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A B S T R A C T

Human actions are significant risk contributors in the probabilistic safety assessment of nuclear power plants. In 
the human reliability analysis (HRA), human failure events are typically treated as dependent events. Accord
ingly, various studies have been conducted for the dependency assessment in HRA. Performance shaping factors 
(PSFs), which influence human performance, are a key element in HRA. In conventional HRA models, PSFs are 
analyzed based on specific conditions affecting human performance. However, in reality, PSFs inherently involve 
randomness, and this uncertainty should be incorporated into the estimation of human error probabilities. This 
paper proposes a dependency assessment method that integrates the randomness of PSFs. A statistical framework 
is presented to explain the sources of dependency and to provide a calculation method based on PSFs. A case 
example is included to demonstrate the impact of such dependency. The proposed approach is particularly useful 
in situations where PSFs exhibit large variability.

1. Introduction

Human actions play a critical role in accident mitigation strategies in 
nuclear power plants. Human failure events (HFEs) are key inputs in the 
probabilistic safety assessment (PSA) models. Human reliability analysis 
(HRA) is conducted to identify HFEs and quantify human error proba
bilities (HEPs). In HRA, it is widely recognized that the HEPs are 
influenced by performance shaping factors (PSFs), such as operator 
experience, stress level, and man-machine interface. Among these, time 
is considered as one of the most significant factors in most HRA meth
odologies. For example, the Technique for Human Error Rate Prediction 
(THERP) estimates HEP during the diagnosis process as a function of the 
time available [1]. The Standardized Plant Analysis Risk Human Reli
ability Analysis (SPAR-H) method estimates HEP by combining a nom
inal HEP with various PSFs, including the time available [2]. A 
Technique for Human Error Analysis (ATHEANA) also requires evalua
tion of the time available for recovery actions [3].

Although time required for human action and the time available are 
considered important factors in the several HRA methodologies, both 
are inherently uncertain. This time uncertainty is influenced by various 
factors, including accident scenarios, plant conditions, and other oper
ational contexts. Due to this variability, it is necessary to analyze time 

uncertainties, which has traditionally been addressed through expert 
judgement for specific scenarios or conditions. Recently, alternative 
approaches have been proposed to more systematically incorporate time 
uncertainty into HEP estimation. In these methods, time is modeled as a 
random variable, and its uncertainty is represented by a probability 
distribution function. As a result, the full range of time variability is 
captured, and time directly influences success or failure of human ac
tions. For example, the Human Cognitive Reliability (HCR) correlation 
expresses the median response time as a function of influential factors 
[4]. Prasad and Gaikwad analyze probability density functions for the 
time required and time available to estimate HEP in the context of the 
HCR model [5]. Integrated Human Event Analysis System (IDHEAS) 
introduces HFEs based on time delays, accounting for uncertainties in 
both the time required and time available [6]. Y. Kim et al. estimate the 
HEP of timely performance using time variability derived from simula
tion records [7].

In most accident scenarios of nuclear power plants, multiple human 
actions are often required to mitigate the consequences. Since some 
influential factors affect several of these actions, it is generally assumed 
that dependencies exist among them. In this context, dependency 
assessment is used to analyze the dependencies between the human 
actions and incorporate those dependencies into the estimation of HEPs. 
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In conventional HRA, dependency levels are typically defined between 
HFEs and conditional HEPs are assigned based on the assessed de
pendency level [8]. When multiple human actions are influenced by the 
same PSFs—such as operator experience, stress level, and man-machine 
interface—dependencies naturally exist among those actions. However, 
such dependencies have not been adequately addressed in conventional 
HRA methods.

The objective of this paper is to propose a HRA method that evaluates 
dependencies on the times to human actions, as influenced by shared 
PSFs. The proposed method addresses dependencies caused by these 
common influential factors, which are not adequately considered in 
conventional HRA dependency assessments. It can be integrated with 
existing HRA approaches by modifying HEPs to reflect such de
pendencies. Section 2 provides a brief overview of conventional and 
time-based HRA models. In Section 3, key influential factors and their 
effects on HEPs are introduced, and a framework for representing these 
factors is developed. Section 4 presents the proposed dependency 
assessment and quantification methods. Section 5 includes a case study 
and a comparison of HEPs with and without the proposed dependency 
assessment. Conclusions are summarized in Section 6.

2. Time-dependency of human reliability

In HRA, one failure mode involves delayed action. A time-delayed 
HFE occurs when the time required to complete an action exceeds the 
time available. If it is clearly known that the available time will either be 
sufficient or insufficient, the event does not require probabilistic anal
ysis. However, because there is inherent uncertainty in both the time 
required and the time available, an HEP is assigned to the time-delayed 
HFE to reflect this uncertainty.

2.1. Conventional human reliability analysis

In conventional HRA models, human actions are identified in the 
event tree analysis. From the event tree, the characteristics or scenarios 
associated with an HFE—such as failure modes or environmental con
ditions—are determined. The branches in the event tree represent de
cision processes or sequential tasks. The HEPs are typically estimated 
using standard handbooks [1] or statistical inference. When statistical 
inference is applicable, the branch is analyzed as a binary event, and the 
probability is estimated from observed data. The statistical process used 
for binary data is a binomial process. Accordingly, the probability of a 
branch can be approximated using the maximum likelihood estimator 
for the binomial distribution. If the branch directly represents a human 
action, the nominal HEP for the action is given as follows: 

HEP=
Nf

Nr
(1) 

where Nr is the number of human actions required, and Nf is the number 
of observed failures among those actions.

2.2. Time-based human reliability analysis model

Recent studies have developed quantification models for time- 
delayed HFEs based on their formal definition. A common method is 
to define the HEP as the probability that the time required to complete a 
human action exceeds the time available, based on the uncertainty 
distributions of these two variables. 

HEP=Pr(Tr ≥Ta)=

∫∫

tr≥ta
fTr ,Ta (tr, ta)dtrdta (2) 

where Tr is the time required to perform a human action, Ta is the time 
available to perform the action, and f is the probability density function 
representing their uncertainty distributions.

In general, there exists a dependency between the time-related fac

tors. The time available for a human action depends not only on the 
accident scenario or plant conditions but also on the task completion 
time. This creates a dependency between the time required and the time 
available. Therefore, the integration and the associated probability 
distributions can be reformulated using the time required and the con
ditional distribution associated with the time available given the time 
required. 

HEP=

∫∫

tr≥ta
fTr (tr)fTa |Tr (ta)dtrdta =

∫ ∞

0
fTr (tr)FTa |Tr (tr)dtr (3) 

where F is a cumulative distribution function. The conditional proba
bility distribution of the time available is typically estimated using 
thermal-hydraulic analysis, simulation data, or engineering judgment.

The lognormal distribution is widely used to model time uncertainty 
across various scientific fields. In previous HRA studies, operator 
response time data have been fitted to lognormal distributions. For 
example, the Operator Reliability Experiments (ORE) employed a 
lognormal distribution to represent the time required for human actions 
[9]. Park et al. conducted goodness-of-fit tests on simulator data and 
concluded that the lognormal distribution is a representative model for 
the timing of most human actions [10]. A lognormal distribution is 
typically characterized by two parameters: the location and scale 
parameters. 

fTr (tr)=
1
̅̅̅̅̅̅
2π

√
σtr

e
−

1
2

(
ln tr − μ

σ

)2

(4) 

where μ is the location parameter and σ is the scale parameter. The 
location parameter represents the median value of the time required 
(T1/2 = eμ). The scale parameter corresponds to the standard deviation 
of the natural logarithm of the time required.

3. Performance shaping factor

3.1. Performance shaping factor on human error probability

There are various sources of variation that influence the time 
required to complete human actions and the associated uncertainty 
distribution. These sources are commonly referred to as PSFs. PSFs 
capture influences such as crew-to-crew variability, environmental 
conditions, organizational characteristics. Because PSFs can either 
improve or degrade operator performance, several HRA methods 
incorporate them into the HEP estimation process. In the conventional 
HRA models, PSFs are typically modeled as directly affecting the HEP. 
For example, THERP adjusts the nominal HEP by multiplying it with 
PSFs to estimate HEPs under various conditions. When there are N PSFs, 
the HEP estimated by THERP is 

HEP=HEPnominal⋅
∏N

i=1
PSFi (5) 

in SPAR-H, the nominal HEP is adjusted using several PSFs, with their 
values determined based on expert judgements. 

HEP=

HEPnominal⋅
∏N

i=1
PSFi

HEPnominal

(
∏N

i=1
PSFi − 1

)

+ 1
(6) 

On the other hand, in time-based HRA models, PSFs are incorporated 
into the time-related variables rather than directly into the HEP. For 
example, the HCR model integrates factors such as operator experience, 
stress level, and the man-machine interface into the median response 
time. When the time required is modeled using a lognormal distribution, 
the location parameter, which reflects the influence of PSFs can be 
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represented as follows: 

μ= μ0 + ln(1+ k1)+ ln(1+ k2) + ln(1+ k3) (7) 

where μ0 is nominal location parameter and k’s are defined PSFs, where 
k1 corresponds to operator experience, k2 to stress level, and k3 to the 
quality of the man-machine interface.

A conventional method for analyzing PSFs involves determining 
their levels and assigning corresponding point values. For example, in 
the HCR model, the PSF for operator experience is categorized as well- 
trained (− 0.22), average knowledge (0.00), and novice (0.44) [11].

The typical approach for evaluating the effects of PSFs is point esti
mation combined with sensitivity analysis. Specific factors related to a 
given nuclear power plant or accident scenarios are assessed and 
appropriate PSF values are assigned. HEPs under various conditions are 
then compared using these assigned PSF values to analyze the influence 
of PSFs and the resulting uncertainty in HEP estimates.

3.2. Uncertainty in performance shaping factor

However, uncertainty exists not only in the time required for human 
actions but also in the PSFs. This uncertainty arises from variability in 
plant conditions and differences in operator characteristics. For 
example, operator experience varies across crews (crew-to-crew vari
ability), and it is uncertain which crew will be in charge during an ac
cident. This type of uncertainty is not merely variability but rather 
randomness within the variability, and it should be integrated into HEPs 
used in PSA, similar to time uncertainties. To account for this uncer
tainty, the proposed dependency assessment method defines PSFs as 
random variables. Without loss of generality, the PSFs in the HCR 
approach are transformed to simplify mathematical formulation. 
Consequently, the location parameter of the time required is expressed 
as a linear combination of nominal location parameter and the trans
formed PSFs. 

μ= μ0 +
∑N

i=1
ln(1+ ki)= μ0 +

∑N

i=1
ln Xi (8) 

In this formulation, the transformed PSFs, denoted as Xi’s, are con
strained to be positive. When an Xi is less than one, the corresponding 
PSF has a degrading effect on performance; when an Xi is larger than 
one, it has an improving effect. A nominal condition, or a PSF with no 
effect, is represented when an Xi is equal to one.

It is assumed that each Xi follows a lognormal distribution charac
terized by a location parameter mi and a scale parameter s2

i . Further
more, it is recognized that dependencies may exist among the PSFs. For 
example, the SPAR-H method evaluates relative relationships among 
PSFs using categorical levels (low, medium. and high) [2], while J. Park 
et al. derived Pearson correlation coefficient among PSFs based on 
empirical data [12]. In this context, the vector of PSFs, X = [X1,⋯,Xn], 
can be modeled as following a multivariate lognormal distribution. 

X ∼ LN(m, S) (9) 

where the vector m = [m1,⋯,mN] represents the set of location param
eters, and S denotes the covariance matrix of the natural logarithms of 
the Xi values. The diagonal elements of S correspond to the scale pa
rameters, s2

i , representing the variances of ln Xi.
Since the sum of jointly normal random variables is also normally 

distributed, the product of lognormal random variables in Eq. (9) is 
another lognormal random variable. Consequently, the total effect of 
PSFs can be represented as a single lognormal random variable, with its 
location parameter equal to the sum of the individual location param
eters, and its variance determined by the sum of the relavant elements in 
the covariance matrix. 

X=
∏N

i=1
Xi ∼ LN

(

m=
∑N

i=1
mi, s2 =

∑N

i=1

∑N

j=1
Sij

)

(10) 

The uncertainty distribution for the time required, accounting for 
PSF uncertainty, can then be derived as a marginal distribution by 
integrating out the Xi variables. 

fTr (tr)=
∫

fTr (tr)fX(x)dx=
1

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

2π
(

σ2 +
∑N

i=1
s2
i

)√

tr

e

−
1
2

⎛

⎜
⎜
⎜
⎜
⎝

ln tr −

(

μ+
∑N

i=1
mi

)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

σ2+
∑N

i=1
s2
i

√

⎞

⎟
⎟
⎟
⎟
⎠

2

(11) 

The location parameters of the Xi variables influence the location 
parameter of the time required, while the scale parameters and corre
lations among Xi variables affect the scale of the time required distri
bution. Importantly, the uncertainty in the time required always 
increases due to the uncertainty introduced by the PSFs. Based on Eq. 
(11), the time required considering PSF effects can be represented as the 
product of the nominal time required and X, which reflects the combined 
effect of the PSFs. 

Tr =Tr0⋅X ∼ LN
(
μ0 +m, σ2 + s2) (12) 

where Tr0 is the nominal time required, i.e. the time required without 
considering PSF effects. Therefore, the time required can be represented 
as the product of independent lognormal random variables; the nominal 
time required and the combined PSF effects.

4. Dependency assessment framework

One of the pribary objectives of dependency assessment in HRA is to 
evaluate the dependency among human actions and reflect them in the 
estimation of HEPs. In conventional HRA methods, dependency assess
ment typically focuses on the effects of how the success or failure of a 
human action influences the HEPs of subsequent human actions. For 
example, if a preceding human action fails, the HEPs of subsequent ac
tions are increased. This form of dependency is incorporated into the 
HEPs using conditional probabilities.

However, in time-based HRA methods, the time required for each 
human action is usually modeled as an independent random variable, 
often based on expert judgement or empirical data such as simulator 
records. Even if human actions are independent under nominal condi
tions, certain influential factors may exert similar effects on the time 
required for each action. For example, accident mitigation tasks are 
typically performed by the same operator crew, and the characteristics 
of that crew—such as experience or stress level—can influence all the 
sequential tasks. If those characteristics degrade the performance in the 
first task, it is likely they will similarly affect the subsequent tasks, 
making them slower than in nominal conditions. This leads to a positive 
dependency among the times required for different actions. Therefore, 
the impact of dependency on the HEP should be appropriately 
quantified.

The proposed framework incorporates both the assumption of in
dependence among human actions and the dependency arising from 
shared PSFs. When the parameters of the time-required distribution are 
estimated from observed data, the PSF values are treated as known 
quantities, since they are observed and recorded alongside the time data 
during the estimation phase. However, during an actual accident sce
nario, the PSF values are not directly known due to inherent un
certainties in the PSFs.

As a result, in a given accident scenario, the times required for 
multiple human actions are influenced by—unknown but common—PSF 
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values. For example, as previously mentioned, an operator crew has 
specific characteristics that affect the task completion time, but it is 
uncertain which crew will be in charge during the event. This leads to 
shared but unknown PSF conditions across the sequence of actions, 
resulting in statistical dependency among the time-required distribu
tions for those actions.

Fig. 1 illustrates the relationships between the parameters in the 
empirical and future time required. The key distinction lies in whether 
the PSF values are known or not. In the case of empirical data, the PSF 
values are already observed and fixed. If the time required for human 
actions is independent under these known PSF conditions, then the 
future times required can be described as conditional independent given 
the PSFs. That is, while the times required may appear dependent 
overall, they are independent when conditioned on the shared PSF 
values.

When the times required are conditionally independent given the 
PSFs, the joint distribution of the times required—accounting for PSF 
uncertainty—can be derived by marginalizing over the PSFs. 

fTri ,Trj

(
tri , trj

)
=

∫

fTri ,Trj ,X

(
tri , trj , x

)
dx=

∫

fTri |X
(
tri

)
fTrj |X

(
tri

)
fX(x)dx (13) 

To derive the joint probability distribution of the times required, let 
us define the logarithm of the times required, conditioned the PSFs, as Yk 

for each human action k. 

Yk
⃒
⃒X= ln Trk

⃒
⃒X k=1,⋯,M (14) 

where X is the product of PSF effects and follows a lognormal distribu
tion with location parameter m and scale parameter s2. The uncondi
tional Yk’s can be represented as 

Yk = μ0k
+ ln X + ϵk ϵk ∼ N

(
0, σ2

k
)

(15) 

Then, a random vector Y = [Y1,⋯,YM]
T is 

Y =

⎡

⎣
Y1
⋮

YM

⎤

⎦=A

⎡

⎢
⎢
⎣

X
ϵ1
⋮

ϵM

⎤

⎥
⎥
⎦+

⎡

⎣
μ01
⋮

μ0M

⎤

⎦ where A=

⎡

⎢
⎢
⎣

1 1 0 ⋯ 0
1 0 1 ⋯ 0
⋮ ⋮ ⋯ ⋯ ⋮
1 0 ⋯ 0 1

⎤

⎥
⎥
⎦ (16) 

Since Y = [Y1,⋯,YM]
T is a linear combination of normal random 

variables, it follows a multivariate normal distribution. 

Y ∼ MVN

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

A

⎡

⎢
⎢
⎣

m
0
⋮
0

⎤

⎥
⎥
⎦+

⎡

⎣
μ01
⋮

μ0M

⎤

⎦,Σ = A

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

s2 0

0

⎛

⎜
⎜
⎜
⎝

σ2
1 0 0

0 ⋱ 0
0 0 σ2

M

⎞

⎟
⎟
⎟
⎠

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

AT

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(17) 

As a result, the unconditional times required follow a multivariate 
lognormal distribution. 

X= eY ∼ MLN

⎛

⎜
⎜
⎝A

⎡

⎢
⎢
⎣

m
0
⋮
0

⎤

⎥
⎥
⎦+

⎡

⎣
μ01
⋮

μ0M

⎤

⎦,Σ

⎞

⎟
⎟
⎠ (18) 

The statistical properties of a lognormal distribution are typically 
expressed in terms of the logarithms of the random variables, or vice 
versa. The covariance between the logarithms of the times required—
which represents the dependency among the times required—is given as 
follows: 

Cov
(

ln Tri , ln Trj

)
= ln

(
Cov

(
Tri ,Trj

)

E
[
Tri

]
E
[
Trj

] + 1

)

= s2 (19) 

5. A case study

A benchmark problem in HRA is presented to demonstrate the pro
posed method. Suh et al. developed an HRA methodology based on time 
uncertainty distributions for Level 2 PSA and applied it to an example 
accident scenario [13]. Level 2 PSA aims to demonstrate that a nuclear 
power plant can withstand severe accidents following core damage. Due 
to the significant uncertainties inherent in severe accident conditions, 
human actions play a more critical role in accident management. 
Moreover, the uncertainties in timing factors are greater in such sce
narios, making time an even more crucial factor in HRA.

The accident condition in the case study is a total loss of component 
cooling water (TLOCCW) combined with a loss of the secondary heat 
removal function. Under this condition, three sequential tasks are 
required based on the severe accident management guideline (SAMG) 
diagnosis flow chart. The operator must sequentially perform the 
following actions: injection into the steam generator (SAG-01), depres
surization of the reactor coolant system (SAG-02), and injection into the 
reactor coolant system (SAG-03). In many HRA methods, the time 
required is analyzed separately as the time for diagnosis and decision 
making, the time for action, and the time to verification. However, since 

Fig. 1. Directed acyclic graphs for the time required to human action.
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the process is performed sequentially, we consider the time required to 
perform each SAG task as a single random variable that integrates 
diagnosis, action and verification, without loss of generality. Table 1
presents the assumed statistical properties of the nominal time required 
for the SAG tasks. There are three types of cognitive procedurally (CP) 
driven actions, and their PWR sigma values are taken from the HCR/ 
ORE report [13]. The sigma values are directly assigned to the nominal 
time distributions for the respective SAG tasks. The expected values for 
the times required are assumed. Fig. 2 illustrates the uncertainty dis
tributions for the time required to complete the SAG tasks.

To demonstrate the proposed method, uncertainty distributions are 
assigned to PSFs. In this study, three PSFs from the HCR/ORE model are 
used, with the transformation Xi = 1+ ki. Table 2 presents the statistical 
properties of the Xi

ʹ s derived under the assumption that each level of 
PSF values in the HCR/ORE model is equally likely. Based on this 
assumption, the expected values and variances of the original PSF values 
in the HCR/ORE model are used to estimate the uncertainty distribution 
of the transformed PSFs. Table 3 shows correlation coefficients among 
the PSFs, as presented in Ref. [11]. Using these values, the covariance 
matrix of the logarithms of the Xi

ʹ s is constructed, based on their ex
pected values and variances, in accordance with Eq. (19). 

S=

⎡

⎣
0.0935 0.0334 0.0453
0.0334 0.0786 0.0128
0.0453 0.0128 0.1180

⎤

⎦ (20) 

Fig. 3 shows the uncertainty distributions of the Xi
ʹ s. In this paper, it 

is assumed that all the PSFs influence all the times required. Accord
ingly, the parameters of the joint distribution for the times requir
ed—considering the PSFs—can be derived using Eqs. (12) and (16). 

μ= [4.6638 4.1046 4.1949 ] (21) 

Σ=

⎡

⎣
1.3462 0.7629 0.7629
0.7629 1.0782 0.7629
0.7629 0.7629 0.8977

⎤

⎦ (22) 

in this case, the covariances between the logarithms of the times 
required are identical. However, the covariance values will differ when 
multiple human actions are influenced by different combinations of 
PSFs.

The operator must perform all the required tasks to manage the ac
cident conditions. Therefore, the HEP is calculated based on the total 
time required for all the human actions. Since the individual times 
required follow lognormal distributions and are correlated, the total 
time required is the sum of correlated lognormal distributions. However, 
even for independent random variables, there is no closed-form 
expression for the sum of lognormal distributions. Song and Kim pro
posed a method to calculate the probability density function of the sum 
of correlated lognormal random variables using Monte Carlo integration 
[14]. Accordingly, in this paper, the probability density function for the 
total time required is calculated using the Monte Carlo integration 
method.

To estimate the HEP in this context, the uncertainty distribution for 
the time available is also required. In the benchmark problem, the un
certainty in the time available is analyzed as a conditional probability 
estimated via thermal-hydraulic analysis. The failure condition is 
defined as reactor vessel failure. The conditional probability of reactor 
vessel failure, given the time required to complete all the human actions, 

Table 1 
Statistical properties of the nominal time required for the SAGs (minutes).

SAG-01 SAG-02 SAG-03

E[Tr] 100 50 50
Var(Tr) 8092 960 388
μ 4.3087 3.7496 3.8398
σ 0.77 0.57 0.38

Fig. 2. Uncertainty distribution for the time required for the SAGs.

Table 2 
Statistical properties of the transformed PSFs.

X1 (Operator 
experience)

X2 (Stress 
level)

X3 (Man-Machine 
interface)

E[Xi] 1.0733 1.1100 1.3840
Var(Xi) 0.1129 0.1007 0.2399
μ 0.0240 0.0651 0.2660
σ 0.3058 0.2803 0.3435

Table 3 
Correlation coefficients of the transformed PSFs [11].

X1 (Operator experience) X2 (Stress level) X3 (Man-Machine interface)

X1 1 0.3790 0.4180
X2 0.3790 1 0.1270
X3 0.4180 0.1270 1

Fig. 3. Uncertainty distribution for the transformed PSFs.
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is defined as follows: 

FTa |Tr (tr)=

⎧
⎨

⎩

0

0.0337⋅e0.0114⋅tr

1

for tr ≤ 30

for 30 < tr ≤ 300

for tr ≥ 300

(23) 

When all the human actions are completed within 30 min, reactor 
vessel failure does not occur. Conversely, if the time to complete all the 
human actions exceeds 300 min, reactor vessel failure always occur. 
Fig. 4 shows the uncertainty distributions for the total time required 
with and without considering the dependency between the times 
required, as well as the conditional failure probability given the total 
time required. Due to the positive dependency among the times 
required, the total time required distribution with dependency exhibits 
greater variability compared to that without dependency. Since the total 
time distribution is right-skewed, the increase in variance reduces cen
tral tendency but increases the probability density in the tails of the 
distribution.

Based on the conditional failure probability, the HEPs are quantified 
with and without considering dependency. When dependency is 
considered, the HEP is calculated as 0.5753, whereas the HEP without 
dependency is 0.6691. Fig. 5 shows the integrand—defined as the 
products of the total times required and conditional failure proba
bility—as well as its cumulative integral from zero to the total times 
required. Although the HEP without dependency yields a more conser
vative result in this case, HEP depends on both the uncertainty distri
butions for the total time required and the time available. In this case 
study, the conditional failure probability increases sharply around the 
central tendency of the total time required distribution without de
pendency. However, in other scenarios, the conditional failure proba
bility may increase significantly in regions far from the central tendency 
of distribution, where the distribution with dependency has higher 
probability density. In such cases, neglecting dependency can lead to 
underestimation of the actual HEP.

6. Discussions

The proposed method is intended to address sequential human ac
tions. However, when multiple human actions are performed simulta
neously, HEPs can still be estimated using alternative definitions for the 
total time required—such as the maximum of the individual time
s—provided the human actions are conditionally independent.

The sequential human actions that the proposed method focuses on 

are relevant to both Level 1 and Level 2 HRA. Although the case study 
benchmarks human actions from the SAMG, the proposed method is also 
applicable to sequential actions considered in Level 1 HRA—such as 
feed-and-bleed operations followed by failure in secondary heat 
removal.

The proposed method can account for varying levels of uncertainty 
associated with each factor by assigning a probability density function 
with a specific mean and variance to each factor. A factor with a greater 
influence is represented by a distribution with a larger mean. If two 
factors have the same mean but differ in the level of uncertainty, the one 
with greater uncertainty is modeled with a larger variance.

Epistemic uncertainties in the model parameters for time required 
and PSFs may arise due to limited data. In a Bayesian framework, these 
epistemic uncertainties can be characterized using Bayes’ theorem, and 
subsequently propagated through the HEP formulation using Monte 
Carlo simulation.

The proposed method primarily focuses on the effect of PSFs on the 
time-required of sequential human actions. It needs to be further 
developed to include human actions that might be performed in parallel. 
Also, the proposed method is unable to include the failure mode of 
performing incorrect actions such as pushing a wrong button. A new 
approach needs to be developed to address this failure mode.

7. Conclusion

Human actions are significant risk contributors in the PSA of nuclear 
power plants. While most failures in PSA are treated as independent 
events, HFEs are typically considered dependent due to the influence of 
various PSFs. As a result, HRA requires dependency assessment, and this 
dependency must be integrated into HEP estimates. In conventional 
methods, HEPs are estimated under specific conditions, where the PSFs 
are treated as point values. However, during accident mitigation, there 
is inherent randomness in these influential conditions.

The objective of this study is to propose a dependency assessment 
method based on PSFs. Unlike conventional methods, this approach 
treats PSFs as random variables to reflect their variability. Using this 
randomness, dependencies between human performances are derived 
through conditional independence. The dependency is quantified when 
the time required and the PSFs follow lognormal distributions. The 
impact of this dependency is demonstrated using a case study involving 
TLOCCW with loss of secondary heat removal. Due to positive correla
tions among PSFs, the resulting uncertainty distribution for the time 
required shows increased variability. While this increased variability 
reduces the HEP in the example case, it could increase HEPs in other 
scenarios, depending on the uncertainty of the time available.

Overall, the proposed method offers a framework for incorporating 
the variability and correlation of influential factors into HRA, thereby 
improving the realism and consistency of dependency assessments. The 
proposed method is expected to contribute to HRA frameworks, 
particularly in situations where there is significant variability in influ
ential conditions.
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