streams are very impor-
tant. Reference [19] presented a two-stage approach for the
spotting task. The first stage preselects signal sections likely
to contain specific motion events using a simple similarity
search. Those preselected sections are further classified in
a second stage by exploiting the recognition capabilities of
HMMs. Amma et al. [20] proposed a two-stage approach for
spotting and recognizing handwriting gestures. The spotting
stage uses a support vector machine to identify the data
segments that contain handwriting. The recognition stage
then uses HMMs to generate a text representation from the
motion sensor data.

Many frameworks for 3D spatial gesture recognition
systems exist. HMMs are widely used in gesture recognition
methods [21–23]. Chen et al. [24] presented a 6D gesture
recognition system using different tracking technologies for
command and control applications and compared the effec-
tiveness of various features derived from different tracking
signals, using a statistical feature-based linear classifier as a
simple baseline and theHMM-based recognizer in both user-
dependent and user-independent cases. However, HMMs
require large training data sets to form a statistical model for
recognition, and their computational complexity increases
with an increase in the dimensions of the feature vectors.
TheDTW-based hand gesture recognition algorithm has also
been used by many researchers [25–28]. DTW works even
with only one training data set, and it is easy to execute,
computationally efficient, and accurate for time-series data.
Reference [14] proposes a DTW-based recognition algorithm
for online handwriting and gesture recognition using an
inertial pen.

3. WIMU Motion Sensor

A custom-made wireless motion sensor using a 9-axisMEMS
sensor (InvenSense MPU9150) is designed, which incorpo-
rates a triaxis 16-bit gyroscope, triaxis 16-bit accelerometer,
and triaxis 13-bit magnetometer with selectable ranges up to
±2000 ∘/s, ±8 g, and ±1200𝜇T, respectively. The accelerom-
eter, gyroscope, and magnetometer provide accelerations,
angular velocities, and magnetic signals generated by hand
motion. All these sensors are connected to a microcontroller
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Figure 1: WIMUmotion sensor.

(STMicroelectronics STM32F103RET6) that collects and pro-
cesses the data. The inertial sensors data are transmitted to
a PC using (Panasonic iPAN1321) Bluetooth transceiver or a
USB connection. Figure 1 shows our custom-made wireless
motion sensor. The wireless motion sensor data is acquired
and processed at 100Hz.

The WIMU motion sensor is programmed with a sensor
fusion algorithm that enables it to precisely and accurately
track user hand motions in 3D space. A quaternion comple-
mentary filter algorithm is implemented to obtain the 3D atti-
tude of the device in quaternion format [28]. The quaternion
complementary filter algorithm uses the calibrated sensor
data as input and produces the quaternion as output.

4. WIMU Handwriting Interface

In real-time handwriting recognition using an inertial
motion sensor, the first problem is spotting the significant
handwriting data from continuous hand motion data. The
second problem is recognizing complex, similarly shaped
letters within a large number of classes. Users have different
styles for handwriting and dynamic variations in timing and
speed for each character. Even a single user has variations
in time and speed for a single character, which makes
3D handwriting recognition a difficult task. To overcome
these problems of identifying significant hand motion data,
intraclass variations, and interclass similarity, we propose
a two-stage approach for handwriting in 3D space using a
WIMU motion sensor. Figure 2 shows the block diagram of
our segmentation and classification process for handwriting
recognition in 3D space.

4.1. Handwriting Features Extraction. Inertial sensor mea-
surements commonly contain noise, sensor drift, cumulative
errors, and the influence of gravitation error that produce
inaccurate output; hence, preprocessing steps such as calibra-
tion and filters are necessary to eliminate noise and errors
from the inertial signals. Calibration procedure reduces the
sensitivity and offset errors from the raw signals using scale
factors and biases from the triaxis accelerometer, gyroscope,
and magnetometer to obtain calibrated signals, and low-pass
filtering reduces the high-frequency noise from the calibrated
signals.
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Figure 2: Handwriting segmentation and classification.

The acceleration data consist of two components:motion-
induced acceleration and gravity. The gravity component is
treated as noise and removed because it does not depend
on the user’s hand motion. To compensate for gravity, we
compute its expected direction with the quaternion output
from the quaternion complementary orientation filter using
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The gravitational acceleration 𝐺 is subtracted from the
acceleration 𝑎

𝑠
, as shown in (2), to obtain themotion-induced

acceleration in the sensor frame:

𝑎 (𝑡) = 𝑎
𝑠
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After calibration and filtering, the WIMU motion sen-
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) as feature parameters generated by handmove-

ments for further processing and analysis.

4.2. Handwriting Segmentation. The hand gesture data from
the WIMU motion sensor consists of symbolic and contin-
uous data and can be considered as an organized sequence
of segments. Segmentation of continuous hand motion data
simplifies the process of handwriting classification in free
space. Our approach uses handmotion analysis for handwrit-
ing segmentation. In real-time, we process the accelerometer
and gyroscope data from the motion sensor to segment
the continuous hand motion data into handwriting motion
segments and nonhandwriting segments, using both the
motion detection and nonmotion detection approaches.

The angular velocity and linear acceleration of a hand
motion are two controlling parameters; they provide infor-
mation to determine the beginning and end boundaries
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of handwriting segments. We calculate the norm of the
linear acceleration and angular velocity data from user hand
motions using (4) and (5) to segment hand motion data
and spot significant handwriting segments. This approach
assumes that the angular velocity and linear acceleration of
the hand motions decrease, when a user begins and ends
handwriting:
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, (3)
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Using amagnitude threshold-based handmotion analysis
method, we segmented the hand motion data into hand-
writing segments and nonhandwriting segments. For seg-
mentation using accelerometers, we calculated acceleration
threshold from the filtered accelerometer signals when the
user is stationary. A small constant such as 0.25𝐺 determines
the segmentation of the handwriting motion data when
AccelMag is greater or less than the threshold. However
such a loose condition produces unexpected segmentation
problems for hand motion.

In our empirical tests, we observed that using only an
acceleration threshold produced unexpected motion seg-
mentations; therefore we also used a temporal threshold to
avoid unexpected segmentations. Segments that resulted in
the same temporal threshold were combined into a single
segment. We used 450ms, as the temporal threshold for our
empirical tests. A handwriting motion was assumed to have
stopped if its duration was greater than the temporal thresh-
old. Thus, we used acceleration and temporal thresholds in
our motion detection approach to separate the hand motion
data into two segments, handwriting and nonhandwriting.

Similarly, for gyroscope-based segmentation, we deter-
mined a gyro threshold from the filtered gyroscope signals,
and a small constant such as 20 ∘/s was used. Segmentation
of hand motion data follows when GyroMag is less than the
gyro threshold. Unlike accelerometer-based segmentation,
gyroscope-based segmentation did not produce any unex-
pected segmentations. Thus, in our empirical tests we deter-
mined that gyroscope-based segmentation provides higher
accuracy than accelerometer-based segmentation.

Our system uses acceleration and temporal thresholds
to determine handwriting segmentation for spotting sig-
nificant motion data, with high-accuracy gyroscope-based
segmentation validating the gesture segments made using
accelerometer-based detection. Thus, our system combines
the accelerometer-based segmentation which uses a tempo-
ral threshold to avoid unexpected segmentations with the
gyroscope-based segmentations to verify and validate the
segmentations. Figure 3 shows our combined approach for
spotting significant hand motion data.

4.3. Handwriting Recognition. For handwriting recognition
in 3D space, we implemented a multidimensional real-time
handwriting recognition algorithm using DTW, which has
been widely used for human body movement recognition.
In our system, the DTW algorithm computes the distance
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Figure 3: Accelerometer and gyroscope-based hand motion seg-
mentation.

between two gesture signals, represented by multidimen-
sional time-series data that can vary in time or speed obtained
from the WIMU motion sensor. This method is simple and
effective for interactive applications such as handwriting and
gesture recognition systems.

The quaternion output from theWIMUmotion sensor is
transformed into Euler sequences of rotation angles. We use
roll (𝜙), pitch (𝜃), and yaw (𝜓), in addition to the accelera-
tions (𝑎

𝑥
, 𝑎
𝑦
, 𝑎
𝑧
) and angular velocities (𝑔

𝑥
, 𝑔
𝑦
, 𝑔
𝑧
), as feature

parameters to efficiently track and classify handwriting in a
meaningful and intuitive way. The distance estimation of the
orientation data is efficient and allows good discrimination
among complex and similarly shaped handwritten characters.
We used amin-max normalizationmethod to compensate for
scale and magnitude variations due to individual differences
between writings. The time-series sequence of hand motion
data obtained from the WIMUmotion sensor is denoted by
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(5)

During real-time handwriting recognition, the DTW
recognition algorithm computes the similarity between the
input data and the templates. Input handwriting data is
accepted and classified to a class, which has the minimum
warping distance and matches the threshold value of that
class. If it does not match the threshold value, the input
handwriting data is rejected.

If 𝑆 = {𝑠
1
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time-series hand motion sequences with different lengths, to
find similarity between them using DTW, we need to define
a distance matrix 𝐷, containing the Euclidean distances
between all pairs of points between 𝑆(𝑖) and 𝑇(𝑗):

𝐷(𝑖, 𝑗) = 𝑑 (𝑠
𝑖
, 𝑡
𝑗
) . (6)
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Then we recursively define the warping matrix𝑊:

𝑊(1, 1) = 0,

𝑊 (𝑖, 1) = 𝐷 (𝑖, 1) + 𝑊 (𝑖 − 1, 1) ,

𝑊 (1, 𝑗) = 𝐷 (1, 𝑗) + 𝑊(1, 𝑗 − 1)

for 𝑖, 𝑗 > 1,

(7)

𝑊(𝑖, 𝑗)

= 𝐷 (𝑖, 𝑗)

+min {𝑊 (𝑖 − 1, 𝑗) ,𝑊 (𝑖, 𝑗 − 1) ,𝑊 (𝑖 − 1, 𝑗 − 1)} .

(8)

We then calculate the optimal total minimum warping
distance DTW(𝑆, 𝑇), between 𝑆 and 𝑇 after alignment.

In order to improve and speed up computation of DTW
algorithm it is common to restrict warping path. Common
extensions to the DTW algorithms are Sakoe-Chiba band
and Itakura parallelogram. The typical constraints to restrict
warping path are as follows:

(i) Monotonicity. The warping path should not move
backwards. It must be monotonically increasing.

(ii) Continuity.The increment in awarping path is limited
such that no elements are skipped in a sequence.

(iii) Boundaries.The start and end elements in thewarping
path are fixed. If a warping window is specified then
only solve for the (𝑖, 𝑗) pairs where |𝑖 − 𝑗| ≤ 𝑝, where
𝑝 is the size of warping window.

5. Experimental Results

We demonstrated our WIMU motion sensor-based hand-
writing interface using the 26 lowercase letters of the English
alphabet and digits. The system runs on a PC with an Intel
Core i7 with a 3.40GHz CPU and 16GB memory. The wire-
lessmotion sensor communicates with the PC via a Bluetooth
interface. WIMU motion sensor is equipped with button
to start gesture by pressing the button and end the gesture
by releasing it. The combination of accelerations, angular
velocities, and Euler rotation angles as feature parameters for
handwriting recognition with automatic segmentation of the
hand motion data into significant motion segments allows
users to produce affordance input in 3D space using the
WIMUmotion sensor.

5.1. Template Database for Handwriting. We stored the
template database for each handwritten English lowercase
letter and digit in XML file format from training samples
for handwriting recognition. In the handwriting training
process, a threshold value and template are computed for
each handwritten English lowercase letter and digit. Figure 4
shows the handwriting trajectories we used in this system for
English lowercase letters and digits.

After training, the DTW recognition algorithm classifies
unknownmultidimensional time-series handmotion data by
calculating similarity between the input and each handwrit-
ing template in the database. The threshold value for each

Table 1: Confusionmatrix for handwriting recognition of 3D digits.

0 1 2 3 4 5 6 7 8 9
0 98 2
1 100
2 100
3 100
4 98 2
5 100
6 1 99
7 100
8 100
9 100

Figure 4: Handwriting trajectories of English lowercase letters and
digits.

template class filters false positives in the recognition stage.
The unknown input data segment is rejected, if no match
is found in the template database. If a new template class
is added or if an existing template class is removed from
the template database, we need only train and compute the
threshold value for the new template class, which reduces the
training time.

5.2. User Study: Test of Digits and English Lowercase Let-
ters. We conducted a user-independent experiment to test
handwriting recognition and evaluate the efficiency of the
WIMU motion sensor as an input device for handwriting
in free space. The user-independent test was conducted with
eleven male and nine female participants aged between 25
and 35 years. We instructed participants on the handwriting
trajectories for English lowercase letters and digits and
allowed them to practicewriting in free spacewith theWIMU
motion sensor before beginning the experiment.

For 3D handwritten digit recognition, we asked each
participant to write each digit (0 to 9) by pressing the button
on the WIMU motion sensor and releasing the button upon
completion of each digit; this was repeated 5 times in free
spacewithout any limitations or restrictions forwriting.Thus,
using twenty participants, we tested each digit 5 times for a
total of 1000 inputs.

Table 1 shows the confusion matrix table for the 3D
handwritten digit recognition experiment. The columns are
recognized digits, and the rows are the actual input digits in
3D space. The DTW-based recognition algorithm achieved
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Table 2: Confusion matrix for handwriting recognition of 3D English lowercase letters.

a b c d e f g h i j k l m n o p q r s t u v w x y z
a 98 2
b 97 3
c 98 2
d 100
e 2 98
f 96 4
g 98 2
h 98 2
i 97 3
j 100
k 100
l 2 98
m 100
n 100
o 1 99
p 100
q 100
r 97 3
s 1 99
t 2 98
u 1 99
v 1 99
w 100
x 98 2
y 1 99
z 100
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Figure 5: Precision and recall of Arabic numerals.

an average accurate recognition rate of 99.5% using a leave-
one-out cross-validation method. Figure 5 shows the preci-
sion and recall accuracy of the proposed method for each
digit.

Similar to the 3D digit handwriting recognition exper-
iment, we asked participants to practice writing using the
given handwriting trajectories for English lowercase letters
in free space until they were comfortable with the WIMU

motion sensor. Then we asked the twenty participants to
write each of the 26 English lowercase letters 5 times. Thus,
we tested a total of 2600 handwritten English lowercase
letters with the template database for the user-independent
experiment in free space.

Table 2 shows the confusionmatrix table for the 3Dhand-
written English lowercase letters recognition experiment.
The columns are recognized letters, and the rows are the
actual input letters in 3D space. The DTW-based recognition
algorithm achieved an average accurate recognition rate
of 98.69% using a leave-one-out cross-validation method.
Figure 6 shows the average precision and recall accuracy of
the proposed method for each English lowercase letter.

5.3. User Study: Spotting and Recognition Test for Words. For
writing words in free space we concatenated the individual
letters written in free space continuously. User starts writing
word in free space by pressing the button provided on the
WIMU motion sensor in the beginning of the starting letter
of word and releasing the button on completion of last letter
of the word. Figure 7 shows the user writing “velab” word in
free space using our proposed approach.

We evaluated the segmentation accuracy, whichmeasures
the ratio between the number of true results (both true posi-
tive and negatives) and the total number of cases examined
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Figure 6: Precision and recall of English lowercase letters.

Figure 7: User writing “velab” in free space.
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Figure 8: Accuracy of segmentation methods.

(true positive, true negative, false positive, and false nega-
tive) of the three methods (acceleration-based, gyroscope-
based, and combined approaches), measured per sample
point using continuous hand motion data that contains
both handwriting and nonhandwriting data from twenty
participants. All twenty participants were asked to write the
word “velab” in free space 5 times at different speeds. Figure 8
shows the accuracy (equation (9)) of the segmentation
methods from our empirical test for spotting handwriting
and nonhandwriting data from continuous hand motion

data.The combination of accelerometer and gyroscope-based
segmentation achieves an accuracy of 98.00%,which is higher
than the accelerometer-based (94.44%) and gyroscope-based
(96.11%) methods:

accuracy =
𝑡𝑝 + 𝑡𝑛

𝑡𝑝 + 𝑡𝑛 + 𝑓𝑝 + 𝑓𝑛

. (9)

Figure 9 shows the false positive rate of the segmentation
methods based on our experimental test. Our approach for
spotting significant hand motion data using both accelerom-
eter and gyroscope-based segmentation achieves a low false
positive rate of 4.5%, whereas methods based on accelerom-
eter or gyroscope segmentation achieve false positive rates of
12.5% and 8.75%, respectively.

Our empirical test thus shows that the combined
approach to segment continuous hand motion data into
handwriting and nonhandwriting data using both accelerom-
eter and gyroscope data provides higher accuracy and a
lower false positive rate than either method used alone.
This method for handwriting segmentation is simple and
effective for real-time use. Figure 10 shows the recognition
accuracy of empirical test for each letter in the word “velab”
using combination of accelerations, angular velocities, and
hand rotation angles as feature parameters for DTW-based
handwriting recognition in free space.

We also tested the system for handwriting different words
in free space using the proposed approach to evaluate the
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Figure 9: False positive rate of segmentation methods.
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Figure 10: Recognition accuracy for each letter in velab.

systems performance. We asked all twenty participants to
write 40 words [29], which included common TV channels
and digital/Internet services and contained all of the letters
of English alphabet. We asked all twenty participants to write
each word in lowercase five times each in free space using the
proposed approach to evaluate the system performance.

Figure 11 shows the average precision and recall accuracy
of each letter in words written in free space using WIMU
motion sensor. The results are obtained from feeding in the
detection segments. The DTW-based recognition algorithm
achieved an average accurate recognition rate of 97.95%.

5.4. Qualitative Evaluation and Discussion. We asked each
participant a series of questions to evaluate user experience
for the proposed handwriting in free space using WIMU
motion sensor on a scale from 1 to 10 for each question.
The questions asked are as follows: (1) natural: do you feel
it natural user interface, (2) intuitive: intuitiveness of the
system, (3) easy: how much easy to use and adapt quickly to
the proposed interface, and (4) comfort: how much physical
ease and freedom compared to other handwriting methods
like touchscreen or vision-based approaches. Figure 12 shows
the average of qualitative evaluation result obtained from
twenty participants.

The results show that our interface is simple and effective
for handwriting in free space with a natural user interface
that provides ease of use. The automatic segmentation of
hand motion data by analyzing accelerations and angular
velocities to indicate the start and end of significant hand-
writing data operates similarly to the pen-up, pen-down
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concept in conventional handwriting systems. The approach
of using user hand motion constraints (acceleration and
angular velocity) for segmentation in real-time reduces the
redundant segmentation of hand motion data compared
to accelerometer-based and gyroscope-based methods for
segmentation of time-series data.

The proposed system recognizes the hand motion tra-
jectories by sensing and spotting handwriting segments, and
the DTW-based recognition algorithm, which compensates
for variations in speed and size, performs the handwriting
recognition. The hand motion data obtained from acceler-
ation, angular velocities, and orientation data increases the
handwriting recognition rate in free space. This allows even
a naive user to adapt quickly and easily to the proposed
interface for handwriting in free space.

Compared to individual letters the performance of hand-
writing for words in free space continuously using WIMU
motion sensor varies due to variations in users different
handwriting speed. The main limitation of our system is
that the proposed approach assumes that the acceleration
and angular velocity of a hand motion decrease when a user
begins and finishes handwriting for spotting handwriting
and nonhandwriting data, which requires users to slow their
handwriting speed for fraction of second after each letter
in the word to recognize handwritten letter spotted during
segmentation process.
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6. Conclusion

We have presented an interactive, inertial sensor-based inter-
face for handwriting in free space. The hand motion analysis
to detect significant hand motion segments for handwrit-
ing using user hand motion constraints collected from a
WIMU motion sensor input device increases our system’s
handwriting recognition rate. The DTW-based handwriting
recognition algorithm and using a combination of acceler-
ations, angular velocities, and orientation data to recognize
handwriting in 3D space are effective and efficient in real-
time. Our experimental results show that the proposed
method is suitable for interactive gesture-based applications.
Users can effectively express their intentions in a virtual
environment beyond vision, touch screen, keyboard, and
mouse interactions.

The proposed interface system could also be used in
other natural interaction techniques, such as in computer
games and real-time user activity recognition applications.
Although our proposed method is effective for spotting and
recognizing hand motion data, it assumes that the accelera-
tion and angular velocity of a hand motion decrease when a
user begins and finishes handwriting, which requires users
to slow their handwriting speed. Thus, we plan to further
investigate the issue of handwriting speed and improve our
system to recognize sequences of words.
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ting with body-worn inertial sensors to detect user activities,”
Pattern Recognition, vol. 41, no. 6, pp. 2010–2024, 2008.

[20] C. Amma, M. Georgi, and T. Schultz, “Airwriting: a wear-
able handwriting recognition system,” Personal and Ubiquitous
Computing, vol. 18, no. 1, pp. 191–203, 2014.



10 Journal of Sensors

[21] H.-K. Lee and J. H. Kim, “An HMM-based threshold model
approach for gesture recognition,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 21, no. 10, pp. 961–973,
1999.

[22] C. Zhu and W. Sheng, “Wearable sensor-based hand gesture
and daily activity recognition for robot-assisted living,” IEEE
Transactions on Systems, Man, and Cybernetics Part A:Systems
and Humans, vol. 41, no. 3, pp. 569–573, 2011.

[23] S. Kim, G. Park, S. Yim et al., “Gesture-recognizing hand-held
interface with vibrotactile feedback for 3D interaction,” IEEE
Transactions on Consumer Electronics, vol. 55, no. 3, pp. 1169–
1177, 2009.

[24] M. Chen, G. AlRegib, and B.-H. Juang, “Feature processing and
modeling for 6D motion gesture recognition,” IEEE Transac-
tions on Multimedia, vol. 15, no. 3, pp. 561–571, 2013.

[25] M. H. Ko, G. West, S. Venkatesh, and M. Kumar, “Using
dynamic time warping for online temporal fusion in multisen-
sor systems,” Information Fusion, vol. 9, no. 3, pp. 370–388, 2008.

[26] D.-W. Kim, J. Lee, H. Lim, J. Seo, and B.-Y. Kang, “Efficient
dynamic time warping for 3D handwriting recognition using
gyroscope equipped smartphones,” Expert Systems with Appli-
cations, vol. 41, no. 11, pp. 5180–5189, 2014.

[27] S. Vikram, L. Li, and S. Russell, “Handwriting and gestures in
the air, recognizing on the fly,” in Proceedings of the CHI, p. 21,
Paris, France, April-May 2013.

[28] S. Patil, H. R. Chintalapalli, D. Kim, and Y. Chai, “Inertial
sensor-based touch and shake metaphor for expressive control
of 3D virtual avatars,” Sensors, vol. 15, no. 6, pp. 14435–14457,
2015.

[29] http://www2.ece.gatech.edu/6DMG/Air-handwriting.html.



International Journal of

Aerospace
Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Active and Passive  
Electronic Components

Control Science
and Engineering

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 International Journal of

 Rotating
Machinery

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation 
http://www.hindawi.com

 Journal ofEngineering
Volume 2014

Submit your manuscripts at
http://www.hindawi.com

VLSI Design

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Shock and Vibration

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Civil Engineering
Advances in

Acoustics and Vibration
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer 
Engineering

Journal of

Advances in
OptoElectronics

Hindawi Publishing Corporation 
http://www.hindawi.com

Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Sensors
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling & 
Simulation 
in Engineering
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Chemical Engineering
International Journal of  Antennas and

Propagation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Navigation and 
 Observation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
Sensor Networks

International Journal of


