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Abstract
Background  Deep learning has significantly advanced medical image analysis, particularly in semantic 
segmentation, which is essential for clinical decisions. However, existing 3D segmentation models, like the traditional 
3D UNet, face challenges in balancing computational efficiency and accuracy when processing volumetric medical 
data. This study aims to develop an improved architecture for 3D medical image segmentation with enhanced 
learning strategies to improve accuracy and address challenges related to limited training data.

Methods  We propose ES-UNet, a 3D segmentation architecture that achieves superior segmentation performance 
while offering competitive efficiency across multiple computational metrics, including memory usage, inference time, 
and parameter count. The model builds upon the full-scale skip connection design of UNet3+ by integrating channel 
attention modules into each encoder-to-decoder path and incorporating full-scale deep supervision to enhance 
multi-resolution feature learning. We further introduce Region Specific Scaling (RSS), a data augmentation method 
that adaptively applies geometric transformations to annotated regions, and a Dynamically Weighted Dice (DWD) loss 
to improve the balance between precision and recall. The model was evaluated on the MICCAI HECKTOR dataset, and 
additional validation was conducted on selected tasks from the Medical Segmentation Decathlon (MSD).

Results  On the HECKTOR dataset, ES-UNet achieved a Dice Similarity Coefficient (DSC) of 76.87%, outperforming 
baseline models including 3D UNet, 3D UNet 3+, nnUNet, and Swin UNETR. Ablation studies showed that RSS and 
DWD contributed up to 1.22% and 1.06% improvement in DSC, respectively. A sensitivity analysis demonstrated 
that the chosen scaling range in RSS offered a favorable trade-off between deformation and anatomical plausibility. 
Cross-dataset evaluation on MSD Heart and Spleen tasks also indicated strong generalization. Computational analysis 
revealed that ES-UNet achieves superior segmentation performance with moderate computational demands. 
Specifically, the enhanced skip connection design with lightweight channel attention modules integrated throughout 
the network architecture enables this favorable balance between high segmentation accuracy and computational 
efficiency.

ES-UNet: efficient 3D medical image 
segmentation with enhanced skip 
connections in 3D UNet
Minyoung Park1, Seungtaek Oh1, Junyoung Park1, Taikyeong Jeong2* and Sungwook Yu1*

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1186/s12880-025-01857-0
http://crossmark.crossref.org/dialog/?doi=10.1186/s12880-025-01857-0&domain=pdf&date_stamp=2025-8-29


Page 2 of 23Park et al. BMC Medical Imaging          (2025) 25:327 

Background
In recent years, artificial intelligence (AI) has shown 
tremendous potential in revolutionizing various fields, 
including the medical industry. Specifically, medical 
image analysis has benefited greatly from advances in 
deep learning techniques, enabling automated, accu-
rate, and efficient clinical decision-making Cireşan et al. 
[1], Ronneberger et al. [2], Shin et al. [3], Marullo et al. 
[4]. Among these advancements, medical image analysis 
plays a critical role in delineating anatomical structures 
or pathological regions, significantly aiding in lesion 
detection Yan et al. [5], Sherif et al. [6], cancer diagnosis 
Esteva et al. [7], Wu et al. [8], Zhang et al. [9], and sur-
gical planning Twinanda et al. [10], Czempiel et al. [11], 
Park et al. [12, 13].

In particular, deep learning-based semantic segmenta-
tion algorithms have demonstrated remarkable success in 
various clinical applications, including lesion detection, 
cancer diagnosis, and treatment planning Loussaief et al. 
[14]. The most popular semantic segmentation network 
is UNet Ronneberger et al. [2], which is a fully convolu-
tional neural network (CNN) that consists of a contract-
ing path and an expanding path. The contracting path 
down-samples the input image to capture high-level fea-
tures and produce the feature maps, whereas the expand-
ing path up-samples the feature maps to produce the final 
segmentation map. By using the skip connections, UNet 
effectively captures fine details and small structures in an 
input image for accurate segmentation.

Given the success of UNet in medical image segmen-
tation, various extensions have been proposed to fur-
ther enhance its capabilities. The V-Net Milletari et 
al. [15] has a structure similar to UNet, as both use an 
encoder-decoder architecture with skip connections. 
However, V-Net incorporates additional residual con-
nections within each block to improve the flow of infor-
mation between layers, enhancing learning stability in 
deeper networks. The UNet++ Zhou et al. [16] aims to 
address some of the limitations of the original UNet 
architecture by introducing a nested U-shaped network 
structure with multiple skip paths at different scales. 
This allows the network to capture multi-scale features 
and improves segmentation performance compared to 
the original UNet. The UNet 3+ Huang et al. [17] fur-
ther improves the multi-scale feature representation of 
UNet++ by introducing dense skip connections that con-
nect all levels of the network. In UNet 3+, the contracting 

and expanding paths are connected by a dense block, 
enabling the network to capture fine-grained features 
and facilitating more efficient feature reuse. Additionally, 
UNet 3+ includes a feature gating mechanism that allows 
the network to selectively focus on important features.

Recent transformer-based architectures have also 
shown promising results in medical image segmentation 
Wu et al. [18]. Hatamizadeh et al. [19] proposed Swin 
UNETR, which utilizes a hierarchical Swin transformer 
as the encoder in a U-shaped network for brain tumor 
segmentation. Their approach reformulates 3D segmen-
tation as a sequence-to-sequence prediction problem 
and leverages shifted windows for efficient self-attention 
computation, demonstrating that transformer-based 
architectures can effectively capture long-range depen-
dencies critical for segmenting tumors with variable 
shapes and sizes. In contrast to complex architectural 
modifications, Isensee et al. [20] introduced nnUNet, a 
self-adapting framework based on vanilla U-Net archi-
tectures that automatically configures preprocessing, 
network topologies, training, and inference for different 
medical segmentation tasks. Their work emphasizes that 
careful optimization of non-architectural components 
can often yield better performance than sophisticated 
architectural innovations, as demonstrated by their top-
ranking results across diverse datasets in the Medical 
Segmentation Decathlon challenge.

Despite these advancements, medical images, such 
as computed tomography (CT) or magnetic resonance 
imaging (MRI), are typically acquired as 3D volumetric 
data, and the methods for processing 2D data ignore the 
spatial correlations between adjacent slices, potentially 
leading to suboptimal results. Therefore, performing 3D 
segmentation to leverage the spatial correlations between 
adjacent slices is crucial for further enhancing accuracy 
by capturing the full volumetric context of the data. 
Leveraging spatial continuity between slices, 3D segmen-
tation improves accuracy by utilizing volumetric struc-
tural information. As a result, it is important to develop 
efficient 3D semantic segmentation architectures, which 
can provide more accurate, consistent, and detailed 
information about anatomical structures.

Numerous 3D semantic segmentation algorithms have 
been developed to directly process volumetric data Hat-
amizadeh et al. [21], Yoo et al. [22]. For example, early 
models like 3D UNet Ҫiçek et al. [23] demonstrated this 
potential by building upon the structure of the original 

Conclusion  ES-UNet integrates architectural and algorithmic improvements to achieve robust 3D medical image 
segmentation. While the framework incorporates established components, its core contributions lie in the optimized 
skip connection strategy and supporting techniques like RSS and DWD. Future work will explore adaptive scaling 
strategies and broader validation across diverse imaging modalities.
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2D UNet Ronneberger et al. [2] and extending its 2D 
operations into 3D, enabling it to handle 3D medical 
images directly. Despite this, their substantial computa-
tional demands limited their practical application. Stud-
ies like Zhou et al. [16], Huang et al. [17] have extended 
UNet with additional skip paths, but applying these to 3D 
models poses significant computational challenges due to 
the volumetric nature of 3D data and increased memory 
demands. In particular, UNet++ introduces additional 
structures between skip paths, and UNet 3+ increases 
the number of skip paths significantly, which can cause 
severe memory efficiency issues when extending these 
architectures from 2D to 3D. To address these challenges, 
efficient skip connection designs that reduce memory 
consumption while incorporating channel attention 
mechanisms Hu et al. [24] to enhance feature representa-
tion have become crucial for practical 3D medical image 
segmentation.

However, optimizing model architecture alone is not 
sufficient to overcome all challenges in medical imaging. 
The availability of large-scale, annotated datasets remains 
a major obstacle due to privacy concerns, the high cost of 
expert annotations, and the difficulty of acquiring medi-
cal data. This scarcity hinders the training of deep learn-
ing models, which typically require vast amounts of data 
to generalize well. Traditional geometric transformations 
such as rotation, flipping, and scaling have been widely 
used in medical image segmentation. However, these 
conventional augmentation methods often fail to intro-
duce sufficient variability to capture the diverse anatomi-
cal variations present in clinical practice. Consequently, 
there is a need for data augmentation methods tailored 
to the unique characteristics of medical images, ensuring 
the integrity of anatomical structures while introducing 
meaningful variability.

In addition to data augmentation considerations, loss 
function design plays a critical role in medical image 
segmentation performance. Traditional loss functions 
such as cross-entropy loss and Dice loss employ fixed 
weighting schemes that may not adequately address the 
dynamic precision-recall trade-offs encountered during 
training. In medical image segmentation, class imbal-
ance is prevalent, with target structures often occupy-
ing a small fraction of the total volume. The Dice loss, 
while popular for its ability to handle class imbalance, 
treats precision and recall equally throughout training, 
which may not be optimal when the model’s performance 
characteristics evolve during the learning process. Static 
weighting approaches fail to adapt to the changing needs 
of the model as it learns to balance between avoiding false 
positives and false negatives. This limitation becomes 
particularly pronounced in complex medical segmenta-
tion tasks where the optimal precision-recall balance may 

vary depending on the specific anatomical structures and 
clinical requirements.

To address these limitations, this paper presents ES-
UNet, a novel 3D semantic segmentation architecture 
that adapts key concepts from 2D UNet variants to the 
3D domain, with a focus on constructing efficient skip 
paths to enhance feature extraction. The proposed ES-
UNet performs true volumetric 3D semantic segmenta-
tion, where all modules operate on full 3D image volumes 
rather than 2D slices, allowing the network to capture 
complete spatial context across all dimensions simulta-
neously. ES-UNet provides full-scale feature map infor-
mation to all decoder blocks, supporting full-scale deep 
supervision and ensuring balanced predictions across all 
scales. Our architecture leverages enhanced full-scale 
skip connections with integrated channel attention mod-
ules on each encoder-to-decoder path to optimize feature 
representation. This design allows ES-UNet to effectively 
capture the most relevant features across volumetric 
data, achieving an optimized balance between computa-
tional requirements and segmentation accuracy.

Additionally, we introduce a new data augmentation 
method called Region Specific Scaling (RSS), designed 
to address the limitations of traditional augmentation 
methods in medical imaging. RSS selectively scales tar-
get regions within 3D medical images—either enlarging 
or reducing them along the height, width, and/or depth 
axes—while preserving anatomical integrity. By introduc-
ing meaningful variations in the size of anatomical fea-
tures without distorting critical structures or introducing 
artifacts, RSS enhances data diversity and improves the 
model’s ability to generalize without overfitting.

Finally, we introduce a Dynamically Weighted Dice 
(DWD) loss function that adaptively balances precision 
and recall during training as detailed in Sect. DWD loss. 
Unlike traditional static weighting approaches, DWD 
dynamically adjusts the influence of precision and recall 
components based on the model’s current performance 
characteristics, ensuring a balanced approach to segmen-
tation accuracy by minimizing both false positives and 
false negatives.

Through the combination of the ES-UNet architecture, 
the RSS augmentation method, and the DWD loss func-
tion, our approach significantly improves segmentation 
performance over existing methods. We achieved sig-
nificantly better results compared to existing methods 
on the MICCAI Head and Neck Tumor Segmentation 
(HECKTOR) dataset Andrearczyk et al. [25], as detailed 
in Sect. Results. The proposed method also demonstrates 
a practical balance between accuracy and resource usage, 
with competitive inference speed and memory efficiency 
observed in computational comparisons. This method is 
versatile and can be easily adapted to other 3D image seg-
mentation tasks.
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Methods
ES-UNet architecture
In the architecture of UNet, the deeper layers in the 
network will be referred to as “high-level” layers, where 
the network learns abstract, high-dimensional features. 
These layers lie further away from the input, possessing 
a larger receptive field, which allows them to capture the 
overall context and structure of the image. On the other 
hand, the “low-level” layers, located closer to the input, 
focus on capturing fine details and basic structural fea-
tures like edges and textures. The low-level layers are 
crucial for capturing fine-grained details, whereas the 
high-level layers provide a broader understanding of the 
image content. Figure 1 illustrates the overall structures 
of the UNet variants.

In UNet, each decoder layer can only utilize the seman-
tic information provided by skip connections at the same 
level, leading the network to overly rely on features from 
identical resolutions. UNet++ enhances the standard 
UNet by incorporating additional convolutional blocks 
within its nested skip connections, which enable multi-
scale feature extraction and better capture of fine details. 
UNet 3+ builds upon UNet++ by adding dense skip con-
nections that connect all levels of the network, ensuring 
comprehensive feature aggregation across different reso-
lutions. However, while full-scale skip connections pro-
vide rich multi-scale information, they also present needs 
for optimizing skip connection paths in order to bal-
ance memory usage and feature fidelity. Without careful 
refinement, naive concatenation of features at every scale 
can cause redundant processing and unnecessary over-
head, especially on high-resolution or large 3D volumes.

To effectively handle 3D medical image data, we built 
upon the UNet3+ architecture and incorporated an 
auxiliary network inspired by UNet++ (nested U-Net), 
implementing those additional paths as lightweight chan-
nel attention blocks. Specifically, we enhanced UNet3+’s 
full-scale skip connection pattern by replacing the nested 
convolutional modules of UNet++ with channel attention 

modules on each encoder-to-decoder path. This design 
enables efficient multi-scale feature fusion without rely-
ing on nested blocks or excessive resolution-specific 
skip connections. By inserting a channel attention mod-
ule on every encoder-to-decoder skip path, we maintain 
UNet3+’s intended information flow while avoiding the 
large memory overhead associated with nested U-Net 
structures. We also applied deep supervision modules 
Lee et al. [26] by extending the original 2D UNet3+ 
scheme to our 3D decoder stages. Together, these choices 
allow ES-UNet to achieve accurate 3D segmentation with 
competitive memory usage and training efficiency.

Figure 2 shows the schematic structure of ES-UNet. 
Details about the structure of each layer will be discussed 
in following sections.

Encoder
The encoder of ES-UNet consists of N = 4 encoder 
blocks. The layout of each encoder block is depicted in 
Fig. 3. Except for the first block, each encoder block in 
Fig. 2 reduces the resolution of the features from the pre-
vious block by half using a max pooling layer with a stride 
of 2. Each block includes two convolution layers with a 
kernel size of 3 × 3 × 3, followed by batch normalization 
Ioffe and Szegedy [27] and ReLU activation Nair and Hin-
ton [28] in sequence. The two values A and B inside Conv 
3 × 3 × 3 (A, B) represent the numbers of input and out-
put channels, respectively.

The channels of each encoder block are expressed 
as Ce, where C

(i)
e  represents the channels of the i-th 

level encoder block. The input channels of the ES-UNet 
encoder are defined as C

(0)
e . When both PET and CT 

images are used, C
(0)
e = 2, whereas C

(0)
e = 1 if only 

one modality is used. The input image has dimensions 
of RC

(0)
e ×D×H×W , where D, H  and W  represent the 

depth, height and width of the input image. It should be 
noted that the depth, height, and width dimensions are 
halved during the down-sampling operation while the 
number of channels increases. However, this dimension 

Fig. 1  The overall structures of (a) UNet, (b) UNet++, and (c) UNet 3+
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reduction does not occur in the first encoder block, as 
it lacks a down-sampling operation. For example, if the 
output feature map of the first encoder block has dimen-
sions of RC

(1)
e ×D×H×W , the output feature maps of 

the second, third, and fourth encoder blocks become 
RC

(2)
e × D

2 × H
2 × W

2 , RC
(3)
e × D

4 × H
4 × W

4 , and RC
(4)
e × D

8 × H
8 × W

8 , 
respectively. In our case, C(4)

e  equals 8 · C
(1)
e , meaning the 

output feature map of the ES-UNet encoder will have 
dimensions of R8·C(1)

e × D
8 × H

8 × W
8 .

We built ES-UNet on the UNet3+ backbone, which 
already employs full-scale skip connections. Drawing 
inspiration from UNet++’s nested concatenation design, 
we aimed to enhance each skip path by adding light-
weight refinement modules. However, directly inserting 
extra convolutions or complex blocks into every skip con-
nection would have imposed a significant computational 
burden. To address this, we adopted a channel attention 
module from Squeeze and Excitation Networks (SENets) 
Hu et al. [24] and applied it only on the encoder-to-
decoder skip paths rather than between encoder blocks. 
In this setup, the reduction ratio for all channel attention 
layers was uniformly set to 0.25, following the original 
SENet design. By doing so, we improve feature integra-
tion along the skip connections while keeping the overall 
complexity of the network manageable.

Decoder
The decoder of ES-UNet is also composed of a total of 
N = 4 decoder blocks similar to the encoder. In the 
decoder blocks, different methods are applied to pro-
cess data based on the level from which the input feature 
maps originate. Figure 4 shows the proposed structure of 
the decoder block. The colors of the paths in Fig. 4 follow 
and correspond to the colors of the respective paths in 
Fig. 3, ensuring consistency in visual representation.

In the figure, Li represents the level of the encoder/
decoder that produces the current decoder’s input feature 
map, while Lj  represents the level of the current decoder. 
In a generic encoder–decoder architecture, there are 
three possible ways to connect an encoder feature map 
at level Li to a decoder block at level Lj : (1) Li < Lj , 
i.e., routing a higher-resolution feature down to a lower-
resolution decoder; (2) Li = Lj , i.e., the same-level skip 
connection; (3) Li > Lj , i.e., routing a lower-resolution 

Fig. 3  The structure of the proposed encoder block

 

Fig. 2  Block diagram of the proposed ES-UNet architecture

 



Page 6 of 23Park et al. BMC Medical Imaging          (2025) 25:327 

encoder output up to a higher-resolution decoder. 
UNet3+ implements “full-scale” skip connections by cov-
ering cases (1) and (2) for all i, j such that i ≤ j, while 
it does not include direct connections for i > j. In ES-
UNet, we follow the same full-scale design (i.e., we keep 
all i ≤ j connections), but we replace UNet++’s nested 
convolutional blocks with lightweight channel attention 
modules on each encoder-to-decoder path.

First, we examine the scenario in which the output 
from the encoder block is directed to a higher level in the 
decoder, which occurs when Li < Lj . The output fea-
ture map from the encoder block is first passed through 
a channel attention layer and then down-sampled to the 
appropriate resolution for the decoder level with a max 
pooling layer. It then undergoes a 3 × 3 × 3 convolution 
layer to adjust the number of channels to C , which is a 
value set for each level in the decoder, ensuring that all 
levels are weighted equally during the processing. As 
with the encoder, all convolution layers in the decoder 
(excluding transposed convolution layers) are followed by 
Batch Normalization and ReLU activation in sequence.

The other scenario in the encoder-to-decoder path 
occurs when the encoder level and decoder level are the 
same, Li = Lj . In this case, the output from the encoder 
block, after passing through a channel attention layer, is 

processed through two 3 × 3 × 3 convolution layers and 
one 1 × 1 × 1 convolution layer to produce feature maps 
with C  channels.

Subsequently, we examine the scenarios in which data 
flows between different decoder blocks, where two dis-
tinct cases arise. The first scenario involves the typical 
up-sampling path found in decoders, where only one 
level is reduced, as when Li equals Lj + 1. In this case, 
up-sampling is performed using a 2 × 2 × 2 transposed 
convolution with a stride of 2, followed by a 3 × 3 × 3 
convolution layer to adjust the channels to C . In the sec-
ond scenario, where Li is greater than Lj + 1, up-sam-
pling is carried out using a trilinear interpolation layer 
instead of a transposed convolution, to match the reso-
lution required for the corresponding decoder level. The 
output channels are adjusted to C  through a 3 × 3 × 3 
convolution layer.

Each decoder block then gathers the feature maps from 
the corresponding level’s paths and concatenates them. 
After concatenation, the feature maps are passed through 
a 3 × 3 × 3 convolution layer to process multi-level infor-
mation. Since each decoder block is connected to N  
paths, the input channels for the convolution layer after 
concatenation become NC . To maintain consistency in 

Fig. 4  The structure of the proposed decoder block
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the model size across all deep supervision networks, the 
output channels are also standardized to NC .

Unlike our baseline 3D UNet3+ implementation, which 
relies solely on parameter-free trilinear interpolation for 
upsampling inside the decoder, ES-UNet uses learnable 
transposed convolution layers for upsampling between 
neighboring decoder stages. By using transposed convo-
lution layers, the network learns upsampling filters that 
better recover fine structural details and object bound-
aries—improvements that static trilinear interpolation 
cannot achieve. Although learnable transposed convolu-
tion layers introduce additional parameters and increase 
computational cost, the gain in boundary accuracy and 
small-structure segmentation generally outweighs this 
overhead, particularly since we have reduced complexity 
in other parts of the network.

Auxiliary network for deep supervision
To facilitate deep supervision within the ES-UNet archi-
tecture, we integrate auxiliary networks directly after 
each decoder layer, as illustrated in Fig. 5. These auxiliary 
networks are designed to enhance the learning process 
by providing additional gradient signals during training, 
thus reinforcing the feature extraction capabilities at each 
decoding stage.

Each auxiliary network is composed of a series of oper-
ations: a 1 × 1 × 1 convolution layer that condenses the 
feature maps, followed by a trilinear interpolation up-
sampling layer, which scales the features up to the resolu-
tion of the original input image. The scaling factor for the 
up-sampling layer is set to 2Lj−1 ensuring that the out-
put resolution precisely matches that of the initial input, 
thereby preserving spatial coherence across all levels of 
the network. The final operation within these auxiliary 
networks is a sigmoid activation function, which refines 
the feature maps into probability maps, suitable for the 
final segmentation tasks.

Upon completion of the deep supervision process, the 
outputs from each auxiliary network are combined to 
generate the final prediction. This is accomplished by 
calculating the equally weighted arithmetic mean of the 
outputs from all deep supervision networks. This averag-
ing method not only ensures that the contributions from 
all levels of the decoder are harmoniously integrated but 
also enhances the robustness and accuracy of the seg-
mentation results. By leveraging deep supervision in 
this manner, the ES-UNet architecture is able to achieve 
superior performance, particularly in scenarios that 
demand precise, multi-scale feature integration.

Region specific scaling
As is well known, it is not easy to obtain training data in 
the field of medical imaging, especially in the field of 3D 
image applications. To solve this problem, we propose a 
new data augmentation method, Region Specific Scal-
ing (RSS). The proposed RSS method either increases 
or reduces the target region in the direction of height, 
width, and/or depth.

In medical imaging, particularly in CT scans, the 
human body is typically visualized in three main planes: 
axial, sagittal, and coronal. An axial image represents a 
horizontal slice of the body, taken parallel to the ground, 
and is commonly viewed from the top down, as if look-
ing at the body from above. This plane provides a cross-
sectional view, showing structures from head to toe. A 
sagittal image represents a vertical slice from side to side, 
giving a profile view of the body. A coronal image shows a 
vertical slice from front to back, offering a view as if look-
ing directly at the person from the front.

To aid in understanding how our approach operates, 
we will explain the method in detail using two specific 
cases. The first case involves down-scaling along the 
height direction in an axial image, while the second case 
involves up-scaling along the same direction. Figure 6 
shows an example of the first case where the target region 
of a sample image is reduced in the direction of height.

Figure 6a shows an axial image (i.e., a slice taken along 
the depth axis) from a CT scan. The proposed RSS 
method scales this input image in the direction of height 
as follows. First, the RSS method identifies the minimum 
and maximum heights of the target label area, which is 
shown in red color in Fig. 6a. That is, the RSS method 
identifies the range of the labeled region by finding the 
maximum and minimum y-indices of all voxels with a 
non-zero label value (i.e., label = 1). These minimum 
and maximum values define the boundaries of the target 
region for scaling operations along that particular axis. 
Importantly, this process is performed across all slices of 
the 3D volume to ensure that the entire labeled structure 
is captured within the target region. The global minimum 
and maximum coordinates from all slices are used to Fig. 5  The structure of the j-th auxiliary network for deep supervision
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define the comprehensive target area boundaries, rather 
than processing each slice individually. By using these 
values, the RSS method divides the original input image 
into 3 parts, as shown in Fig. 6b. Then, both the upper 
and lower rectangle areas in Fig. 6b are removed tem-
porarily, as shown in Fig. 6c. The remaining region (i.e., 
the middle region in Fig. 6b) is scaled using an arbitrary 
ratio r in the range of [r1, 1], as shown in Fig. 6d. The 
value of r1 is set to 2/3 so that it can introduce sufficient 
variability without distorting anatomical structures in a 
way that would impede the model’s learning. Then, the 
two rectangles that were temporarily removed in Fig. 6c 
are reattached, as shown in Figs. 6e and 6f. Thus, the two 
rectangle areas are not subject to any scale transform. It 
should be noted that there will be blank areas in both the 
top part and the bottom part of Figs. 6e and 6f because 
of the reduction process performed in Fig. 6d. The pro-
posed RSS method uses the mirror padding technique, 
as shown in Fig. 6g to effectively fill these gaps, ensuring 
the continuity and integrity of the image. Figure 6h shows 
the final image that will be used in the training process of 
the proposed method. Although Fig. 6 shows an example 
where the input image is scaled along the height direc-
tion, the proposed RSS method can be applied along any 
of the three axes: height, width, or depth. That is, this tar-
get region identification process is performed separately 
for each axis since the proposed RSS technique applies 

scaling independently along each of the three anatomi-
cal axes (axial, sagittal, and coronal). This allows for 
axis-specific scaling that respects the unique spatial char-
acteristics of the anatomical structure in each dimension.

Figure 7 shows an example of the second case, where 
the target region of a sample image is enlarged (instead 
of being reduced) in the direction of height. This example 
follows the same process as Fig. 6, with the key difference 
being the scale enlargement, which results in a slightly 
altered procedure. The scaling (i.e., enlargement in this 
case) operation is performed using an arbitrary ratio r, 
which is randomly sampled from the range [1, r2], where 
the value of r2 is set to 3/2, as shown in Fig. 7d. Once 
again, the value of r2 is chosen to introduce sufficient 
variability without distorting anatomical structures. As in 
the previous example, the regions highlighted in red are 
not subject to any scale transform. As a result, the size 
of the intermediate image after reattachment will exceed 
the original size, as shown in Figs. 7e and 7f. This excess 
area will simply be removed, as shown in Fig. 7g, result-
ing in the final training image, shown in Fig. 7h.

In general, RSS can be applied independently to the 
height, width, and/or depth axes, but this operation is 
performed sequentially rather than simultaneously. The 
probability of applying RSS to each axis is set equally, 
ensuring independent application across all axes. The 
overall probability of applying RSS at least once on any 

Fig. 6  An illustration of region reduction along the height axis in an axial image by the RSS method
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axis is set to pRSS = 1 − (1 − px)(1 − py)(1 − pz) = 0.5. 

Therefore, px = py = pz = 1 − 3
√

0.5 ≈ 0.2063.

DWD loss
To improve its capabilities even further, we propose 
new types of loss functions. Our approach involves 
blending the strengths of pixel-based loss functions and 
region-based loss functions to create a well-rounded and 
advanced loss function. One of the most popular pixel-
based loss function is the focal loss Lin et al. [29], which 
is shown below.

	

Lfocal(yi, pi) = −
(
1 − yipi − (1 − yi)(1 − pi)

)γ

log
(
yipi + (1 − yi)(1 − pi)

) � (1)

In Eq. 1, yi ∈ {0, 1} represents the ground truth value 
for the i-th voxel, where i ∈ {1, 2, . . . , V }. Here, V  rep-
resents the total number of voxels. The prediction prob-
ability for the i-th voxel is denoted by pi, and γ ∈ [0, 5] 
is a tunable focusing parameter. We adopted γ = 2, fol-
lowing the recommendation in Lin et al. [29], where this 
value was shown to effectively address class imbalance by 
focusing more on hard-to-classify examples. Focal loss 

is an enhanced version of cross-entropy loss (CEL) and 
it offers a smart way to address a common issue in seg-
mentation tasks – the imbalance between easy and hard 
examples. By giving more attention to challenging exam-
ples, focal loss helps the model better focus on regions 
that are typically harder to classify.

Meanwhile, one of the most popular region-based loss 
functions is the Dice loss function Milletari et al. [15], 
which is shown below.

	
LDice = 1 −

2
∑V

i=1 yipi∑V
i=1 y2

i +
∑V

i=1 p2
i

� (2)

Dice loss measures the similarity between predicted and 
ground truth masks and it focuses on the intersection 
between these masks while also considering their indi-
vidual areas. Dice loss is particularly effective in scenarios 
where class imbalances exist, as it helps address the chal-
lenges posed by unevenly distributed pixels. By encourag-
ing higher values for accurate predictions and penalizing 
false negatives, Dice loss promotes more precise segmen-
tation outcomes in medical imaging and other related 
tasks. In this paper, we propose a new region based loss 
function, called Dynamically Weighted Dice (DWD) loss, 
which is defined as:

Fig. 7  An illustration of region enlargement along the height axis by the RSS method
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LDWD = 1 −

2
∑V

i=1 yipi

wP

∑V
i=1 y2

i + wR

∑V
i=1 p2

i

� (3)

where wP  and wR are weighting factors given by:

	 wP = 1 − (CP − CR), wR = 1 − (CR − CP ),� (4)

where CP  and CR represent the precision and recall 
components, respectively, and are defined as:

	

CP =

V∑
i=1

yipi

V∑
i=1

p2
i

, CP =

V∑
i=1

yipi

V∑
i=1

y2
i

.� (5)

In Equation 5, the precision coefficient CP  represents 
the ratio of correctly predicted voxels among all the vox-
els predicted as objects, while the recall coefficient CR, 
denotes the ratio of voxels predicted as objects among all 
the ground truth voxels. It should be noted that CP  is dif-
ferent from the regular “precision” in that pi in CP  can 
take any value between [0, 1], whereas ŷi in “precision” 
takes the value of either 0 or 1. For the same reason, CR 
is different from the regular “recall”.

It should be noted that the proposed DWD loss 
degenerates to the conventional Dice loss when 
CP = CR (since wP = wR = 1). However, DWD 
loss improves upon Dice loss by dynamically adjust-
ing the influence of CP  and CR when there is a dispar-
ity between them. This adjustment enables DWD loss 
to automatically balance precision and recall, yielding 
more robust performance when CP  and CR diverge. 
Specifically, when CP < CR (i.e., precision is lower than 
recall), the weights become wP = 1 + (CR − CP ) > 1 
and wR = 1 − (CR − CP ) < 1, thereby penalising false 
positives more strongly. Conversely, when CR < CP , the 
roles are reversed. This mechanism amplifies the contri-
bution of the coefficient with the larger value, thereby 
balancing the influence of both coefficients. As a result, 
when there is a significant disparity between CP  and 
CR, the DWD loss LDW D  is magnified, reflecting the 
increased importance of balancing precision and recall 
in such cases. The final loss function of the proposed 
method is given as follows, where α is a coefficient that 
controls the relative significance between the focal loss 
component and the DWD loss component. A higher α 
value increases the influence of the DWD loss (which 
focuses on region-based segmentation accuracy), while a 
lower α value emphasizes the focal loss (which addresses 
pixel-wise classification). In our implementation, we set 
α = 1 based on preliminary experiments, and the effect 
of different α values on segmentation performance will 
be analyzed in the ablation study section.

	
Ltotal = 1

V

V∑
i=1

Lfocal(yi, pi) + α LDWD� (6)

It should be noted that each component contributes a 
unique aspect to the overall strategy. In particular, the 
DWD loss enriches the proposed ES-UNet framework by 
intelligently weighting coefficients based on their relative 
values. This augmentation fosters improved segmenta-
tion outcomes, particularly in scenarios characterized by 
substantial differences between precision and recall. The 
effect of this new loss function will be discussed in more 
detail in Sect. Effect of the DWD loss function.

The dynamic nature of DWD provides several key 
advantages over static weighting schemes. First, it 
eliminates the need for manual tuning of weighting 
parameters, which can be dataset-dependent and time-
consuming. Second, it allows the loss function to adapt 
to different phases of training - for example, when a 
model initially performs well on precision but struggles 
with recall, the DWD loss automatically increases the 
influence of recall-related terms, steering optimization 
toward a more balanced outcome. Third, by operating 
at the regional level rather than the pixel level, DWD 
addresses class imbalance in a more comprehensive man-
ner than pixel-wise weighting approaches.

These characteristics make DWD particularly effective 
for medical image segmentation tasks where capturing 
precise boundaries of anatomical structures is crucial, 
and where the trade-off between precision and recall 
can significantly impact clinical utility. The experimental 
results presented in Sect. Effect of the DWD loss func-
tion demonstrate that this dynamic adaptation mecha-
nism consistently improves segmentation performance 
across different architectures.

Results
Training configurations
The ES-UNet has been validated on the MICCAI HECK-
TOR dataset Andrearczyk et al. [25]. The Head and Neck 
dataset consists of 325 pairs (i.e., CT and PET image 
pairs) of 3D images, of which 224 pairs were used as the 
training dataset and 101 pairs as the test dataset, respec-
tively. The 224 labelled training pairs were randomly 
divided into 180 cases for optimization and 44 cases (≈
20%) reserved for evaluation. Both CT and PET images 
have a size of 144 × 144 × 144 voxels. Figure 8 shows a 
pair of CT and PET image data from the HECKTOR 
dataset. During both training and inference, the model 
processes full 3D volumes without slicing them into 2D 
sections. Evaluation metrics are computed based on 3D 
ground truth labels and 3D predictions, ensuring a true 
volumetric assessment of performance.
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To compensate for the limited size of the HECKTOR 
dataset and enhance the model’s ability to generalize, sev-
eral data augmentation techniques were applied during 
training. First, mirroring was applied with a probability 
of 0.5, and rotation by a random angle between −15◦ and 
15◦ was performed in each axial direction. Additionally, 
the RSS was employed to transform the size of the tar-
get area by a factor r in the range of [r1, r2] = [2/3, 3/2
] for each of the depth, height, and width axes. As men-
tioned in Sect. Region specific scaling, the values of r1 
and r2 were chosen to maintain consistency and ensure 
balanced scaling across both dimensions. By using these 
ratios, we effectively mimic real-world variations in ana-
tomical sizes while maintaining a realistic representation 
of the medical images. The Adam optimizer Kingma [30] 
was employed to optimize the model’s performance. The 
hyperparameters (β1, β2), which control the decay rates 
of the moving averages for the gradients (first moments) 
and the squared gradients (second moments), were set to 
0.9 and 0.99 respectively, following the recommendations 
in Kingma [30].

To ensure a more effective and adaptive learning pro-
cess, a learning rate scheduler was applied to dynamically 
adjust the learning rate throughout training. Specifically, 
the cosine annealing warm restarts method Loshchilov 

and Hutter [31] was used, where the learning rate started 
at 1e-3 and was gradually reduced with warm-up restarts 
every 25 epochs to a minimum of 1e-5, over a total of 100 
epochs of training.

To evaluate the segmentation performance, we used 
three standard metrics: the Dice Similarity Coefficient 
(DSC), the Intersection over Union (IoU), and the Vol-
ume Overlap Error (VOE). The DSC is calculated as the 
ratio of twice the area of overlap between the predicted 
segmentation map Ŷ  and the ground truth Y  to the sum 
of their areas:

	
DSC = 2 · |Ŷ ∩ Y |

|Ŷ | + |Y |
� (7)

The IoU, also known as the Jaccard index, is defined as 
the ratio of the intersection to the union of the predicted 
and ground truth segmentations:

	
IoU = |Ŷ ∩ Y |

|Ŷ ∪ Y |
� (8)

The Volume Overlap Error (VOE) is derived from IoU 
and represents the proportion of non-overlapping vol-
ume between the prediction and ground truth:

Fig. 8  Axial, sagittal, and coronal views of the CT (top row) and PET (bottom row) images from the HECKTOR dataset. These images provide a comprehen-
sive visualization of the anatomical and metabolic information, with the CT scans highlighting the structural details and the PET scans showing metabolic 
activity within the same regions
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	 VOE = 1 − IoU� (9)

These metrics together provide a comprehensive assess-
ment of segmentation accuracy, with DSC emphasizing 
similarity, IoU capturing proportional overlap, and VOE 
offering an error-based interpretation that highlights the 
degree of volumetric mismatch.

Simulation results for the ES-UNet architecture
The ES-UNet architecture described in Sect. ES-UNet 
architecture has a structure similar to the 3D UNet and 
the UNet 3+ implemented in 3D, which we refer to as 3D 
UNet 3+, but incorporates several architectural enhance-
ments to improve performance. Table 1 compares the 
basic 3D UNet, the 3D UNet 3+, and the proposed ES-
UNet in terms of DSC, IoU and VOE (Volume Overlap 
Error) metrics. To ensure a fair comparison that focuses 
solely on the architectural differences, all other experi-
mental conditions were kept consistent across models. 
For instance, all three architectures were trained using 
identical data augmentation techniques, with the excep-
tion of the RSS method in this case. For the loss function, 
a combination of the focal loss in Eq. 1 and the Dice loss 
in Eq. 2 was used for all three architectures.

The performance gains of ES-UNet stem from its 
enhanced skip connection strategy, which incorporates 
every encoder-to-decoder path from UNet3+ with a ded-
icated channel attention layer on each path. Additionally, 
learnable transposed convolution layers between adjacent 
decoder stages improve upsampling quality compared to 
standard interpolation methods. These components work 
together to highlight the most relevant features at each 
resolution and recover fine boundary details, ensuring 
that all decoder stages benefit from attended multi-scale 
information and effective deep supervision across every 
level.

Effect of the region specific scaling technique
Effective data augmentation techniques can increase the 
diversity of training data, thereby reducing the risk of 

overfitting. Table 2 presents the DSC values of 3D UNet, 
the 3D UNet 3+, and ES-UNet, both with and without 
the proposed RSS, in addition to mirroring and rotation 
methods. The results show that RSS improves perfor-
mance across all three models. This improvement is likely 
due to the proposed method’s ability to enhance data 
diversity and reduce the risk of overfitting.

It should be noted that the RSS data augmentation 
method played an important role in enhancing model 
performance by ensuring that the augmented samples 
were more distinct from the original data. Traditional 
augmentation methods, such as flipping and rotation, do 
not significantly alter image patterns, so the augmented 
samples often appear largely unchanged to human 
observers. This limited variability can restrict the model’s 
ability to learn effectively from these samples. In contrast, 
RSS introduces targeted transformations that adjust the 
inherent proportions of the sample, which makes these 
modified samples appear as entirely new variations. 
For instance, adjusting the distance between anatomi-
cal features in a medical image can significantly alter the 
model’s interpretation, much like how changing facial 
proportions in a photo could make someone look like a 
different person. By applying the controlled range of scal-
ing ratios 2/3 to 3/2, RSS increases data diversity without 
creating unrealistic samples. This sensible range ensures 
that the transformations are plausible and realistic, 
thereby preventing distortion of real-world anatomical 
structures. This balanced approach likely contributed to 
the improved model performance by exposing the model 
to a wider variety of meaningful, realistic variations.

Effect of the DWD loss function
In Sect. DWD loss, we proposed a new loss function, 
called DWD loss, as a potential replacement for the con-
ventional Dice loss. Table 3 compares the performance 
of these two loss functions using the DSC metric. It is 
important to note that in both cases, a focal loss com-
ponent was included as a pixel-based loss function. The 
DSC value for the 3D UNet model increased from 73.81% 
to 74.87% with the introduction of DWD loss. Similarly, 
in 3D UNet 3+ and the proposed ES-UNet, the DSC 
values improved by 0.77% and 0.64%, respectively, con-
firming that DWD loss contributes to the overall perfor-
mance improvement of the models.

The Dice loss, being symmetric, treats false positives 
and false negatives equally, which might not always be 

Table 1  Comparison of 3D UNet, 3D UNet 3+, and the proposed 
ES-UNet in terms of DSC, IoU and VOE
Model DSC (%↑) IoU (%↑) VOE (%↓)
3D UNet Ҫiçek et al. [23] 73.81 62.27 37.73
3D UNet 3+ Huang et al. [17] 74.74 63.23 36.77
ES-UNet (ours) 75.38 63.61 36.39

Table 2  Comparison of DSC, IoU and VOE with and without RSS
Model Mirror & Rotate Mirror & Rotate + RSS Difference

DSC (%↑) IoU (%↑) VOE (%↓) DSC (%↑) IoU (%↑) VOE (%↓) ∆ DSC (%↑)
3D UNet Ҫiçek et al. [23] 73.81 62.40 37.60 75.03 63.57 36.43 1.22
3D UNet 3+ Huang et al. [17] 74.74 63.23 36.77 75.17 63.94 36.06 0.43
ES-UNet 75.38 63.61 36.39 75.74 64.59 35.41 0.36
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ideal depending on the application. This approach can 
sometimes limit the model’s ability to handle specific 
challenges, such as class imbalance or complex segmen-
tation boundaries, where focusing on either precision or 
recall might be more beneficial. The DWD loss, however, 
adapts dynamically to the relative importance of preci-
sion and recall. This adaptability allows the loss func-
tion to shift its focus to areas where the model requires 
more improvement. For example, if the model’s recall is 
lower than its precision, the weighting factors (wP  and 
wR) will emphasize recall more, helping the model learn 
more effectively from its mistakes. This flexibility helps 
the model avoid overfitting to specific types of errors 
(e.g., focusing solely on minimizing false negatives while 
ignoring false positives) and promotes a more general-
ized learning approach.

Ablation study
Skip connection ablation study
To provide a comprehensive understanding of the ES-
UNet architecture design, we conducted a detailed abla-
tion study examining the individual contributions of 
different skip connection types. As illustrated in Fig 2, 
our ES-UNet employs two distinct types of skip connec-
tions: encoder-to-decoder (Enc-Dec) connections (shown 
in blue dashed lines) and decoder-to-decoder (Dec-Dec) 
connections (shown in green dashed lines), in addition to 
the conventional same-level skip connections (shown in 
red solid lines).

Table 4 presents the systematic evaluation of the fol-
lowing four different skip connection configurations:

 	• Base - using only conventional same-level skip 
connections

 	• Enc-only - adding encoder-to-decoder skip 
connections between different levels

 	• Dec-only - adding decoder-to-decoder skip 
connections

 	• Both - the complete ES-UNet architecture with all 
skip connection types

The results demonstrate a clear performance hierarchy, 
with the complete ES-UNet configuration (shown as 
“Both”) achieving the highest DSC of 75.38%, followed 
by configurations using individual skip connection types, 
and the “Base” configuration (using only same-level 
skips) showing the lowest performance. The encoder-
to-decoder skip connections (Enc-only configuration) 
enable each decoder layer to receive feature maps from 
multiple encoder levels. This cross-scale aggregation can 
help the network combine both fine details and broader 
context, which may improve boundary accuracy com-
pared to using only same-level skips. The decoder-to-
decoder skip connections (Dec-only configuration) also 
provide performance gains by facilitating progressive fea-
ture refinement across decoder levels. These lateral con-
nections enable the propagation of refined features from 
deeper decoder layers to shallower ones, allowing for 
iterative improvement of segmentation predictions. The 
absence of these connections forces each decoder layer 
to work in isolation, preventing the beneficial exchange 
of refined semantic information and limiting the model’s 
ability to produce coherent, multi-scale predictions.

The superior performance of the complete ES-UNet 
architecture (“Both” configuration) validates our design 
philosophy that combining both skip connection types 
creates a synergistic effect. The encoder-to-decoder con-
nections provide rich multi-scale input features, while 
the decoder-to-decoder connections enable progressive 
refinement of these features, resulting in more accurate 
and consistent segmentation outcomes.

Multi-component ablation study
Table 5 summarizes all the results shown in Sects. Simu-
lation results for the ES-UNet architecture, Effect of the 
region specific scaling technique, and Effect of the DWD 
loss function. It also shows combined results when all 
technologies are used together. These ablation study 
results clearly demonstrate the incremental benefits of 
each proposed component across different architec-
tures. For the baseline 3D UNet, adding RSS augmenta-
tion improved DSC by 1.22%, while incorporating DWD 
loss provided a 1.06% gain. When both components were 
combined, the improvement reached 2.17%, indicating a 
synergistic effect rather than merely additive benefits.

Table 3  Comparison of DSC, IoU and VOE using dice loss and DWD loss
Model Dice loss DWD loss Difference

DSC (%↑) IoU (%↑) VOE (%↓) DSC (%↑) IoU (%↑) VOE (%↓) ∆DSC (%↑)
3D UNet Ҫiçek et al. [23] 73.81 62.40 37.60 74.87 63.42 36.58 1.06
3D UNet 3+ Huang et al. [17] 74.74 63.23 36.77 75.47 64.02 35.98 0.73
ES-UNet 75.38 63.61 36.39 76.02 64.73 35.27 0.64

Table 4  Ablation study of skip connections in ES-UNet
Configuration Enc–Dec Dec–Dec DSC IoU VOE

(%↑) (%↑) (%↓)
Base 73.88 62.26 37.74
Enc-only ✓ 74.59 63.02 36.98
Dec-only ✓ 74.68 63.72 36.28
Both ✓ ✓ 75.38 63.61 36.39
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Similarly, for 3D UNet 3+, RSS and DWD loss contrib-
uted improvements of 0.47% and 0.77% respectively, with 
their combination yielding a 1.31% enhancement. The 
proposed ES-UNet architecture itself outperformed the 
baseline models, achieving a DSC of 75.38% even with-
out additional components. Adding RSS to ES-UNet 
provided a modest 0.36% improvement, while DWD loss 
contributed 0.64%. Most notably, the full ES-UNet model 
with both RSS and DWD loss achieved the highest over-
all performance with a DSC of 76.87%.

These results validate that each component makes 
a meaningful contribution to the overall performance 
gain. The observation that improvements are consistent 
across different architectures indicates the generalizabil-
ity of both RSS augmentation and DWD loss. Further-
more, the varying magnitudes of improvement suggest 
that the baseline architectural differences influence how 
much benefit is derived from each component, with sim-
pler architectures like 3D UNet gaining more from these 
enhancements compared to already-optimized structures 
like ES-UNet.

Sensitivity analysis
Sensitivity analysis of the hyperparameter α
Additionally, we conducted a sensitivity analysis for the 
hyperparameter α in Eq. 6, which controls the relative 
weight between focal loss and DWD loss components. As 
shown in Table 6, we evaluated three different α values 
(0.5, 1, and 2) using the full ES-UNet model with both 
RSS and DWD loss. The results demonstrate that α = 1 
achieves the optimal balance, yielding the highest DSC 
of 76.87%. While α = 0.5 and α = 2 show slightly lower 

performance (75.36% and 75.05% respectively), the differ-
ences are relatively modest, indicating that the proposed 
framework is reasonably robust to this hyperparameter 
choice.

Sensitivity analysis of the RSS scaling range
To further investigate the robustness of our RSS strat-
egy, we performed a sensitivity analysis to examine how 
different scaling ranges influence segmentation perfor-
mance. Three ranges were evaluated:

 	• A narrower range [4/5, 5/4] (smaller deformation)
 	• The base range [2/3, 3/2] (moderate deformation)
 	• A wider range [1/2, 2] (larger deformation)

The results, summarized in Table 7, show that the base-
line range consistently achieved the highest Dice score 
(DSC 76.87%), outperforming the narrower (75.81%) and 
wider (74.32%) settings. When analyzing these results 
more deeply, we observed that each scaling range pres-
ents distinct trade-offs: The narrower range [4/5, 5/4
] introduces minimal distortion to the anatomical struc-
tures, maintaining high fidelity to the original images. 
However, this conservative approach provides insuf-
ficient variability in the training data, limiting the mod-
el’s ability to generalize to more diverse anatomical 
presentations. This explains the modest performance 
degradation (approximately 1% DSC reduction) com-
pared to our original range. Conversely, the wider range 
[1/2, 2] creates excessive deformation that, while increas-
ing data diversity, tends to produce anatomically implau-
sible transformations. These aggressive distortions can 

Table 5  Comparison of DSC, IoU and VOE with different configurations
Model RSS DWD Loss DSC (%↑) IoU (%↑) VOE (%↓) ∆DSC (%↑) ∆IoU (%↑)
3D UNet Ҫiçek et al. [23] 73.81 62.40 37.60 – –

✓ 75.03 63.57 36.43 1.22 1.17
✓ 74.87 63.42 36.58 1.06 1.02

✓ ✓ 75.98 64.59 35.41 2.17 2.19
3D UNet 3+ Huang et al. [17] 74.74 63.23 36.77 – –

✓ 75.17 63.94 36.06 0.43 0.71
✓ 75.47 64.02 35.98 0.77 0.79

✓ ✓ 76.01 64.77 35.23 1.31 1.54
ES-UNet 75.38 63.61 36.39 – –

✓ 75.74 64.59 35.41 0.36 0.98
✓ 76.02 64.73 35.27 0.64 1.12

✓ ✓ 76.87 65.49 34.51 1.49 1.88

Table 6  Ablation study of α in loss function
Alpha DSC IoU VOE

(%↑) (%↑) (%↓)
α = 0.5 75.36 64.26 35.74
α = 1 76.87 65.49 34.51
α = 2 75.05 63.70 36.30

Table 7  Effect of RSS scaling ranges on DSC, IoU and VOE for 
ES-UNet
Range Scaling Interval DSC (%↑) IoU (%↑) VOE (%↓)
Smaller Range [4/5, 5/4] 75.81 64.56 35.44

Base Range [2/3, 3/2] 76.87 65.49 34.51
Larger Range [1/2, 2] 74.39 62.68 37.32
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introduce artifacts and unrealistic spatial relationships 
between anatomical structures, particularly when applied 
along multiple axes simultaneously. This explains the 
more significant performance drop (approximately 2.5% 
DSC reduction) with this configuration. The original 
range [2/3, 3/2] represents an optimal balance, introduc-
ing sufficient variability to enhance generalization while 
preserving anatomical plausibility, which confirms that 
our initial selection of scaling parameters was appropri-
ate. These findings reinforce the effectiveness of our cho-
sen scaling strategy and provide quantitative evidence 
that supports its use in anatomically diverse segmenta-
tion scenarios.

Comparison with state-of-the-art 3D segmentation models
To further assess the effectiveness of the proposed ES-
UNet, we compared its performance with two state-of-
the-art 3D segmentation architectures: nnUNet Isensee 
et al. [20] and Swin UNETR Hatamizadeh et al. [19]. 
These models represent distinct architectural paradigms 
in medical image segmentation: nnUNet is a self-con-
figuring framework that automatically adapts its archi-
tecture to the dataset, while Swin UNETR leverages 
transformer-based attention mechanisms. Both have 
demonstrated strong performance across various medi-
cal imaging tasks and serve as important benchmarks in 
recent literature.

Performance comparison
Table 8 presents the comprehensive evaluation met-
rics for all models on the HECKTOR dataset. ES-UNet 
achieved the highest DSC of 76.87%, surpassing both 
Swin UNETR (76.02%) and nnUNet (76.06%), as well as 
the traditional UNet variants.

The superior performance of ES-UNet can be attrib-
uted to several key factors: Unlike nnUNet, which uses 
conventional skip connections, and Swin UNETR, which 
relies on transformer-based global attention, ES-UNet 
leverages enhanced full-scale skip connections inspired 
by UNet 3+. This design enables each decoder layer to 
aggregate features from all encoder levels simultane-
ously, preserving both fine-grained details and high-level 
semantic information. This comprehensive feature fusion 
is particularly effective for segmenting head and neck 

tumors, which often exhibit complex boundaries and het-
erogeneous texture patterns.

The proposed Dynamically Weighted Dice (DWD) loss 
adaptively balances precision and recall throughout train-
ing, automatically adjusting its focus based on the mod-
el’s current performance. This contrasts with nnUNet’s 
fixed loss combinations and Swin UNETR’s standard loss 
functions. The dynamic adjustment capability of DWD 
loss proves especially beneficial for handling the inher-
ent class imbalance in tumor segmentation and capturing 
irregular tumor boundaries more precisely.

Our RSS augmentation technique specifically targets 
the region of interest, providing more meaningful varia-
tions compared to standard augmentation strategies 
used in other methods. This targeted approach enhances 
the model’s robustness to anatomical variations without 
compromising the integrity of surrounding structures.

Computational efficiency analysis
Table 9 presents a comprehensive analysis of compu-
tational complexity across all evaluated models. Build-
ing on 3D UNet 3+, ES-UNet enhances its full-scale 
skip connections by incorporating lightweight channel 
attention on each encoder-to-decoder path and employs 
learnable transposed convolution layers for upsampling 
between adjacent decoder stages. This configuration 
offers a balanced trade-off between detailed feature pres-
ervation and computational demands: it enhances feature 
refinement and boundary recovery at the cost of a mod-
est increase in parameters, while FLOPs, inference speed, 
and GPU memory usage remain competitive or slightly 
improved. In contrast, when compared to more recent 
models such as nnUNet and Swin UNETR, the oppo-
site trend is observed. While ES-UNet shows a smaller 
parameter count, owing to its relatively compact archi-
tecture without transformers or auto-configured mod-
ules, it exhibits higher computational demands in terms 

Table 8  Comparison with state-of-the-art models, nnUnet, swin 
UNETR and the proposed ES-UNet in terms of DSC, IoU and VOE
Model DSC (%↑) IoU (%↑) VOE (%↓)
nnUNet (3d) Isensee et al. [20] 76.06 65.46 34.54
Swin UNETR Hatamizadeh et al. [19] 76.17 65.17 34.83
ES-UNet 76.87 65.49 34.51

Table 9  Comparison of computational complexity on HECKTOR dataset
Model Params(M) FLOPs(G) Inference speed(ms/sample)† Peak memory(GB)
3D UNet Ҫiçek et al. [23] 6.42 794.57 60.41 5.30
3D UNet 3+ Huang et al. [17] 6.14 3286.40 184.91 16.77
nnUNet (3d) Isensee et al. [20] 31.20 480.83 33.61 3.71
Swin UNETR Hatamizadeh et al. [19] 70.15 772.92 122.82 12.07
ES-UNet 9.01 3020.38 178.52 16.13
†Measured on a single NVIDIA RTX 4090 (24 GB) GPU
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of FLOPs and memory usage due to our full-scale feature 
integration strategy.

As shown in Table 9, the proposed ES-UNet architec-
ture presents mixed computational efficiency results, 
showing advantages in some aspects while requiring 
more resources in others depending on which metric 
is prioritized. However, in clinical applications where 
diagnostic accuracy is paramount and offline process-
ing is acceptable, segmentation performance remains 
the primary consideration. As shown in Tables 8 and 
10, ES-UNet consistently achieves superior segmenta-
tion performance across diverse evaluation scenarios. 
Our method outperforms traditional UNet variants (3D 
UNet, 3D UNet 3+) with substantial DSC improvements, 
demonstrating the effectiveness of our architectural 
enhancements. More importantly, ES-UNet also sur-
passes recent state-of-the-art methods, achieving 76.87% 
DSC compared to 76.06% for nnUNet and 76.17% for 
Swin UNETR on the HECKTOR dataset. Taken together, 
ES-UNet offers a well-balanced and effective solution for 
high-precision 3D medical image segmentation tasks, 
particularly in real-world settings where diagnostic 
quality is more important than absolute computational 
minimization.

Cross-dataset evaluation
To evaluate the generalizability of the proposed ES-UNet 
beyond the HECKTOR dataset, we additionally tested 
the model on two datasets from the Medical Segmenta-
tion Decathlon (MSD): the Heart and Spleen datasets. 
The MSD Heart dataset includes 30 cine-MRI scans with 
annotations of the left atrium, a thin-walled structure 
with irregular boundaries and substantial anatomical 
variability across subjects. A total of 30 volumes in the 
Heart dataset consists of 20 labeled volumes for train-
ing and 10 unlabeled volumes for official testing. For our 
experiments, the 20 labeled training volumes were ran-
domly split using a fixed random seed into 16 volumes 
for optimization and 4 volumes for evaluation, follow-
ing the same 80:20 split strategy used for the HECKTOR 
dataset. All volumes were resized to 128 × 128 × 128 
voxels for standardized network input without cropping, 
ensuring that the complete anatomical context was pre-
served while maintaining computational efficiency.

The MSD Spleen dataset comprises 61 portal-venous-
phase CT images, offering a different segmentation 
challenge with more clearly defined organ boundaries 

but variable organ appearances due to individual ana-
tomical differences. A total of 61 volumes in the Spleen 
dataset consists of 41 labeled volumes for training and 
20 unlabeled volumes for official testing. Following the 
same methodology as the Heart dataset, the 41 labeled 
training volumes were randomly split using the same 
fixed random seed into 33 volumes for optimization 
and 8 volumes for evaluation. All volumes were pre-
processed using the identical pipeline, being resized to 
128 × 128 × 128 voxels without cropping to maintain 
consistency across all experiments. By applying the same 
preprocessing and training protocol across these differ-
ent datasets, we aimed to fairly assess the generalizabil-
ity of ES-UNet across varying anatomical structures and 
dataset characteristics.

Table 10 presents the comparative performance of 
ES-UNet against state-of-the-art models (nnUNet and 
Swin UNETR) across all three datasets. All models were 
trained and evaluated on the same fixed train/validation 
split, with no post-processing or ensembling, to ensure a 
fair comparison between architectures. As summarized 
in the table, ES-UNet consistently outperformed both 
nnUNet and Swin UNETR across all datasets, achieving 
the highest DSC and the lowest VOE in every case. Nota-
bly, the performance gains were more pronounced on the 
MSD Heart and Spleen datasets. One contributing factor 
may be the relatively small training size of these datas-
ets compared to HECKTOR, which makes our RSS data 
augmentation strategy more impactful due to the greater 
need for variability. These results suggest that ES-UNet 
not only performs well on anatomically complex tumor 
segmentation (e.g., HECKTOR) but also generalizes 
effectively to other organ-level tasks with varying struc-
tural and data characteristics.

3D visualization of segmentation results
To provide comprehensive visual validation of our quan-
titative results, we present detailed qualitative compari-
sons between ES-UNet and other methods including 3D 
UNet, nnUNet, and Swin UNETR. Figures 9 and 10 dem-
onstrate representative segmentation results from the 
HECKTOR dataset across three orthogonal planes, axial, 
sagittal, and coronal views, following standard practices 
in 3D medical image analysis. The visual comparisons 
employ a consistent color-coding scheme where green 
indicates true positives (correctly segmented regions), 
red represents false positives (incorrectly segmented 

Table 10  Segmentation performance on HECKTOR and MSD tasks
Model HECKTOR MSD Heart MSD Spleen

DSC (%↑) VOE (%↓) DSC (%↑) VOE (%↓) DSC (%↑) VOE (%↑)
nnUNet (3d) Isensee et al. [20] 76.06 34.54 89.83 18.31 89.66 16.70
Swin UNETR Hatamizadeh et al. [19] 76.17 37.83 89.52 18.86 90.55 17.03
ES-UNet 76.87 34.51 91.35 15.82 91.55 15.45
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regions), and blue denotes false negatives (missed target 
regions).

Figure 9 presents segmentation results for a representa-
tive case from the HECKTOR dataset, featuring a head 
and neck tumor with relatively simple, convex morphol-
ogy. For such geometrically straightforward cases, all 

four methods demonstrate reasonably good segmen-
tation performance, successfully capturing the overall 
tumor structure. However, upon closer examination, sub-
tle but meaningful differences emerge in segmentation 
precision. While 3D UNet, nnUNet, and Swin UNETR all 
achieve acceptable results, they exhibit varying degrees of 

Fig. 9  Comparative segmentation results on the HECKTOR dataset. Four rows show results from 3D UNet, nnUnet, Swin UNETR, and ES-UNet, respec-
tively. Color coding: green (true positive), red (false positive), blue (false negative). Three columns represent axial, sagittal, and coronal views, respectively
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false positive and false negative regions, particularly vis-
ible as red and blue artifacts in the boundary areas. ES-
UNet demonstrates the most refined performance, with 
notably smaller false positive and false negative regions 
across all three anatomical planes. This improvement 

can be attributed to the synergistic effect of the full-scale 
attention-enhanced skip connections and the dynami-
cally balanced DWD loss, which jointly enhance both 
feature propagation and error sensitivity during training.

Fig. 10  Comparative segmentation results on a challenging HECKTOR case with complex tumor morphology. Four rows show results from 3D UNet, 
nnUnet, Swin UNETR, and ES-UNet, respectively. Color coding: green (true positive), red (false positive), blue (false negative). Three columns represent 
axial, sagittal, and coronal views, respectively
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Figure 10 presents a more challenging case from the 
HECKTOR dataset, where the target tumor exhibits sig-
nificantly more complex, irregular morphology with intri-
cate boundary patterns. Such complexity often amplifies 
the performance gap between segmentation methods, as 
they require sophisticated feature learning capabilities 
to accurately delineate irregular boundaries and handle 
structural heterogeneity. The comparative analysis in 
Fig. 10 clearly demonstrates these expected performance 
variations. The 3D UNet tends to over-segment into adja-
cent tissues, particularly in the coronal view, leading to a 
significant number of FP voxels. Although nnUNet shows 
improved performance compared to 3D UNet, it still 
produces a considerable amount of over-segmentation 
in the coronal view, yielding a non-negligible number of 
false positives. Meanwhile, the Swin UNETR shows sub-
stantial FN regions across all axial, sagittal, and coronal 
views, indicating its failure to capture the fine extensions 
of the lesion. On the other hand, ES-UNet demonstrates 
robust shape conformity with substantially reduced FP 
and FN regions, reflecting its ability to better capture 
spatial context and preserve anatomical plausibility.

These visual comparisons reaffirm the advantages of 
the proposed ES-UNet in producing compact, accurate, 
and anatomically consistent segmentations, particularly 
in geometrically complex cases. The qualitative trends 
observed here are consistent with the quantitative results 

in Tables 5 and 8 discussed earlier, providing further vali-
dation for the effectiveness of the proposed architectural 
and algorithmic improvements.

To provide comprehensive demonstration of our 3D 
segmentation capabilities, we present volumetric 3D 
visualizations that demonstrate the true three-dimen-
sional nature of our segmentation results. While 2D 
slice-based comparisons are helpful for assessing seg-
mentation quality in specific anatomical planes, 3D visu-
alizations provide a more comprehensive understanding 
of three-dimensional morphology and structural fidelity 
across the entire volume. Especially in medical imaging 
applications where lesions exhibit complex 3D morphol-
ogy, visual inspection of full volumes plays a crucial role 
in evaluating clinical usability.

Figure 11 presents 3D volumetric renderings of spleen 
segmentation results from the MSD Spleen dataset, com-
paring our proposed ES-UNet with three other segmen-
tation methods across three anatomical viewing angles 
(axial, coronal, and sagittal perspectives). The overall 
shape of the spleen in this case is relatively simple and 
well-defined, leading to comparable performance across 
all models. However, despite the generally accurate seg-
mentations, 3D UNet shows clear signs of over-segmen-
tation in the coronal view, where the predicted region 
spreads into adjacent non-splenic areas. In contrast, 
nnUNet, Swin UNETR, and ES-UNet maintain a more 

Fig. 11  3D volumetric comparison of spleen segmentation results from the MSD dataset. From left to right: ground Truth, 3D UNet, nnUnet, Swin UNETR, 
and ES-UNet results. Three rows represent axial, coronal, and sagittal viewing perspectives, respectively
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compact and anatomically plausible shape. Although per-
formance differences are less pronounced in this case, 
ES-UNet still demonstrates clean boundaries with mini-
mal structural distortion.

Figure 12 shows 3D volumetric renderings of left 
atrium segmentation from the MSD Heart dataset, pre-
senting a significantly more complex segmentation chal-
lenge. The left atrium, with its thin-walled, irregular 
structure, represents one of the most demanding ana-
tomical structures for accurate 3D segmentation. Unlike 
the relatively smooth spleen morphology, cardiac struc-
tures typically exhibit complex geometries that require 
sophisticated feature learning capabilities.

The comparative analysis clearly demonstrates these 
increased segmentation challenges across all methods. 
The 3D UNet results show substantial segmentation 
errors, including missed regions and inaccurate bound-
ary delineation. The nnUNet demonstrates improved 
performance but exhibits concerning artifacts, notably 
the presence of disconnected segmented regions vis-
ible in the lower left area of the coronal view, suggesting 
incomplete connectivity understanding. Additionally, 
Swin UNETR also exhibits over-segmentation artifacts, 
particularly visible in the lower left area of the coronal 
view where false positive regions are noticeably larger 
compared to other methods.

On the other hand, ES-UNet consistently maintains 
superior segmentation accuracy across all viewing angles, 
effectively capturing the complex three-dimensional 
morphology of the left atrium. Most notably, our method 
demonstrates excellent conformity to the ground truth 
structure, particularly in challenging regions such as 
the complex upper portions visible in coronal and sagit-
tal views where anatomical topology becomes intricate. 
The enhanced accuracy in these demanding areas can be 
attributed to our full-scale feature integration approach, 
which preserves fine-grained structural information from 
multiple encoder levels simultaneously, and our Dynami-
cally Weighted Dice (DWD) loss function, which adap-
tively balances precision and recall during training. The 
quantitative results presented in Table 10 strongly sup-
port these qualitative observations. These quantitative 
gains translate into clinically meaningful improvements 
in 3D reconstruction accuracy, demonstrating that ES-
UNet’s architectural enhancements effectively leverage 
the full spatial context available in volumetric medical 
data for robust and accurate organ segmentation across 
diverse anatomical structures.

Discussion
The results of this study demonstrate that the proposed 
ES-UNet architecture, combined with the Region Spe-
cific Scaling (RSS) data augmentation technique and 

Fig. 12  3D volumetric comparison of heart (left atrium) segmentation results from the MSD dataset. From left to right: ground Truth, 3D UNet, nnUnet, 
Swin UNETR, and ES-UNet results. Three rows represent axial, coronal, and sagittal viewing perspectives, respectively
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the Dynamically Weighted Dice (DWD) loss function, 
improves the accuracy of 3D medical image segmenta-
tion compared to existing models such as 3D UNet and 
3D UNet 3+, as well as state-of-the-art approaches like 
nnUNet and Swin UNETR. This performance improve-
ment stems from key innovations in the architecture and 
learning strategies, addressing challenges such as data 
scarcity, class imbalance, and the need for precise local-
ization in medical image segmentation.

Firstly, the ES-UNet architecture enhances skip con-
nections to improve feature propagation and model 
robustness while managing computational demands. 
While UNet 3+ employs dense skip connections for 
multi-scale feature fusion, ES-UNet preserves all of those 
encoder-to-decoder paths and enhances each one with 
lightweight channel attention, while also introducing 
learnable transposed convolution layers between adja-
cent decoder stages for improved upsampling. At the 
same time, it ensures that each decoder block receives 
balanced multi-scale feature information. Addition-
ally, the introduction of a channel attention mechanism 
allows the model to focus on the most important features 
in volumetric data without increasing the complexity of 
intermediate structures, thereby improving segmentation 
accuracy. Full-scale deep supervision also contributes to 
performance enhancement by guiding the model to learn 
robust representations at various levels.

Secondly, the RSS data augmentation technique 
addresses the issue of insufficient training data, which 
is common in medical imaging. Traditional augmenta-
tion methods like flipping and rotation often produce 
samples that are too similar to the originals, limiting 
their effectiveness in preventing overfitting. In contrast, 
RSS scales the region of interest (e.g., tumors) along 
the height, width, and depth axes within a specific ratio 
while preserving anatomical integrity, thereby generat-
ing diverse training samples. This improves the model’s 
generalization ability, as confirmed by the results in 
Table 2, where RSS enhanced DSC across all tested mod-
els. While our experiments demonstrate that the fixed 
scaling range of [2/3, 3/2] provides an optimal balance 
between introducing meaningful variations and preserv-
ing anatomical plausibility for the datasets we tested, fur-
ther research could explore adaptive scaling techniques. 
Such approaches might automatically determine optimal 
scaling parameters based on dataset-specific anatomical 
characteristics, potentially through learning-based meth-
ods that analyze the spatial statistics of target structures. 
This adaptive approach could further enhance the effec-
tiveness of RSS across diverse anatomical structures with 
varying shapes, sizes, and spatial relationships.

Thirdly, the DWD loss function enhances the accuracy 
of medical image segmentation by dynamically balancing 
precision and recall. The DWD loss adaptively adjusts its 

weighting factors based on the model’s current perfor-
mance, allowing it to focus on improving either preci-
sion or recall depending on which aspect requires more 
attention during different stages of training. This adaptive 
approach is particularly valuable for handling imbalanced 
classes and complex boundary definitions common in 
medical image segmentation tasks.

Our cross-dataset evaluation on MSD Heart and MSD 
Spleen datasets further validates the generalizability of 
our approach. The consistent performance improve-
ments across three distinct anatomical structures (head 
and neck tumors, heart, and spleen) with different imag-
ing characteristics provides evidence that ES-UNet’s 
enhancements extend beyond any specific dataset or 
anatomical region. This cross-validation demonstrates 
the robustness of our method across diverse medical seg-
mentation tasks.

However, this study has several limitations. First, RSS 
uses a manually set scaling ratio within a predefined 
range [2/3, 3/2], which may not be optimal for all ana-
tomical structures or lesions. Future research should 
explore adaptive scaling techniques that adjust based on 
the characteristics of the target region.

Second, there is room to explore multi-modal fusion 
strategies. While this study used PET and CT images 
as input channels, more sophisticated methods such 
as attention-based fusion or modality-specific encod-
ers could further improve segmentation performance. A 
promising direction is to explicitly exploit the comple-
mentary nature of each modality during both feature 
extraction and integration. For instance, recent work by 
Li et al. [32] introduced a modality fusion module and 
cross-modality-assisted skip connections to integrate 
multiple MRI sequences (e.g., T1, T2, FLAIR) in brain 
tumor segmentation, achieving robust performance 
even when dominant modalities were unavailable. Their 
approach highlights the benefits of learning complemen-
tary representations across modalities in semi-supervised 
settings. Similarly, Jin et al. [33] proposed a multi-modal-
ity contrastive learning framework that combines hip 
X-ray images with clinical parameters, demonstrating 
improved performance in sarcopenia screening. These 
approaches suggest that incorporating advanced multi-
modal fusion techniques into our ES-UNet architecture 
could yield significant performance improvements, par-
ticularly for complex anatomical structures where dif-
ferent modalities provide complementary diagnostic 
information.

Third, semi-supervised learning is another promising 
direction, particularly in scenarios with limited labeled 
data. Recent research has proposed innovative ways to 
utilize unlabeled data through consistency learning and 
uncertainty modeling. For example, Li and Xie [34] pro-
posed EBC-Net, a 3D semi-supervised framework that 
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employs edge-biased consistency regularization and ana-
tomical invariance modules to guide pancreas segmenta-
tion with minimal supervision. Their approach improves 
boundary accuracy in complex organ structures and 
demonstrates the effectiveness of edge-aware perturba-
tion strategies. Other recent works Jin et al. [35, 36] have 
explored hierarchical consistency enforcement and uncer-
tainty-aware pseudo-mask refinement to boost segmen-
tation performance. Integrating such semi-supervised 
techniques into 3D segmentation frameworks like ours 
may enable more robust learning in low-resource settings 
and expand applicability to real-world clinical scenarios.

In addition, the proposed DWD loss may not always 
perform optimally in certain scenarios. For instance, in 
datasets where class distributions are relatively balanced, 
the benefit of dynamic weighting becomes marginal, and 
simpler loss functions such as Dice or cross-entropy may 
suffice. Moreover, during the early phases of training, 
when predictions are highly unstable, DWD’s reliance 
on real-time precision and recall estimates can intro-
duce noisy gradients, potentially hindering convergence. 
Another limitation arises in multi-class segmentation 
tasks, where the dynamic weighting mechanism requires 
additional design considerations for per-class adaptation, 
making its implementation less straightforward than that 
of generalized Dice. These limitations highlight the need 
for further investigation, and we plan to explore more 
robust extensions of DWD for multi-class scenarios and 
early-stage stabilization strategies in future work.

Conclusions
This study proposed ES-UNet, a novel 3D segmenta-
tion architecture that integrates architectural refine-
ments with advanced training strategies to address key 
challenges in medical image segmentation. The model 
improves upon prior UNet-based methods by introduc-
ing lightweight channel attention on every encoder-to-
decoder path, while keeping UNet3+’s full-scale skip 
connections intact. Additionally, learnable transposed 
convolution layers are employed between adjacent 
decoder stages to enhance boundary reconstruction dur-
ing upsampling. These design choices aim to enhance 
feature learning and segmentation performance while 
managing computational demands. Through extensive 
evaluations on the HECKTOR dataset and selected tasks 
from the Medical Segmentation Decathlon, ES-UNet 
demonstrated strong segmentation accuracy and gener-
alization ability across different anatomical regions.

Compared to prior UNet variants, ES-UNet improves 
both accuracy and computational efficiency in some areas, 
while requiring slightly more resources in others. Against 
more recent models like nnUNet and Swin UNETR, it 
achieves superior segmentation accuracy, though not 
always with lower computational cost. Importantly, in 

offline clinical settings where diagnostic accuracy is the 
primary concern, we believe ES-UNet offers a favorable 
trade-off between performance and resource requirements. 
Its ability to operate directly on full 3D volumes enables it 
to capture spatial context more effectively than slice-based 
methods, contributing to its robust performance.

Overall, ES-UNet demonstrates that targeted archi-
tectural refinements, when combined with targeted aug-
mentation (RSS) and adaptive loss functions (DWD), 
can lead to practical and high-performing 3D segmen-
tation models. Future research will focus on developing 
adaptive scaling techniques for the RSS method, explor-
ing advanced fusion strategies to better integrate multi-
modal information, and extending the framework to 
semi-supervised settings where labeled data is limited.
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