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Abstract

This study presents an approach for discriminating omega-3 fatty acid forms
using proton nuclear magnetic resonance ('H-NMR) spectroscopy combined
with machine learning and deep learning techniques. A total of 90 samples,
comprising triglyceride, re-esterified triglyceride, and ethyl ester forms, were
analyzed. Principal component analysis—linear discriminant analysis, support
vector machine (SVM), artificial neural network (ANN), and one-dimensional
convolutional neural network (1D CNN) models were applied using binned
spectral data. In contrast, a two-dimensional convolutional neural network
(2D CNN) was constructed using spectral images. To prevent overfitting and
optimize model hyperparameters, early stopping, cross-validation, and Bayes-
ian optimization were used across the different machine learning and deep
learning models. The 1D and 2D CNN models both achieved 100% accuracy on
the training and test sets, while the SVM and ANN models yielded slightly
lower but still excellent performance, with a test accuracy of 94.4%. Model
interpretability was enhanced through SHapley Additive exPlanations and
Gradient-weighted Class Activation Mapping, which identified critical spectral
regions associated with classification decisions. These results demonstrate that
the integration of artificial intelligence techniques with '"H-NMR spectroscopy
enables accurate, interpretable discrimination of omega-3 fatty acid forms,
offering a promising strategy for supplement authentication and quality
control.
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acids contribute to supporting cardiovascular, brain,
and ocular health, as well as mitigating inflammatory

Omega-3 oils are edible oils rich in omega-3 fatty acids,
notably eicosapentaenoic acid (EPA) and docosahexae-
noic acid (DHA), which have been widely used in dietary
supplements owing to their numerous health benefits.'
Extensive research has demonstrated that omega-3 fatty

responses.”* Reflecting growing consumer awareness of
these benefits, the global omega-3 oil supplements mar-
ket size reached approximately USD 7.3 billion in 2022.°
Commercially, omega-3 supplements are available in
three major chemical forms: triglycerides (TG), ethyl esters
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(EE), and re-esterified triglycerides (r'TG), each differing in
molecular structure, bioavailability, and manufacturing
process. Among these, rTG forms have garnered increas-
ing attention due to their superior absorption efficiency
and higher EPA and DHA contents compared to conven-
tional TG forms.° The enhanced bioavailability and ele-
vated concentrations of beneficial fatty acids make (TG
products highly desirable in the marketplace. rTG oils are
typically produced using a two-step chemical process
involving the transesterification of TG to EE, followed by
re-esterification with glycerol. However, this multi-step
synthesis increases production costs, resulting in higher
retail prices for rTG products compared to TG or EE forms.
Furthermore, the complexity of the process often leads to
incomplete conversion, leaving residual monoacylglycer-
ols, diacylglycerols, and unreacted EE in the final product,
thereby complicating chemical composition.®® The high
value of rTG products, combined with the absence of
standardized regulatory definitions, raises the risk of eco-
nomically motivated adulteration, wherein TG or EE forms
may be artificially introduced to mimic or substitute
authentic rTG oils. These factors underscore the urgent
need for reliable analytical methods to authenticate and
ensure the quality of omega-3 supplements.

Various analytical techniques have been developed to
assess the composition and authenticity of omega-3 oils.
Gas chromatography with flame ionization detection
(GC-FID) remains the standard method for quantifying
fatty acid profiles and ensuring regulatory compli-
ance.”®'® However, GC-FID typically requires derivatiza-
tion, involves lengthy sample preparation and analysis
times, and often lacks the structural specificity necessary
to distinguish between molecular forms. In contrast, pro-
ton nuclear magnetic resonance ("H-NMR) spectroscopy
provides a rapid, non-destructive alternative with minimal
sample preparation and has been extensively applied to
both qualitative and quantitative analyses of omega-3
oils.""'? Additionally, '>C-NMR, 3'P-NMR, and two-
dimensional (2D) NMR techniques have been used for
more detailed compositional profiling.'>'*

Multivariate statistical methods, such as partial least
squares discriminant analysis (PLS-DA) and orthogonal
projections to latent structures discriminant analysis
(OPLS-DA), have been introduced to enhance classifica-
tion based on NMR data. For example, Amorim et al. suc-
cessfully distinguished TG and EE forms using 'H-NMR
spectra combined with supervised learning techniques.'®
However, due to their hybrid composition, these models
have not yet been adapted to identify rTG forms, which
are structurally more complex than TG and EE forms.

As the complexity of food matrices and chemical com-
positions has increased, the need for more powerful and
flexible analytical approaches has also increased. Conse-
quently, recent studies have increasingly explored the
use of artificial intelligence (Al) techniques for inter-
preting spectroscopic data in food analysis. Machine
learning (ML) models have been successfully applied to

a wide range of spectral data, including Raman, infrared
(IR), and NMR."®""® In the context of omega-3 oils, for
instance, support vector machine (SVM) algorithms
have been used to classify certified omega-3 oils using
Raman spectroscopy.'®

This study builds upon previous efforts by exploring
whether Al—particularly deep learning (DL)—can be used
to identify the structural fingerprints of TG, EE, and rTG
omega-3 fatty acid oils directly from "H-NMR spectra.
Using a dataset comprising both commercial and experi-
mental samples, this study applies multiple Al models—
including SVM, principal component analysis-linear dis-
criminant analysis (PCA-LDA), artificial neural networks
(ANNs), and convolutional neural networks (CNNs)—to
classify omega-3 oil forms. To ensure model interpretabil-
ity, SHapley Additive exPlanations (SHAP) and Gradient-
weighted Class Activation Mapping (Grad-CAM) are
employed to visualize the key spectral regions influencing
the classification decision. Through this integrated
approach, the study not only advances methods for the
detection and authentication of omega-3 supplements
but also contributes to the development of interpretable,
data-driven tools for quality assessment in food analysis.

EXPERIMENTS
Materials

A total of 90 commercial omega-3 supplement samples
were analyzed in this study, comprising 30 samples each
of ITG, TG, and EE products. The TG and EE standards (EE-
DHA and EE-EPA) were purchased from Sigma-Aldrich
(Seoul, Korea). In contrast, due to the limited availability
of commercially standardized rTG materials, raw rTG oil
was obtained in collaboration with a domestic
manufacturing company (KD Pharma Co.) and used as a
reference standard. For (TG supplement samples, only
products that met the labeled omega-3 content and con-
tained >70% omega-3 fatty acids (EPA and DHA) relative
to total fatty acids were included in this classification
analysis. Although rTG is theoretically composed entirely
of omega-3 fatty acids, residual TG or EE forms are typi-
cally present due to limitations in the production process.
Without a standardized definition for rTG form, a 70%
threshold was adopted as the operational criterion. The
reference (TG material used as a standard contained
approximately 80% omega-3 fatty acids (EPA and DHA)
based on total fatty acid composition.

Deuterated chloroform (CDCl;, =99.8 atom% D) was
obtained from BK Instruments (Daejeon, Korea) and used
as the solvent for direct 'H-NMR analysis of omega-3 sam-
ples without further purification. For NMR measurements,
20 pL of the omega-3 oil extracted from each capsule was
dissolved in 600 pL of CDClz, and the resulting solution
was transferred into a 5 mm (outer diameter) NMR tube
for analysis.
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"H-NMR experiment and data processing

All NMR measurements were performed using a Varian
600 MHz NMR spectrometer (Palo Alto, CA, USA)
equipped with a 5 mm PFG dual broadband 600NB probe
and controlled by VnmrJ software (version 3.2A). Spectra
were acquired with 64 k data points and a spectral width
of 9615.4 Hz. The acquisition parameters were as follows:
temperature, 25°C; pulse angle, 45°; acquisition time, 2 s;
number of scans, 16; relaxation delay, 10s. Chemical
shifts were referenced to the residual proton signal of
CDCl; at 7.26 ppm. Spectral preprocessing, including
phase and baseline correction, was performed using
Mnova software (Mestrelab Research, Santiago de Com-
postela, Spain).

For all classification models, the spectral region from
0.5 to 6.0 ppm—excluding the solvent signal—was
selected as the analytical window. For PCA-LDA, SVM,
ANN, and 1D CNN models, the 'H-NMR data were binned
using a bin size of 0.005 ppm to reduce dimensionality
and enhance model interpretability. In contrast, for 2D
CNN models, the spectral data within the selected range
were converted into grayscale images and saved in PNG
format. Image preprocessing included black-and-white
inversion, resizing, and interpolating using the OpenCV
library (cv2.INTER_AREA). All spectral images were stan-
dardized to a resolution of 1024 x 128 pixels to ensure
consistent input dimensions for model training.

A total of 90 'H-NMR spectra, consisting of 30 samples
each for TG, EE, and rTG forms, were used for model
development. The dataset was randomly divided into
training and test sets using an 8:2 ratio, resulting in
72 samples for training and 18 samples for testing. This
data split was consistently applied across all models to
ensure comparability of classification performance.

Al classification models

To discriminate the chemical forms of omega-3 fatty
acids, a series of ML and DL models were developed
based on 'H-NMR spectral data. All models were imple-
mented using the following Python packages (v3.11.12)
in the Google Colab environment: scikit-learn (v1.4.2),
TensorFlow (v2.15.0), and Keras (v2.15.0). For 2D-CNN
models, spectral images were assessed using OpenCV
(v4.10.0). SHAP and Grad-CAM techniques were applied
to interpret model decisions. This provided visual and
guantitative insights into the spectral regions critical for
classification. SHAP values were calculated using the
SHAP library (v0.41.0), while Grad-CAM was implemented
using TensorFlow v2.15.0.

PCA-LDA was employed as a classical multivariate
method combining unsupervised and supervised learn-
ing.2° PCA reduced spectral dimensionality while preserv-
ing variance, and LDA was used for class prediction based
on the transformed features. PCA enabled clearer pattern

recognition in the NMR spectra by projecting them onto
orthogonal axes, whereas LDA maximized class separa-
tion by optimizing inter-class and intra-class variances.”'
The number of principal components used in LDA was
optimized using five-fold cross-validation. SHAP was used
to assess which spectral regions (ppm values) most con-
tributed to classification performance.??

SVM models were implemented as a supervised classi-
fication approach that seeks an optimal hyperplane, maxi-
mizing the margin between different classes.?®> Several
kernel functions were tested, including radial basis func-
tion (RBF), polynomial, and sigmoid. To optimize model
performance, a randomized grid search approach was
employed in combination with five-fold cross-validation
to tune hyperparameters such as the kernel type, cost (C),
and gamma (y). C controlled the balance between margin
maximization and classification error minimization, while
y defined the influence of individual training samples.
Proper tuning of these parameters was essential to bal-
ance model generalizability and overfitting. SHAP analysis
was also used to support feature attribution.

ANN models were implemented as fully connected
feedforward networks capable of modeling complex non-
linear relationships in the spectral data.”* The input con-
sisted of binned spectral vectors. Furthermore, the
network architecture comprised an input layer, two hid-
den layers with ReLU activation functions, and an output
layer with softmax activation for three-class classification.
Bayesian optimization was used to tune hyperparameters
such as the number of dense units and learning rate.
SHAP analysis was conducted to identify the spectral
regions that contributed most to class differentiation, pro-
viding interpretability comparable to other models.

CNNs were implemented to capture distinctive pat-
terns in the spectral data. The 1D CNN processed binned
spectral vectors, enabling the detection of local signal fea-
tures along the chemical shift axis. In contrast, the 2D
CNN interpreted the spectra as 2D images, allowing for
the extraction of spatial features through 2D convolu-
tional filters. Both architectures consisted of stacked con-
volutional and pooling layers, followed by fully connected
layers, facilitating hierarchical feature extraction.”> Hyper-
parameter optimization was performed using Bayesian
optimization, targeting parameters such as the number of
filters, convolutional layers, neurons in the fully con-
nected layers, and the learning rate.® Early stopping was
applied to prevent overfitting during training. Although
the CNN models required higher computational resources
compared to conventional ML models, they effectively
captured structural and distributional patterns in the
spectral data. To enhance model interpretability, Grad-
CAM was employed to visualize the specific regions of
the spectral images that contributed most significantly to
the classification, complementing the numerical feature
importance ranking provided by SHAP.?

Figure 1 provides a schematic summary of the overall
analytical workflow, incorporating the procedures
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FIGURE 1

described above, from sample preparation through spec-
tral analysis and Al-based classification.

RESULTS AND DISCUSSION
"H-NMR spectra of different omega-3 forms

A representative 'H-NMR spectrum used for discriminat-
ing the forms of omega-3 samples extracted with CDCl; is
shown in Figure 2, and the corresponding peak assign-
ments are summarized in Table 1."> The chemical shift
range of interest spans from 0.5 to 6.0 ppm, within which
all relevant signals from omega-3 glycerides and fatty
acids are observed.

Characteristic spectral differences among the three
major forms of omega-3—TG, EE, and rTG—enable their
differentiation by 'H-NMR analysis. A key distinguishing
feature lies in the methyl signals of saturated fatty acids.
TG samples exhibit a relatively intense signal for terminal
protons in the region of 0.81-0.93 ppm (peak 1), corre-
sponding to saturated fatty acid methyl groups. Although
these signals are theoretically absent in EE and rTG, trace
amounts of saturated fatty acids—residual from incom-
plete purification—can produce subtle signals in the
same region in rTG samples. In contrast, terminal protons
of omega-3 fatty acids in EE and rTG appear downfield at
0.93-1.01 ppm (peak 2), reflecting the characteristic shift
of unsaturated chains.

Another differentiating factor is the structural configu-
ration, whether glycerol or EE. A distinctive signal of the
ethyl group (CHs;—CH,-O-) emerges solely in EE in
the range of 4.09-4.15 ppm (peak 12). Contrastingly, the
sn-1,3 proton signals of glycerol are evident at 4.06-
433 ppm in TG and rTG (peak 11). The two prevalent
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Schematic illustration of the overall process employed in this study.
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FIGURE 2 Representative 'H-NMR spectra of different omega-3
forms: (a) TG, (b) EE-EPA, (c) EE-DHA, and (d) rTG.

forms of omega-3 fatty acids, EPA and DHA, also manifest
distinct characteristic signals in the spectrum. The
a-hydrogen signal of EPA appears in the range of 1.67-
1.73 ppm (peak 6), while the a- and p-hydrogen signals
are observed at 2.36-2.42 ppm (peak 9).

In summary, TG is characterized by peaks 1 and 11, EE
exhibits peak 12, and (TG displays peak 11 in the "H-NMR
spectrum. Peak 1 is either absent or of very low intensity
in the spectra of EE and rTG, whereas peak 14, attributed
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TABLE 1 Chemical shift assignment of the 'H-NMR signals in CDCl5 of the main protons of glycerides and fatty acids present in omega-3

supplements.

Peak no. Chemical shift range (ppm)
0.81-0.93
0.93-1.01
1.22-1.28
1.19-1.44
1.55-1.66
1.67-1.73
2.03-2.13
2.26-2.26
2.36-2.42
2.74-2.88
4.06-4.33
4.09-4.15
5.22-5.28
5.28-5.45

O 0 N O 1 A W N =

- a a4 o
A wWw N = O

Functional group

Type of proton Compound

-CH3 Saturated fatty acid
—-CH3 Omega-3 fatty acid
CH3-CH,-O- EE

—CH;-CH,-CH,- Saturated fatty acid
-OCO-CH>-CH,- Saturated fatty acid
-OCO-CH,-CH>- EPA

CH,-CH3 Omega-3 fatty acid
-COC-CH,—CH,- Fatty acid
-COC-CH,-CH,- DHA

=CH-CH,-CH= Unsaturated fatty acid
ROCH,-CH(OR')-CH,OR" TG, rTG

CHs—-CH,-0- EE
ROCH,-CH(OR')-CH,OR" TG, TG

-CH=CH- Unsaturated fatty acid

to olefinic protons of unsaturated fatty acids, is typically
more pronounced in these forms. These distinctive fea-
tures of each omega-3 form are consistently observed
across all the samples.

Discrimination of omega-3 fatty acid forms
using Al models

All Al models—PCA-LDA, SVM, ANN, 1D CNN, and 2D
CNN—were applied to the 'H-NMR spectra of omega-3
supplements to classify different chemical forms: TG, TG,
and EE. The classification performance of each model is
summarized in Table 2.

The PCA-LDA model achieved an accuracy of 97.2%
for the training set (with two misclassifications among
72 samples) and 88.9% for the test set (with two misclassi-
fications among 18 samples). While PCA-LDA effectively
reduced dimensionality and captured the main variance
in the spectral data, its linear nature limited its ability to
fully separate the complex patterns among omega-3
forms, resulting in moderate performance compared to
more sophisticated models. Optimized via randomized
grid search, the SVM model yielded a training accuracy of
100% and a test accuracy of 94.4% (one misclassification
in the test set). The model’s ability to construct non-linear
decision boundaries through kernel functions enhanced
its discriminatory power, particularly in capturing subtle
variations between structurally similar forms. The ANN
model achieved a training accuracy of 100% and a test
accuracy of 94.4%, with one misclassification in the
test set. As a fully connected network, the ANN effectively
captured nonlinear relationships within the spectral data.
Although it lacks the spatial filtering capabilities of CNNs,

TABLE 2 (lassification accuracy (%) of training and testing datasets
for different Al models.

Accuracy (%)

Data set PCA-LDA SVM ANN 1D CNN 2D CNN
Training 97.2 100 100 100 100
Test 88.9 94.4 94.4 100 100

its performance was comparable to that of the SVM
model, underscoring the potential of neural networks to
learn global spectral patterns even from limited datasets.

The 1D and 2D CNN models achieved 100% accuracy
on both the training and test sets. The 2D CNN was
trained using preprocessed spectral images, while the 1D
CNN directly processed one-dimensional spectral vectors.
Techniques such as batch normalization, early stopping,
and Bayesian hyperparameter optimization were imple-
mented to enhance model generalization and prevent
overfitting. Both CNN architectures effectively captured
local patterns within the spectral data—spatial features in
2D images and sequential patterns in 1D vectors—
allowing for highly accurate discrimination among
omega-3 forms.

SHAP and Grad-CAM analyses were conducted to fur-
ther elucidate the basis for model decisions. In the PCA-
LDA model, SHAP analysis identified the chemical shift
region of 1.25-1.30 ppm (peak 4), corresponding to meth-
ylene protons of saturated fatty acids, as the most influen-
tial variable (Figure 3a). The presence of this feature,
particularly in TG samples, contributed significantly to the
classification. In the SVM model, the SHAP analysis simi-
larly highlighted peak 4 but also identified peak
2 (0.975 ppm), corresponding to the terminal proton of
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FIGURE 3 SHapley Additive exPlanations (SHAP) values indicating
feature importance for oil classification using NMR spectra with (a) PCA-
LDA, (b) SVM, and (c) ANN models. Only the top seven most influential
features are displayed, with longer bars representing greater
contributions to the model’s classification decisions.

omega-3 fatty acids, and peak 14 (5.380-5.385 ppm),
associated with olefinic protons of unsaturated fatty acids,
as key variables (Figure 3b). This broader distribution of
important features suggests that SVM captured more
complex structural differences among the forms. In the
ANN model, SHAP analysis highlighted the region
between 4.11 and 4.20 ppm, which includes peaks 11 and
12. Peak 11 corresponds to glycerol backbone protons,
characteristic of TG and rTG forms, while peak 12 corre-
sponds to OCH, protons from the ethyl ester group, spe-
cific to the EE form. These findings indicate that the ANN
model relied on subtle but structurally meaningful differ-
ences in this overlapping region to distinguish among the
three forms (Figure 3c).

A comprehensive interpretation of the spectral fea-
tures captured by the CNN models was obtained through
Grad-CAM analysis (Figure 4), which generates class acti-
vation maps by leveraging gradient information to high-
light the regions of the spectral image that the model

@)[ee

TG

L L

S

55 50 45 40 35 20 15 10
chemical sh|ft (ppm)

FIGURE 4 Grad-CAM results for (a) 1D and (b) 2D CNN models for
each omega-3 form. Red-colored regions indicate the most influential
spectral areas that contributed to the model’s classification decision.

focuses on during classification. Grad-CAM analysis of the
1D CNN revealed distinct activation patterns in chemically
meaningful spectral regions. For EE samples, strong acti-
vation was observed at 1.22-1.28 ppm (peak 3) and 4.09-
4.10 ppm (peak 12), corresponding to ethyl ester protons
that differentiate EE from the other forms. TG samples
showed activation primarily in the saturated fatty acid
methylene region (1.19-1.44 ppm), while rTG samples
exhibited activation at 0.95-1.01 ppm, 2.74-2.88 ppm,
and 5.28-5.45 ppm, reflecting features associated with
unsaturated fatty acids and re-esterified structures.

The 2D CNN model exhibited broader activation pat-
terns that included these critical regions as well as addi-
tional class-specific signals. In TG samples, prominent
activation was noted in the methyl and methylene regions
(0.81-1.44 ppm), along with other upfield aliphatic regions.
In the case of TG samples, the activation was
primarily concentrated in the glycerol backbone region
(4.06-4.33 ppm), corresponding to the sn-1,3 protons,
while additional attention was also distributed across
nearby regions related to the re-esterified configuration.
For EE samples, distinct activation was detected in the ter-
minal methyl region (0.93-1.01 ppm), the ethyl group
region (4.09-4.15 ppm), and the olefinic region (5.28-
5.45 ppm), indicating that the model identified multiple
chemically relevant signals unique to this form. These find-
ings, as revealed by Grad-CAM, demonstrate that the CNN
model did not rely on a limited set of localized spectral
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signals for classification, but instead captured class-specific
spectral signatures by integrating information from multi-
ple characteristic regions. This integrative pattern recogni-
tion likely contributed to the model’s high classification
accuracy across all omega-3 forms.

Comparison with previous studies further highlights
the strengths of the current approach. Amorim et al. dem-
onstrated omega-3 classification using 'H-NMR and multi-
variate analysis; however, their study focused on only two
forms (TG and EE), utilized a limited spectral region, and did
not provide interpretability regarding key signals."> Kim
et al. applied multivariate analyses based on lipid profiles
obtained by liquid chromatography with evaporative light
scattering detection (LC-ELSD) to authenticate rTG-type
omega-3 oils and detect adulteration with EE-type oils.
However, their approach was based on targeted composi-
tional analysis rather than direct spectroscopic fingerprint-
ing and primarily aimed at detecting adulteration rather
than comprehensive classification. In contrast, the current
study classified all three major omega-3 forms using full-
range 'H-NMR spectra and explainable Al techniques,
enabling both accurate and interpretable discrimination.

Despite the excellent classification performance of the
CNN models, the relatively small sample size (N = 90)
remains a key limitation. The classification task involved
three chemically distinct and well-separated omega-3
forms (TG, EE, rTG), with "H-NMR spectra exhibiting high
signal-to-noise ratios and informative structural features.
These factors likely facilitated robust model learning
despite the limited dataset. However, more complex
tasks—such as those involving mixtures, degradation
products, or overlapping spectral features—would require
a larger and more diverse dataset to ensure model
robustness and generalizability.

When working with small datasets, the application of
deep learning models such as CNNs necessitates careful val-
idation design to ensure generalizable performance. In this
study, a practical and resource-efficient strategy was
adopted, combining a shallow CNN architecture, Bayesian
hyperparameter optimization with internal validation, early
stopping, and evaluation using a fully independent test set
(see Tables S3 and S4). This approach enabled effective
model complexity control, guided tuning, and reliable per-
formance assessment without the computational burden of
repeated training cycles. Validation strategies should be
selected based on dataset size, model architecture, and
available computational resources to ensure credible results.

Model interpretability is also an essential consider-
ation. Grad-CAM was used to visualize class-specific acti-
vation patterns in the CNN, highlighting spectral regions
of chemical relevance. Although Grad-CAM provides
coarser interpretive resolution compared to feature-level
methods like SHAP, it confirmed that the CNN predictions
were grounded in chemically meaningful features. For the
present task, this level of interpretability may be suffi-
cient. However, in more complex or regulated settings,
additional or more advanced interpretability tools may be

required to ensure transparency and confidence in model
decisions.

Ultimately, model selection for spectroscopic analysis
should not be based solely on classification accuracy.
Other factors—such as data characteristics, model inter-
pretability, computational efficiency, and optimization
strategies—must also be considered. The approach pre-
sented here was designed to balance these elements
within practical constraints, offering a framework that is
both analytically robust and operationally feasible.

In summary, the integration of Al models with 'H-
NMR spectroscopy demonstrates considerable potential
for the rapid and accurate classification of omega-3 fatty
acid forms. Particularly, the application of CNN models to
spectral data provides a powerful tool for distinguishing
chemically similar species, offering new possibilities for
food authenticity verification and quality control in the
supplement industry.

CONCLUSION

In this study, Al techniques were applied to classify
omega-3 supplement forms based on 'H-NMR spectral
data. ML and DL models, including PCA-LDA, SVM, ANN,
1D CNN, and 2D CNN, were developed and evaluated.
Among the models tested, the CNN models demonstrated
the highest performance, achieving 100% accuracy for
both training and test sets. While the PCA-LDA model
yielded comparatively lower accuracy, the SVM and ANN
models also showed excellent performance, highlighting
the effectiveness of both kernel-based and neural network-
based approaches in spectral classification. SHAP and
Grad-CAM analyses were employed to enhance interpret-
ability. These explainability tools provided insight into the
spectral regions most relevant to classification decisions,
with Grad-CAM particularly highlighting the ability of the
CNN models to localize chemically meaningful features
across the full "TH-NMR spectrum.

The integration of Al-based models with 'H-NMR
spectroscopy offers a rapid, accurate, and interpretable
alternative to traditional spectral interpretation for
omega-3 classification. This approach holds considerable
promise for improving quality assurance, detecting adul-
teration, and verifying the authenticity of omega-3 sup-
plements and related food products.
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