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ABSTRACT

Background: To assess the effectiveness of fractionated Gamma Knife radiosurgery (fGKS) 
as a primary treatment for newly diagnosed large (> 10 cm3) brain metastases.
Methods: Ninety-three patients with newly diagnosed large brain metastases, comprising 
99 lesions, who underwent fGKS were included in this retrospective study. Tumor and 
edema volumes were measured using follow-up magnetic resonance imaging for longitudinal 
analysis. Local or distant progression-free survival (PFS) rate in the brain, and overall survival 
(OS) rates were analyzed. Cox regression analysis was used to assess prognostic factors for 
local progression. Radiation toxicity was evaluated based on RTOG CNS toxicity grades.
Results: Median local PFS was 15.5 months, distant PFS was 13.2 months, overall PFS was 
8.2 months, and OS was 15.2 months. Both tumor and edema volumes were significantly 
reduced by 78% and 82%, respectively, over 6–9 months after fGKS. Tumor volume decreased 
by ≥ 50% in 80.8% (n = 80) of lesions, with a median maximal reduction time of 3.3 months. 
Radiation necrosis occurred in 5.4% (n = 5) of patients. Within 6 months after fGKS, 
45 patients showed neurological improvement, 36 remained stable, and 12 experienced 
neurological worsening. Systemic therapy was a significant prognostic factor for local PFS.
Conclusion: fGKS could be recommended as an effective and safe primary treatment for large 
brain metastases.
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INTRODUCTION

The primary treatment option for brain metastases less than 3 cm in diameter is typically 
stereotactic radiosurgery (SRS) as it demonstrates a favorable local control rate with 
a tolerable radiation toxicity.1,2 On the other hand, for large brain metastasis exceeding 
3–4 cm in diameter, which often accompany perilesional edema and neurological deficit, 
surgical resection has been traditionally preferred due to concerns that SRS does not provide 
immediate decompression with a risk of radiation toxicity.2-7 However, even for large brain 
metastases, SRS plays an important role for patients who are not eligible for craniotomy due 
to factors such as poor performance status, comorbidities, multiplicity of lesions, and/or 
deep location of the tumor.8,9 Additionally, only class II evidence (conflicting evidence) exists 
regarding the superiority of surgery versus radiosurgery for large (> 3 cm) brain metastases.10

Poor outcomes have been reported when large brain metastases are treated with single 
fraction radiosurgery.8 To maintain a high local control rate while minimizing radiation 
toxicity, fractionated radiosurgery instead of single fraction has been used for treating 
large brain metastases.11 Papers comparing outcomes of single fraction and fractionated 
radiosurgery for large brain metastases have consistently demonstrated the superiority of 
fractionated radiosurgery in terms of 1-year local control and radiation toxicity.12,13 Moreover, 
with advancement of mask-based radiosurgery, patients undergoing treatment experience 
greater comfort than those undergoing frame-fixation-based procedures.14

Several papers of fractionated SRS for large brain metastases showed local control rate and 
rate of radiation necrosis. The local control rate at 1 year was around 60–100% and the rate of 
radiation necrosis was 0–15.8%.9,12,14-21 Among these papers, studies utilizing Gamma Knife 
modality for large brain metastases were rare.17 Furthermore, most studies have included 
heterogeneous patient groups such as post-operative, post-radiosurgery, or post-radiotherapy 
groups, leading to difficulties in analysis.

In this context, this study aimed to analyze treatment outcomes of fractionated Gamma Knife 
radiosurgery (fGKS) for 99 newly diagnosed large brain metastases in 93 patients who were 
initially treated with radiosurgery instead of microsurgery to assess the effectiveness and 
safety of fGKS as a primary treatment for large (> 10 cm3) brain metastases.

METHODS

Patient selection
Since 2012, four neurosurgeons have performed fGKS for large brain metastases, except 
in cases requiring urgent decompression surgery. After explaining the pros and cons of 
microsurgery and GKS, patients who consented to undergo GKS were proceeded with fGKS.

Inclusion criteria were 1) newly diagnosed large (> 10 cm3) brain metastases without prior 
treatment; 2) histologically confirmed primary cancer; 3) at least one follow-up brain 
magnetic resonance imaging (MRI) after fGKS; 4) available follow-up data on systemic 
treatment. Patients with extracranial metastases were excluded.

A total of 258 patients with tumor volumes > 10 cm3 underwent fGKS, of which 93 patients with 
99 large brain metastases met the inclusion criteria. Clinical profiles are shown in Table 1.
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Radiosurgical technique and volume measurement
Radiosurgery was performed using either the Leksell Gamma Knife Model PERFEXION™ 
or ICON™ (Elekta Instrument AB, Stockholm, Sweden). Since the introduction of 
the Gamma Knife ICON™ in 2016, most patients underwent mask-based fGKS, while those 
difficult to immobilize were received frame-fixed fGKS. For frame-fixed fGKS, patients were 
required to maintain frame fixation throughout the entire session.

The target volume was delineated using the 50% isodose line to encompass the tumor 
margin, with thin-slice gadolinium-enhanced T1-weighted MRI and the Leksell GammaPlan 
software (Elekta Instrument AB). Fractionation doses and schedules were tailored based on 
tumor size and location.

Since four neurosurgeons independently performed fGKS, each using their own preferences 
for determining doses and fractionation schedules, a variety of regimens were employed. 
Three neurosurgeons predominantly used an 8 Gy × 3 fractionation regimen, with 
adjustments of 0.5–2 Gy based on tumor characteristics, resulting in regimens ranging from 
7–10 Gy × 3 fractions in most cases. For large tumors near eloquent areas, doses were further 
reduced. One neurosurgeon determined the fractionation dose and number of fractions 
(3–5) using the biological equivalent dose (BED) equivalent of a single 18–22 Gy fraction, with 
lower single doses and increased fractions reserved for larger or deeply located tumors.

Total doses were calculated as BED using an α/β ratio of 10 to analyze dose-related 
responses.22 Details of all fractionation schedules are provided in Supplementary Table 1.
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Table 1. Clinical profiles of patients
Variables No. of patients
Median age (range), yr 63 (30–92)
Female:Male 49:44
Pre-GKS WBRT or surgery 0
No. of metastases

1/2–3/≥ 4 48/25/20
Mask:Frame 53:40
Control of primary diseases (control:uncontrol) 66:27
Presence of extracranial metastases 60
Origin

Common histology (lung/breast) 70 (51/19)
Uncommon histology (colorectal/salivary gland /ovarian/hepatocellular/othersa) 23 (7/4/3/3/6)

Initial KPS (median, range) 80 (50–100)
Receiving systemic therapy 65

Chemotherapy 28
Targeted therapy 27
Immunotherapy 3
Combined therapy 7

GPA
< 1/1–1.5/2–2.5/3–3.5/4 5/37/40/16/1

Location of metastases, lesions
Frontal/parietal/occipital/temporal 26/15/11/8
Cerebellum 20
Multilobar 14
Basal ganglia/cerebellopontine angle/periventricular 2/2/1

Eloquent location, lesions 42
Cystic lesion 21
GKS = Gamma Knife radiosurgery, WBRT = whole-brain radiotherapy, KPS = Karnofsky Performance Scale, GPA = 
graded prognostic assessment.
aOthers: 1 renal cell carcinoma, 1 thymic carcinoma, 1 endometrial cancer, 1 gall bladder cancer, 1 nasal cavity 
cancer, 1 bladder cancer.



For volume measurement, we utilized the 3D Slicer software version 4.10.2 (Surgical Planning 
Laboratory, Harvard University, Boston, MA, USA). A total of 598 MRIs, including initial and 
follow-up T1-weighted enhanced thin-slice images and T2-weighted images, were analyzed. 
The region of interest was manually defined, and the “Grow from seed” function in 3D Slicer 
was used for automatic segmentation. This automated segmentation method provided 
more accurate volume outlining than manual outlining.23 Afterward, manual revision was 
conducted to calculate tumor and edema volumes.

Endpoint
The primary endpoints were local and distant progression-free survival (PFS) in the brain 
as well as overall survival (OS). Local progression was defined as cases requiring secondary 
intervention or a continuous volume increase of more than 25% without any reduction after 
fGKS, excluding cases of radiation necrosis. Even though no standardized volume-based 
criteria have been established, we adopted the 25% threshold to align with previous studies 
from our institution.8,15 Distant progression was defined as development of new lesions or 
leptomeningeal seeding. OS was calculated using death data from the Ministry of the Interior 
and Safety.

Secondary endpoints were longitudinal changes in tumor and edema volume at 3-month 
intervals over two years, radiation toxicity, and clinical outcomes. Volume change was 
expressed as a ratio relative to the initial volume at fGKS. Cases with an initial edema volume 
of 0 were excluded to avoid ratio distortion. Perilesional edema was categorized as mild to 
moderate (less than half of the hemisphere) or severe (more than half ). Edema volumes over 
80 cm3 were defined as severe.

Radiation toxicity was assessed using the RTOG CNS toxicity grade24: grade I (mild), grade 
II (moderate), grade III (severe, requiring admission), grade IV (life-threatening, including 
radiation necrosis), and grade V (death).

Radiation necrosis was identified based on increased tumor and edema volume, central 
necrosis, T1/T2 mismatch,16 and spontaneous regression on follow-up MRIs. In some 
cases, C-11 methionine PET was used to distinguish between true progression and radiation 
necrosis. If the fGKS lesion underwent microsurgery resulting in pathological evidence of 
necrosis without tumor, it was also considered radiation necrosis.

Clinical outcomes were assessed within six months post-fGKS. Symptom changes were 
categorized as improved, stable, or worsened, with any new symptoms classified as worsened.

Follow-ups and further treatment
After fGKS, patients were advised to undergo follow-up MRI every 1–3 months. If severe 
edema persisted or symptoms worsened, short-term steroid therapy was given, and further 
treatment was based on clinical symptoms and imaging.

When a lesion appeared larger on follow-up MRI, additional scans were scheduled to 
distinguish tumor progression from radiation necrosis. For cases identified as tumor 
progression, secondary interventions such as repeat fGKS, microsurgery or Ommaya insertion 
were performed. In cases where MRI findings suggested radiation necrosis, observation and 
additional follow-up MRI were recommended. If there was progression of distant lesions or 
leptomeningeal seeding, whole-brain radiotherapy (WBRT) was considered.
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Statistical analysis
When plotting the spaghetti plot of tumor volume changes, lesions showing progression 
were plotted until the time of secondary intervention, including repeat fGKS, microsurgery, 
Ommaya insertion, or WBRT. If a lesion had not undergone secondary intervention, 
data were shown up to the last follow-up MRI.

Kaplan-Meier survival plots estimated local PFS, distant PFS, overall PFS and OS. For patients 
with multiple large lesions, when plotting local PFS, any lesion progression resulted in 
inclusion in the progression group. For overall PFS plotting, in patients showing both local 
and distant progression, the earliest event was chosen for plotting. The PFS period was 
defined from initial fGKS to the last follow-up MRI or the time of secondary intervention and 
for OS, from fGKS to the last clinical follow-up or the date of death.

Factors with P < 0.2 from univariate Cox regression analysis were selected for multivariate Cox 
regression, with factors having P < 0.05 considered statistically significant. All analyses were 
performed using R version 4.2.2 (R Foundation for Statistical Computing, Vienna, Austria).

Ethics statement
This retrospective study was approved by the Institutional Review Board (IRB) of Seoul 
National University Hospital (IRB No. 1908-006-1051). Due to the retrospective nature of this 
study, the requirement for written informed consent was waived by the IRB.

RESULTS

PFS and OS
Fig. 1A displays a spaghetti plot illustrating the ratio of tumor volume change for all lesions 
from the time of fGKS until the last MRIs or secondary interventions. Mean radiological 
follow-up duration for Fig. 1A was 13.9 months. Fig. 1B shows 5 lesions where the volume 
consistently exceeded 125% without any decrease after fGKS. Among these, three cases with 
volume increase due to radiation necrosis, one case with volume increase caused by tumor 
bleeding (Supplementary Fig. 1), and one case with tumor progression despite receiving 
fGKS. Therefore, two cases were included in the local progression group.

As secondary interventions for local tumor progression, 20 lesions underwent repeat fGKS, 
10 underwent surgical resection, and one cystic lesion underwent Ommaya insertion. 
Pathology examination confirmed the presence of tumor in all surgically treated lesions. 
A total of 31 lesions received post-fGKS secondary interventions for local tumor progression 
at a median of 11.3 months. The total number of lesions in the local tumor progression 
group was 33, consisting of two that exceeded the 125% volume criterion and 31 that required 
secondary interventions.

There were no emergency surgeries such as external ventricular drain or craniectomy to 
control intracranial pressure, except for one case of tumor bleeding. Ten patients showed 
leptomeningeal seeding, and 24 patients developed new lesions. Consequently, intracranial 
distant progression occurred in 34 patients. Seventeen patients underwent WBRT due to 
intracranial distant progression, with a median of 8.9 months after fGKS.

5/13

Fractionated GKS for Large Brain Metastases

https://doi.org/10.3346/jkms.2025.40.e195https://jkms.org



6/13

Fractionated GKS for Large Brain Metastases

https://doi.org/10.3346/jkms.2025.40.e195https://jkms.org

Post-fGKS months 

93 56 33 17 14All

No. at risk

Median: 15.5 months

C

All
PatientsLo

ca
l P

FS
 ra

te 0.75

0.50

0.25

0

1.00

0 6 12 18 24
Post-fGKS months 

D

93 46 26 12 8All

No. at risk

Median: 13.2 months

All
PatientsDi

st
an

t P
FS

 ra
te 0.75

0.50

0.25

0

1.00

0 6 12 18 24

Post-fGKS months 

93 46 26 12 8All

No. at risk

Median: 8.2 months

E

All
PatientsO

ve
ra

ll 
PF

S 
ra

te 0.75

0.50

0.25

0

1.00

0 6 12 18 24
Post-fGKS months 

F

93 70 53 39 32All

No. at risk

Median: 15.2 months

All
Patients

O
ve

ra
ll 

su
rv

iv
al

 ra
te

0.75

0.50

0.25

0

1.00

0 6 12 18 24

Post-fGKS months 

Tumor volume change ratio (overall)A

Local progression threshold (1.25)

Fo
llo

w
-u

p 
vo

lu
m

e/
in

iti
al

 v
ol

um
e

1.5

1.0

0.5

0

2.0

0 70605040302010
Post-fGKS months 

Tumor volume change ratio (overall)

a

a

B

Local progression threshold (1.25)

Fo
llo

w
-u

p 
vo

lu
m

e/
in

iti
al

 v
ol

um
e

1.5

1.0

0.5

0

2.0

0 40302010

Fig. 1. Spaghetti plots and Kaplan-Meier curves. (A) A spaghetti plot illustrating tumor volume ratios of all lesions compared to their initial volumes and followed 
until the time of last magnetic resonance imaging or secondary interventions. (B) A spaghetti plot illustrating lesions with a consecutive increase of more than 
25% in tumor volume without any reduction. (C) Kaplan-Meier curve for local PFS. (D) Kaplan-Meier curve for distant PFS. (E) Kaplan-Meier curve for overall PFS. 
(F) Kaplan-Meier curve for overall survival. 
PFS = progression-free survival, fGKS = fractionated Gamma Knife radiosurgery. 
aTwo lesions classified as local progression.



Kaplan-Meier plots of local PFS, distant PFS, overall PFS and OS rates were shown in Fig. 1C-F. 
The median value of local PFS was 15.5 months, 13.2 months for distant PFS, 8.2 months for 
overall PFS, 15.2 months for OS.

The local PFS rate was 89.9% at 6 months, 67.7% at 1 year and 41.5% at 2 years. The distant 
PFS rate was 71.1% at 6 months, 56.5% at 1 year, and 46.0% at 2 years. The overall PFS rate 
was 63.9% at 6 months, 41.6% at 1 year, and 18.0% at 2 years. The OS rate was 76.1% at 6 
months, 57.4% at 1 year, and 37.6% at 2 years.

Tumor and edema volume changes after fGKS
Tumor volumes were distributed as follows: 10–14 cm3 (approximately 2.7–3 cm in diameter) 
for 39 (39.4%) lesions, 14–33.5 cm3 (approximately 3–4 cm in diameter) for 49 (49.5%) 
lesions, and 33.5 cm3 or larger (approximately ≥ 4 cm in diameter) for 11 (11.1%) lesions. 
Median tumor volume was 16.3 cm3. There were 40 (40.4%) lesions with severe edema, 50 
(50.5%) lesions with mild to moderate edema, and 9 (9.1%) lesions without any edema. 
Median edema volume was 58.3 cm3. At the time of fGKS, the median ratio of edema to 
tumor volume was 3.1.

Fig. 2 illustrate median volume reduction for tumor and edema over 3-month intervals, 
showing steady volume reduction for 6–9 months, followed by fluctuations up to 18 months 
and stabilization thereafter, with only stable lesions remaining. Table 2 lists the maximum 
tumor volume reduction and corresponding time points for each lesion. Of the 99 lesions, 80 
(80.8%) exhibited a maximum volume reduction of 50% or more, with a median duration of 
3.3 months after GKS.

For cases where the initial edema volume was 0, two lesions showed volume increases 
by more than 80 cm3, although such increase was transient in one case. For other cases, 
the increase was observed as moderate to mild edema. Supplementary Fig. 2 shows 
a representative case of a long-term favorable outcome after fGKS.
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Fig. 2. Bar graphs. (A) Median volume reduction rate of tumor in 2 years with 3-month interval after fGKS. (B) Median volume reduction rate of edema in 2 years with 
3-month interval after fGKS. Due to the retrospective study design, in real data, each patient underwent their first MRI within six months despite the recommended 
1- to 3-month interval for MRI FUs. As a result, the total number of patients (n = 93) was not included in the < 3 months bar chart. Additionally, when analyzing edema 
volume changes, lesions without edema at the time of fGKS were not included. Consequently, the number of patients in each interval differed between Fig. 2A and B. 
MRI = magnetic resonance imaging, fGKS = fractionated Gamma Knife radiosurgery, FU = follow-up.



Neurological outcome and RTOG CNS toxicity
At the time of fGKS, symptom presentation among patients included hemiparesis (n = 28), 
asymptomatic (n = 21), headache (n = 11), dizziness (n = 6), gait disturbance (n = 5), visual 
disturbance (n = 5), dysphasia (n = 4), vomiting (n = 3), memory impairment (n = 2), seizure 
(n = 2), dysarthria (n = 2), disorientation (n = 2), hearing loss (n = 1), and hypesthesia (n = 1). 
These symptoms were improved (n = 45), stable (n = 36), or worsened (n = 12) within 6 months 
after fGKS.

During the follow-up period after fGKS, short-term steroid therapy was administered to 44 
(46%) patients, with an average duration of 7.1 days. RTOG CNS toxicity grade was grade 0 
for 62 patients, grade I for 11 patients, grade II for 10 patients, grade III for 5 patients, and 
grade IV for 5 patients with radiation necrosis. Fig. 3 shows a representative case of radiation 
necrosis.

Cox regression prognostic factor evaluation
Table 3 presents the results of Cox regression analysis for local progression. Systemic therapy 
(P = 0.006; hazard ratio, 0.32) was statistically significant in both univariate and multivariate 
analyses.

DISCUSSION

This study conducted a longitudinal analysis of tumor and edema volume changes in large 
brain metastases after fGKS. Following fGKS, tumor and edema volumes continuously 
reduced for 6–9 months, with median decreases of 78% and 82%, respectively. Tumor 
volume decreased by ≥ 50% in 80.8% of lesions (n = 80), with a median maximum reduction 
time of 3.3 months. Considering a median interval of 11.3 months for intervention due to 
tumor progression, it was speculated that there was a higher progression rate between 9–18 
months, accompanied by fluctuations in volume reduction rate (Fig. 2A). Taking into account 
a median OS of 15.2 months of this cohort, it could be inferred that beyond 18 months, 
relatively stable lesions predominated, displaying superior volume reduction rates (Fig. 2A).

Several studies have reported clinical outcomes of microsurgery for brain metastases, 
with median OS ranging from 5 to 18 months.6,7,25-27 In our study, the median OS was 15.2 
months, suggesting fGKS is not inferior to surgery.
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Table 2. Max tumor volume reduction
Max tumor volume reduction (mean) Cases Duration, mon, median (range)
> 90% (95.4%) 34 7.0 (1.2–43.9)
80–90% (85.3%) 12 6.3 (2.1–22.9)
70–80% (74.9%) 15 4.2 (1.5–36.9)
60–70% (64.3%) 15 3.0 (0.4–11.5)
50–60% (52.3%) 4 2.3 (1.1–5.8)
40–50% (44.5%) 4 1.4 (0.7–6.7)
30–40% (34.6%) 4 3.5 (1.8–4.3)
20–30% 0 -
10–20% (13.7%) 3 0.6 (0.2–1.7)
0–10% (0%) 7 0
All 99 lesions Median 3.3
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At the time of fGKS

Post-fGKS 7 months

Post-fGKS 7.7 months

Post-fGKS 3 months

Post-fGKS 7 months

Post-fGKS 9.5 months

A B

C D

E F

Fig. 3. An illustrative case of radiation necrosis after fGKS. A 11.4 cm3 metastatic lesion in the left occipital area 
was detected in a lung cancer patient in his 60s. (A) fGKS was performed with a regimen of 9.5 Gy for three 
consecutive days. (B) Both tumor and edema volumes were significantly decreased on the follow-up MRI at 
three months post fGKS. (C, D) Both tumor and edema volumes were significantly increased on the follow-up 
MRI 7 months post-fGKS and a T1/T2 mismatch was identified. (E) Because radiation necrosis was suspected, 
C-11 Methionine Positron Emission Tomography was performed after 3 weeks. Although methionine uptake was 
detected at the peripheral portion of the lesion, volumes of the tumor and edema were significantly decreased, 
relieving compression of the left posterior horn. (F) After waiting for about two months, both tumor and edema 
volumes were significantly decreased, confirming radiation necrosis. 
fGKS = fractionated Gamma Knife radiosurgery, MRI = magnetic resonance imaging.



Local progression in our study reflects tumor recurrence, with tumors initially shrinking 
after fGKS but later increasing in size. The local progression rate (9.6% at 6 months, 30.6% 
at 1 year, and 55.7% at 2 years) may seem unfavorable, but recurrence rates after microsurgery 
are also significant. Yoo et al.28 reported a one-year recurrence rate of 29.1% for microscopic 
total resection and 58.6% for gross total resection. Stark et al.29 found a 58.9% recurrence 
rate after surgical resection. When comparing recurrence between surgery and SRS, 
the surgical group had higher early recurrence.30 In this context, it is challenging to conclude 
that our local progression rate is inferior to that of surgical resection.

According to Paek et al.’s study25 of 208 surgical cases, the mortality rate within 4 weeks 
after surgery was 1.9% and postoperative neurologic deterioration rate ranged from 6% to 
19% depending on the location. Picarelli et al.26 have also reported a surgical mortality rate 
of 7.5% and a morbidity rate of 17% in their analysis of 200 brain metastases. Although 
Proescholdt et al.31 have highlighted that complication rates are improved in modern studies, 
historical data from a systematic review of brain metastases show surgical morbidity rates 
ranging from 2% to 24.8%, permanent neurologic worsening rates ranging from 6% to 11%, 
and mortality ranging from 2% to 11%.31

In our study, five patients (5.4%) had grade III radiation toxicity requiring admission, 
and five (5.4%) experienced grade IV radiation necrosis. However, none of these patients 
exhibited severe neurologic deficits necessitating admission. Furthermore, 87.1% of 
patients showed stable or improved neurologic outcomes within 6 months post-fGKS. This 
indicates that we can avoid the complications associated with microsurgery while achieving 
neurological improvement. Our findings also demonstrate that as tumor volume decreased, 
edema diminished, leading to better neurologic symptoms. Therefore, this study supports 
fGKS as a primary treatment option over microsurgery.
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Table 3. Results of Cox regression analysis
Variables Local progression (P value)

Univariate Multivariate
Age 0.511
Sex (male) 0.600
BED10 0.979
Eloquent locationa (yes) 0.756
Single lesion (yes) 0.253
Initial volume 0.841
Mask frame (yes) 0.980
Edema volume 0.134 0.354  

(HR, 1.00; 95% CI, 1.00–1.01)
Primary disease control (yes) 0.729
Cystic lesionb (yes) 0.415
Systemic therapy (yes) 0.001  

(HR, 0.27; 95% CI, 0.12–0.58)
0.006  

(HR, 0.32; 95% CI, 0.14–0.72)
GPA-total 0.076 0.215  

(HR, 1.34; 95% CI, 0.84–2.14)
KPS 0.548
Primary cancer originc (uncommon pathology) 0.670
BED = biological equivalent dose, HR = hazard ratio, CI = confidence interval, GPA = graded prognostic 
assessment, KPS = Karnofsky Performance Scale.
aEloquent location included the motor and sensory cortex, visual cortex, and deep-seated locations such as near 
the basal ganglia, thalamus, and cerebellar peduncle.
bCystic lesion included only cystic masses with rim enhancement appearance but excluded partial cystic masses.
cPrimary cancer origin was categorized into common pathology versus uncommon pathology, with lung and 
breast cancer included in common pathology, while others were included in uncommon pathology.



Patel et al.32 have analyzed volume changes in 500 metastatic brain tumors after radiosurgery, 
showing an average volume reduction of around 50% up to 9 months, followed by a period 
of volume increase at 12–15 months. Similar to our study results, at the end of follow-
ups, a greater increase in volume reduction was found. Additionally, Goethe et al.33 have 
demonstrated a volume reduction of approximately 16% per month in the first 6 months 
after GKS, with a 64% reduction observed at the 6-month follow-up. To date, there have 
been no studies analyzing longitudinal volume changes of large brain metastases or edema. 
Collectively, these studies including our study indicate that around 60% volume reduction 
can be anticipated within six months.

In the past, there was much controversy regarding the efficacy of systemic therapy due to 
issues with blood-brain barrier penetration.34 However, with the advent of next-generation 
systemic therapies such as tyrosine kinases inhibitor demonstrating high intracranial 
efficacy, such concerns have diminished.35,36 Prognostic factor evaluation for local 
progression has also shown that in patients receiving systemic therapy alongside fGKS, local 
progression is suppressed, indicating the importance of continuous treatment with systemic 
therapy to maintain the volume reduction effect of fGKS.

Limitations of this study include its retrospective nature and the diverse fractionation 
regimens used by four neurosurgeons, complicating recommendations for the most effective 
regimen. Additionally, irregular follow-up intervals for each patient weakened the robustness 
of our findings on volume changes compared to prospective studies with regular follow-ups. 
Furthermore, three lesions had follow-up volume ratios between 1.0 (initial volume) and 
1.25 (local progression threshold) without volume reduction. If longer follow-up imaging 
were available, their classification might change, potentially impacting the local progression 
rate. Therefore, careful consideration is needed when interpreting our results on local 
progression.

However, to date, there has been no prospective study conducting a longitudinal analysis of 
volume changes in large brain metastases after SRS. We believe this study provides unique 
information about volume changes following fGKS.

fGKS is effective in reducing both tumor volume and edema in large brain metastases with 
tolerable radiation toxicity. fGKS could be considered as the primary treatment option for 
large brain metastases.

SUPPLEMENTARY MATERIALS

Supplementary Table 1
Fractionation schedules

Supplementary Fig. 1
An illustrative case of tumor bleeding after fGKS. A 28.4 cm3 metastatic lesion in the right 
temporo-parietal area was detected in a salivary gland cancer patient in his 50s. (A) fGKS 
was performed with a regimen of 5.8 Gy for five consecutive days. (B) The patient presented 
to the emergency room with a drowsy mentality at one month after fGKS. A CT scan showed 
tumor bleeding with midline shifting. (C) Emergency craniotomy was performed and post-
operative CT scan showed the removed state of tumor and hematoma, with recovery of 
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midline shifting. The patient's neurological status fully recovered. (D) There was no evidence 
of tumor recurrence detected at the 3-month post-fGKS follow-up.

Supplementary Fig. 2
An illustrative case of long-term favorable outcome after fGKS. A 21.4 cm3 metastatic lesion 
in the left posterior periventricular area was detected in a lung cancer patient in his 30s. (A) 
fGKS was performed with a regimen of 8 Gy for three consecutive days. (B) Tumor volume 
decreased on follow-up MRI at 2 months post fGKS. (C) Both tumor and edema volumes 
were significantly decreased and nearly disappeared on the follow-up MRI at six months post 
fGKS. (D) The patient underwent regular follow-up MRIs, with the most recent MRI taken at 
75 months post fGKS, showing no evidence of tumor recurrence.
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