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Several small molecules have been approved for cancer treatment, but the continuously growing 
cancer cases have further encouraged the identification of new anticancer drug compounds. 
Experimental methods are costly and time-consuming, thus rapid and cost-effective alternative 
method is much required. The effective identification of anticancer compounds using machine 
learning (ML) offers a promising solution, reducing both time and cost. In this study, small molecules 
with known inhibitory activities, both anticancer and non-anticancer were considered to train 
classification models. Molecular descriptors were calculated, and multistep feature selection was 
applied to identify significant features. Multiple ML algorithms were employed to build classification 
models and evaluated their performance using independent test and external datasets. The tree-
based ensemble model, particularly Light Gradient Boosting Machine (LGBM), achieved the highest 
prediction accuracy of 90.33%, with an area under the receiver operating characteristic curve (AUROC) 
of 97.31%. Consequently, LGBM model was implemented in our proposed method, ACLPred. The 
ACLPred demonstrated superior prediction accuracy with good generalizability compared to existing 
methods. SHapley Additive exPlanations (SHAP) analysis provided model interpretability and revealed 
that topological features made major contributions to decision-making. ACLPred is available as an 
open-source, user-friendly graphical interface at https://github.com/ArvindYadav7/ACLPred for the 
screening of potential anticancer compounds.
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Cancer continues to be a major cause of morbidity and mortality worldwide, with an estimated 20 million new 
cases and approximately 10 million deaths annually1,2. The global cancer burden is rising because of factors, 
such as lifestyle changes, an aging population, environmental pollution, and increased exposure to carcinogens. 
Understanding cancer pathogenesis is difficult because of its complexity, which arises from tumor heterogeneity, 
epigenetic changes, genetic mutations, and dynamic interactions within the tumor microenvironment3. Despite 
advances in targeted therapy, precision medicine, and early detection, the development of novel anticancer drugs 
remains a high priority. Consequently, researchers have focused on identifying small anticancer molecules with 
the desired efficacy to enhance existing cancer therapies4.

Small anticancer molecules are crucial for cancer treatment because they can precisely target cancer cells 
while minimizing toxicity to healthy tissue. These compounds are promising candidates for targeted therapy, 
as they frequently inhibit key proteins and signaling pathways involved in cancer progression5. Their small 
size facilitates improved cellular penetration, enhanced bioavailability, and easier chemical modification to 
optimize drug efficacy6. High-throughput screening of therapeutic molecules from large chemical libraries 
remains the most suitable method for identifying novel drug candidates7. However, conventional approaches, 
such as high-throughput screening and structure-based drug design, face limitations in efficiently identifying 
active compounds8,9. Furthermore, experimental methods for discovering anticancer molecules are expensive, 
time-consuming, and labor-intensive. Recent technological advancements have enabled the development 
of computational methods that streamline and accelerate the discovery of novel anticancer agents10. With 
the increasing availability of chemical libraries, biological datasets, and computational resources, artificial 
intelligence and machine learning (ML) have emerged as transformative tools in small-molecule cancer drug 
development11,12. Publicly available chemical compounds can be used to develop effective anticancer agents13–15. 
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These techniques allow the rapid identification of small chemical compounds with high success rates in 
preclinical and clinical development.

In contrast to traditional methods, ML algorithms can learn from large chemical datasets and prioritize 
high-potential compounds with notable precision, significantly reducing both time and cost16,17. ML-based 
approaches have achieved considerable success in drug repurposing18,19identifying target-specific anticancer 
molecules20,21and accurately predicting compound toxicity22,23. Integrating chemical information with ML 
enables researchers to efficiently screen millions of small molecules and prioritize those with the greatest 
therapeutic potential. Computational methods have also been developed to predict the activity of small 
anticancer compounds24,25often using cancer cell line data to forecast tissue-specific responses. Li and Huang 
developed the web server CDRUG26 to predict the anticancer activities of chemical compounds. It uses a weighted 
similarity score between query and active compounds and outperforms other baseline models, achieving an 
area under the curve of 0.87. Al-Jarf et al. introduced pdCSM27which utilizes graph-based signatures to predict 
anticancer properties of small molecules and achieved an area under the curve of 0.94 with 86% prediction 
accuracy. Recently, Balaji et al. proposed the ML-based method MLASM28which also screens small molecules 
for anticancer potential. This approach employed the Light Gradient Boosting Machine (LGBM) algorithm 
with molecular descriptors and achieved an accuracy of 79% on independent test data. However, despite these 
advancements, more robust and precise models are still needed to improve prediction accuracy and enhance 
anticancer compound screening.

In this study, we introduced an improved ML-based method for the prediction of anticancer small molecules 
using upgraded feature descriptors with a multistep feature selection strategy. After model optimization, we 
implemented an efficient LGBM-based anticancer ligand-prediction method called ACLPred. We followed 
the explainable ML technique to quantify the important descriptors that affect model prediction. The detailed 
construction workflow of ACLPred is shown in Fig.  1. Tenfold cross-validation and independent evaluation 
demonstrated that the proposed model achieved satisfactory performance for anticancer ligand identification. 
Moreover, it outperformed existing methods with improved prediction accuracy on independent test datasets. 
Thus, the successful implementation of this model will help improve the performance of ACLPred and offer a 
robust method for screening potential anticancer molecules from a large pool of compound databases.

Materials and methods
Data collection and processing
The selection of appropriate, fine, and accurately categorized datasets is crucial for the development of 
effective ML models. Here, we used the datasets curated by Balaji et al. for training and testing the MLASM 
method28retrieved from the PubChem BioAssay database29. After preprocessing, 5000 active and 5000 inactive 
anticancer small molecules were selected. A simplified molecular input line entry system (SMILES) was used to 
collect all of the molecules30. The Tanimoto coefficient (Tc)

31 was computed to measure the similarity among the 
molecules based on their fingerprints using the DataStructs Python package. It is defined as:

Fig. 1.  Workflow methodology for proposed ACLPred. RF random forest,  LGBM Light Gradient Boosting 
Machine,  DT decision tree,  LR logistic regression,  KNN knearest neighbors,  GB gradient boosting,  MCC 
Matthews correlation coefficient,  ROC  receiver operating characteristic curve.

 

Scientific Reports |        (2025) 15:31268 2| https://doi.org/10.1038/s41598-025-16575-4

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


	
Tc(A, B) = |A ∩ B|

|A| + |B| − |A ∩ B|

Where A and B are molecular fingerprints (bit vectors).|A ∩ B| is the number of common bits in both 
fingerprints.|A| and  |B| are the total numbers of bits for each fingerprint. Tc ranges from zero to one, and 
a higher coefficient indicates a greater degree of structural similarity. Molecules with a coefficient of > 0.85 
were excluded to filter out highly similar molecules. A total of 4706 active and 4867 inactive compounds were 
identified. Finally, a balanced dataset of 4706 active and 4706 inactive compounds was constructed.

Feature calculation
An effective numerical representation of molecules is crucial for the development of potential predictive models. 
Molecular descriptors and fingerprints have been demonstrated to be useful for predicting the properties of 
various small molecules22,32,33. Various types of descriptors were calculated for the chemical molecules 
represented as SMILES strings using the PaDELPy34 and RDKit35 libraries in Python. In total, 1446 one-
dimensional (1D) and two-dimensional (2D) descriptors and 881 molecular fingerprints (FP) with a bit vector 
size of 2048 were calculated using PaDELPy. RDKit produced a total of 210 molecular descriptors. We combined 
these three categories of descriptors and removed duplicate descriptors; the feature extraction process yielded 
2536 descriptors. Before model training, we examined the descriptor dataset for missing (NaN) and infinite 
values. Descriptors with missing values were substituted with zero, based on the assumption that the absence of 
a descriptor may indicate a lack of the corresponding molecular feature. Infinite values were replaced with the 
mean of the corresponding column, as these were considered likely to result from division or transformation 
artifact. Thus, these enriched and diverse feature sets present broad molecular properties of the compounds 
which can be utilized to build a reliable model.

Feature selection
A dataset with many inappropriate features can reduce the model’s performance, leading to overfitting, slower 
computation, and poor prediction. Our dataset comprised 2536 features for 9412 molecules. To select the most 
relevant features from the dataset, we used a feature-selection process to make the model more accurate and 
efficient. Additionally, this process helps with dimensionality reduction, faster computation, and the prevention 
of overfitting. A Python environment was used to execute all the feature selection techniques36.

Variance and correlation filter
First, we used the variance threshold to filter out low-variance features from the dataset because features with 
very low variance do not contribute useful information to the model. The variance was calculated using the 
following formula and features’ variance < 0.05 were dropped from the dataset.

	
V ar(Xj) = 1

n

n∑
i=1

(xij − x̄j)2

where Xj  represents feature column j, xij  is the value of feature j for sample i, 
−
xj  is the mean of feature j, 

and n is the number of samples.
Furthermore, we used a correlation threshold of 0.85 to eliminate the strongly correlated features. Correlation 

between features was calculated using the following Pearson correlation coefficient formula:

	
rxy =

∑
(xi − x̄) − (yi − ȳ)√∑

(xi − x̄)2 ·
∑

(yi − ȳ)2

Where x, y represent feature vectors, 
−
x,

−
y  represents means of vectors x and y, respectively, and rxy  represents 

the pearson correlation coefficient between x and y.
These relevant filtrations were used with the VarianceThreshold technique available in the scikit-learn 

package37 to ensure that only the important features remained. These processes revealed 1313 features for all 
molecules.

Boruta algorithm
Boruta is a powerful random forest (RF) classifier-based feature selection algorithm that can identify statistically 
important features in high-dimensional datasets38. The Boruta algorithm evaluates the importance of each 
original feature in proportion to its matching shadow feature to separate important features from those that are 
not. It computes importance Z-scores for each original feature j as follows:

	
Zj =

Importancej − µshadow

σshadow

where Importancej represents the importance score of original features j , and   μshadow and   αshadow are represents 
mean and standard deviation of importance scores of shadow features.
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The algorithm chooses a feature set that is highly appropriate for the dependent variable ( Zj  ≫  
max( Zshadow)), instead of selecting the smallest feature set for which a particular model is most suitable. This 
method produced 431 important features with strong predictive power for anticancer small molecules.

Mutual information
A mutual information feature selection technique was used to select a set of descriptors that could capture 
most information regarding the target variable39. It describes the relation between each molecular descriptor 
and the anticancer label in terms of uncertainty, i.e., entropy. When the two variables are independent, the 
mutual information value is zero, and a higher value indicates greater dependency. Therefore, the goal was to 
select features with a higher score for mutual information regarding the anticancer target variable. The mutual 
information score was calculated using a stratified 10-fold cross-validation with a threshold value of 0.025 for 
each feature in the training dataset. Finally, this process resulted in a total of 330 highly relevant features. The 
mutual information between a feature X and target Y is defined as:

	
I(X; Y ) =

∑
x∈X

∑
y∈Y

p(x, y) · log
(

p(x, y)
p(x) · p(y)

)

Where X  is a feature, Y   is the target variable,p(x, y) is the join probability of x  and y occurring together, 
and p(x), p(y) are marginal probabilities of x and y.

Thus, the rigorous feature selection process produced a set of significant features (Table 1) for anticancer 
prediction. This approach enhances the interpretability of the models, decreases the risk of overfitting, and 
enhances their anticancer predictive capabilities.

Model training
Using a random state of 42, we split the dataset at a ratio of 80:20 for training and testing the models to predict 
the anticancer molecules. To offer a baseline assessment of the model’s generalization abilities throughout the 
complete dataset, a random split was selected. Training dataset (80% data) was subjected to 10-fold cross-
validation for model building and tuning hyperparameters. The test set (20% data) was kept entirely separate and 
used only for final performance evaluation. Within the training set, six popular ML algorithms, namely decision 
tree (DT)40, RF41, gradient boosting (GB)42, LGBM43, logistic regression (LR)44,  and k-nearest neighbors45, were 
used for model training. The DT is an effective approach that generates a tree-like structure by dividing data 
according to feature values to make decisions40. An ensemble learning technique called RF builds several DTs 
and makes predictions by calculating the mean of the decisions of each tree41. GB and LGBM are tree-based 
ensemble techniques, particularly GB algorithms, which generate a strong classifier by combining multiple weak 
classifiers46. To maximize the prediction accuracy, GB creates models in a sequential manner, where each new 
model focuses on fixing the errors of the earlier models to improve the prediction accuracy42. LGBM is an 
improved and highly efficient GB framework optimized for speed and memory consumption43. LR models a 
binary dependent variable and calculates the likelihood of a specific class using a logistic function44. K-nearest 
neighbors is a supervised algorithm that makes predictions on how close a data point is to its closest neighbors 
within a training set45. All algorithms for model training were implemented using scikit-learn in the Python 
programming language37. Appropriate hyperparameter tuning (Supplementary Table S1) was employed for all 
the ML models using a grid search approach to determine the optimal model. Subsequently, a 20% independent 
test dataset was used to evaluate the transferability of the trained models.

Model evaluation
Several metrics including as accuracy, precision, recall, F1 score, Matthews correlation coefficient (MCC), and 
area under the receiver operating characteristic curve (AUROC), were used to assess the model’s performance. 
Accuracy is an important parameter that represents the proportion of correct predictions of a model based on 
true positive and true negative predictions. Precision represents how many of the positive predictions made 
by the model are actually positive. Recall measures the model’s ability to distinguish between actual positive 
predictions. The MCC evaluates the quality of binary classifications. A higher MCC value indicates a better 
model. The F1 score measures the balance of precision and recall and is helpful when minimizing both false 
positives and negatives. AUROC evaluates the discriminative capability of the model between classes. This is 
particularly helpful in assessing various models and their adaptability to various conditions. A higher AUROC 
value represents a better classification performance across various thresholds. As 10-fold cross-validation 
was applied during model training, the final reported results represent the average performance across all 10 
folds. Further, to evaluate whether performance differences between models were statistically significant, we 

Step Features retained Features removed Criteria (threshold)

Initial descriptors 2536 – All computed molecular descriptors

Variance & correlation filtering 1313 1223 Variance filter (0.05), and correlation filter (0.85)

Boruta algorithm 431 882 Importance-based selection using random forests

Mutual information 330 101 Top features by mutual information score (0.025)

Table 1.  Summary of the feature selection process.
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conducted a pairwise statistical t-test on 10-fold cross-validation results of model accuracy. A p-value < 0.05 was 
considered statistically significant.

Model prediction explanation
ML models are used to classify chemical compounds based on their properties, such as biological activities, 
pharmacokinetics, and molecular structure, helping researchers accelerate drug candidates47. To make these 
predictions, ML models use large and diverse datasets. However, it can be difficult to recognize the logic behind 
ML models’ predictions, which are sometimes supposed of as opaque and black-box techniques. Understanding 
the underlying causes of accurate ML prediction is of great interest, particularly in pharmaceutical research48,49. 
Explainable ML techniques, such as SHapley Additive explanations (SHAP)50, offer novel opportunities to 
uncover the opaqueness of black-box models and offer a more understandable and transparent decision-making 
process51,52. In this study, the SHAP Python package was used to calculate SHAP values and generate a plot.

Results
Performance evaluation of models
We utilized 2537 1D, 2D, and FP chemical descriptors as our processed data and applied a multi-technique 
feature selection strategy to identify the significantly contributing features. The final selected features were 
input into six different ML algorithms for model training to predict anticancer compounds. To improve model 
performance, hyperparameter optimization was performed using GridSearchCV on the training dataset 
with 10-fold cross-validation techniques. All reported metrics are averaged over the 10 folds used in cross-
validation. The tree-based ensemble algorithm, LGBM, outperformed the other models and attained the 
maximum accuracy of 90.68% on the training dataset and 90.33% on the test dataset (Fig. 2). The comprehensive 
performance evaluation of the classification algorithms, including AUROC, accuracy, precision, recall, F1 score, 
and MCC are presented in Table 2. For each metric, the highest score achieved by any model is highlighted in 
bold. It was observed that LGBM performed best in terms of all evaluated metrics. The lowest performance was 
obtained with the LR model, with prediction accuracies of 72.03% and 72.65% for the training and test datasets, 
respectively. The tree-based ensemble model LGBM also achieved the highest AUROC (97.73% for training 
and 97.31% for testing, respectively. The area under precision-recall curve for test set was 97.6% (Fig. 3A,B). 
This shows that LGBM efficiently classified the dataset between anticancer and non-anticancer drugs with 
better precision. Furthermore, the model performance results demonstrated that tree-based algorithms, such as 
LGBM, GB, DT, and RF, performed well. A paired t-test was performed to statistically compare the performance 
of each classifier, and the obtained p-values are visualized as a heatmap in Supplementary Fig. S1. Our top 
performing LGBM model exhibited statistically significant difference compared to all other models (p < 0.001), 
except for GB (p = 0.0645). Similarly, RF and DT showed no significant difference (p = 0.4955), while all other 
model comparison were significant (p = 0.001). This analysis highlights that model selection substantially affects 
performance outcomes.

Fig. 2.  Accuracy comparison of the performance of the models on training and test datasets. (RF random 
forest,  LGBM  Light Gradient Boosting Machine, DT decision tree,  LR logistic regression,  KNN k-nearest 
neighbors,  GB, gradient boosting).
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Comparison of our model with the existing model
To demonstrate the performance and efficiency of ACLPred, we compared its performance with that of recently 
developed tree-based ensemble method and other existing methods. We compared the training and testing 
performances of MLASM and ACLPred because both were developed using the same dataset. Compared to 
MLASM, ACLPred showed superior performance in terms of all measured evaluation metrics for both datasets 
(Fig. 4). With the accuracy gain of 13.68% and 11.33% for the training and testing datasets, respectively, ACLPred 
demonstrated a notable improvement. The improvements in AUROC were 12.73% and 9.31% for the training 
and testing datasets, respectively. Additionally, we compared the performance of our proposed method with 
that of other existing cell line-specific anticancer prediction methods. However, these methods use different 
datasets to predict tissue-specific anticancer compounds. The prediction performances of all methods are listed 
in Table 3.

SHAP analysis for feature interpretation
After evaluating the effectiveness of the LGBM, we conducted a model interpretation analysis. SHAP was used 
to predict the most significant features influencing the model’s capacity for anticancer ligand prediction. SHAP 
offers comprehensible and straightforward perceptions into the decision-making processes of complex models 
by rating the significance of variables based on their impact on the predictions. The most significant molecular 
descriptors that aid in the prediction of anticancer ligand in the LGBM model were arranged according to 
their SHAP values and are depicted on the vertical axis of the SHAP summary plot (Fig.  5). The horizontal 
axis represents the SHAP values, which indicate the influence of each descriptor on the output distribution of 
the model. Among the top 20 descriptors shown in Fig. 5, IPC (information for polynomial coefficients-based 
information theory) appears as the top influential descriptor. A higher positive SHAP value of IPC demonstrates 
the increased probability of a chemical compound being identified as an anticancer agent.

Fig. 3.  Performance evaluation with area under the receiver operating characteristic curve (AUROC) and area 
under precision-recall curves (AUPRC) for different machine learning models. (A) AUROC and (B) AUPRC 
for the test data. (RF random forest, LGBM Light Gradient Boosting Machine, DT decision tree, LR logistic 
regression, KNN k-nearest neighbors, GB gradient boosting).

 

Model

Training Testing

AUROC Acc Pre Recall F1 MCC AUROC Acc Pre Recall F1 MCC

LGBM 97.73 90.68 91.55 89.57 90.54 81.37 97.31 90.33 92.03 88.31 90.13 80.73

GB 96.90 90.17 90.94 89.20 90.05 80.34 96.83 89.91 91.49 87.99 89.71 79.88

RF 94.02 86.30 88.28 83.69 85.91 72.68 93.97 85.98 87.74 83.63 85.64 72.04

LR 79.44 72.03 73.63 68.68 71.03 44.19 81.38 72.65 73.93 69.93 71.87 45.37

DT 90.57 86.01 87.74 83.71 85.66 72.10 90.15 84.97 87.82 81.19 84.37 70.14

KNN 85.76 75.21 78.23 69.83 73.76 50.73 85.84 74.19 77.05 68.86 72.73 48.65

Table 2.  Performance comparison of various models on both the training (average performance of 10-
fold cross-validation) and test datasets, shown in percentage. Top performance values of each metric are 
highlighted in bold. Metrics: AUROC area under the receiver operating characteristic curve, Acc accuracy, 
Pre precision, F1 = F1 score, MCC Matthews correlation coefficient. RF random forest, LGBM Light Gradient 
Boosting Machine, DT decision tree, LR logistic regression, KNN k-nearest neighbors, GB gradient boosting.
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A summary of the top 20 important descriptors predicted by SHAP, with higher contributions toward 
anticancer ligand prediction, is shown in Table 4. Among the top descriptors, 12 were from PaDEL, and the 
remaining eight were from RDKit. The highest correlation with the anticancer class was observed with the 
topological descriptor ipc, which quantifies the structural complexity of the molecules. Of the 20 descriptors, six 
(ipc, MolLogP, R_TpiPCTPC, VSA_Estate10, AATS8v, and SpMAD_Dt) were highly correlated with the positive 
class means toward anticancer prediction (Fig. 5). This shows that these descriptors are crucial for pushing the 
model toward the prediction of anticancer compounds.

External validation and benchmarking
We further tested this using a blind dataset to verify the robustness and generalizability of ACLPred. Balaji 
et al. performed external validation of the existing MLASM method using a very small dataset (n = 10). This 
small sample size may not be sufficient to draw robust assumptions about the effectiveness and generalizability 
of the model across diverse scenarios. To overcome this limitation, we emphasize the necessity of a larger and 
more comprehensive dataset for rigorous evaluation of the model. Therefore, we collected Food and Drug 
Administration (FDA)-approved cancer drugs from the Anticancer Fund database ​(​​​h​t​t​p​s​:​/​/​w​w​w​.​a​n​t​i​c​a​n​c​e​r​f​
u​n​d​.​o​r​g​/​​​​​)​​​5​3​​ as a blind dataset. A total of 180 FDA-approved cancer drugs available with SMILES data were 
considered in our final dataset. The dataset was compared to the training and testing datasets to ensure that no 
compounds were present in the main dataset. Of the 180 FDA-approved cancer drugs, 162 (90%) were predicted 
to be active anticancer compounds (Supplementary Table S2). Furthermore, benchmarking our proposed 
method with existing methods is crucial for assessing its performance. However, again, we faced limitations in 
our comparisons with the existing model on a blind dataset, as MLASM has no publicly available source code or 
implementation details. This restriction indicates that computational research must be more open and accessible 

Method AUC Accuracy Sensitivity MCC

ACLPred 97 90 88 80

pdCSM-cancer 94 86 84 72

MLASM 88 79 74 58

CDRUG 87 * 81 *

Table 3.  Performance of ACLPred along with the existing methods on their independent test dataset. 
*Accuracy and MCC predictive scores were not reported by CDRUG. AUC area under the curve, MCC 
Matthews correlation coefficient.

 

Fig. 4.  Performance comparison of ACLPred with the previously published method MLASM using the same 
dataset. (AUROC area under the receiver operating characteristic curve,  Acc accuracy,  MCC  Matthews 
correlation coefficient).
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to facilitate comprehensive benchmarking and reproducibility. Other existing methods, such as pdCSM-cancer 
and CDRUG, predict activity against cancer cell lines; therefore, direct comparisons with our method are not 
feasible. Consequently, although we report strong performance, caution should be exercised when interpreting 
our results relative to prior work.

Discussion
The prevalence of cancer is rising worldwide; hence, the development of new anticancer drugs with high 
therapeutic potential is essential for cancer treatment. The discovery of new drug candidates that can inhibit 
the function of target proteins includes extensive screening and experimental analyses of large chemical 
libraries54. However, the identification of new anticancer drugs from this high-throughput data era is labor-
intensive, costly, and time-consuming55. Therefore, a combined strategy incorporating both experimental and 
computational methods is extremely important. Computationally, it is possible to identify molecules with 
chemical structures similar to those of the active lead compounds. Moreover, the availability of a large chemical 
library encourages the use of cutting-edge technologies, such as ML, for the fast and efficient prediction of 
potential lead compounds56,57.

In this study, we developed an ML-based screening method for small-molecule anticancer compounds. We 
used 5000 active (anticancer) and 5000 inactive (non-anticancer) compounds based on their activities extracted 
from the PubChem BioAssay database used by Balaji et al. Redundant and structurally similar compounds with 
a Tc score of > 0.85 were removed. Finally, a balanced dataset of 4706 active and inactive compounds was fed 
for descriptor calculations using the Python package implementations of PaDEL and RDKit. Feature selection 
was performed to identify relevant descriptors for developing robust and accurate models. The performance of 
ML models can be enhanced by using feature selection techniques before model construction58. Additionally, 
multistep feature selection techniques achieve high prediction accuracy with more clinical interpretability22,59. 
Therefore, we applied multistep feature selection techniques to determine the optimum number of top-ranked 
features. The final dataset contained 330 descriptors, of which 275, six, and 49 were from PaDEL, FP, and RDKit, 
respectively. The dataset was subjected to model training and testing using various ML algorithms. Among the 

Fig. 5.  Feature interpretation with SHapley Additive explanations (SHAP) analysis for the light gradient 
boosting machine model shows the impact of each feature on anticancer molecule predictions. Features are 
ranked by SHAP values based on their contribution to the model. Positive SHAP values increase the likelihood 
of anticancer prediction, whereas negative values decrease it.
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six ML algorithms used, tree-based algorithms are the most common because ensemble-based tree methods are 
more efficient and robust for prediction46. The model was trained using a 10-fold cross-validation technique, 
and its performance was assessed using a test dataset. The outcomes showed that the tree-based methods 
outperformed the others (Table  2). The maximum performance was achieved by the tree-based ensemble 
method, LGBM, with an AUROC of 97.31%, an accuracy of 90.33%, an F1 score of 90.13%, and a precision of 
92.03% on the independent test dataset. AUROC and area under precision-recall curves (AUPRC) were drawn 
to visually represent the predictive proficiency of our models (Fig.  3A,B). The AUROC and AUPRC values 
obtained by the LGBM model were 97.31% and 97.60% on the testing datasets, respectively, highlighting the 
robustness of our top-performing model. Furthermore, statistical analysis confirmed that our top performing 
LGBM model differed significantly (p < 0.001) with other models except GB. These finding emphasizing 
importance of model selection and supporting the robustness of its predictive capability (Supplementary Fig.  
S1). A comparative study suggested that GB algorithms are more efficient in predicting molecular properties60. 
Therefore, we decided to implement a tree-based ensemble method, LGBM, in our proposed ACLPred method. 
LGBM has been applied in various prediction methods because of its high prediction accuracy, capacity to 
minimize overfitting problems, and fast computing time61–63. The existing method MLASM28 also achieved 
the maximum performance with LGBM algorithm using the same dataset. Our method achieved superior 
performance compared to MLASM employing the same algorithm (Fig. 4). It achieved improved prediction 
accuracies of 13.68% and 11.33% for the training and testing datasets, respectively. This improvement can be 
largely attributed to the data processing and implementation of a rigorous multistep feature selection strategy. It 
allowed to identify the most informative descriptors while reducing the overfitting and noise. It is also important 
to note that our feature vectors are 330-dimensional, whereas MLASM uses 510-dimentional, which lowers 
the computing cost. These findings highlight the significance of careful feature selection to develop a robust 
and generalizable ML model for chemical screening applications. We further evaluated the ACLPred using an 
external validation dataset, confirming its robustness capability across unseen data. FDA-approved drugs were 
considered validation and ACLPred positively predicted 90% drugs as anticancer compounds (Supplementary 
Table S2), which further highlighted the robustness of the proposed method.

Beyond model accuracy, the broader acceptance of computational methods in pharmaceutical research 
depends heavily on the interpretability of predictions64. A model explainability analysis using SHAP was 
performed to improve trust in and adoption of the model. SHAP can pinpoint the factors that affect a model’s 
decision and facilitate a deeper understanding of the predictive mechanisms behind compound activity models52. 
In our LGBM model, the topology-based descriptor ipc was identified as the top influencing descriptor (Fig. 5). 
It computes the frequency distribution of atoms and their connectivity in the molecule and quantifies the 
complexity of the molecular graph65. Other highly correlated descriptors in the positive class, such as MolLogP, 
R_TpiPCTPC, VSA_Estate10, AATS8v, and SpMAD_Dt, exhibit diverse physicochemical and topological 
properties relevant to anticancer activity66,67. MolLogP determines the lipophilicity of a compound and is a key 
physicochemical factor that affects membrane permeability, absorption, and bioavailability68. R_TpiPCTPC is 

Descriptor name Tool Descriptor class Description

ipc RDKit Topological The amount of information included in the coefficients of the characteristic polynomial of a 
hydrogen-suppressed molecular graph’s adjacency matrix.

SP-1 PaDEL Chi Path Based on a simple path of length one in the molecule’s molecular graph.

nBonds PaDEL Bond count Number of bonds.

BCUT2D_MRLOW RDKit BCUT Calculates the lowest atomic contribution to molar refractivity (MR).

MolLogP RDKit Molecular property Wildman–Crippen LogP value.

bpol PaDEL BPol Total atomic polarizabilities of all bonded atoms (including implicit hydrogens) with respect to their 
absolute disparities.

WTPT-1 PaDEL Weighted path Sums the weights of atom pairs connected by a single bond in the molecule.

nAtomP PaDEL Largest Pi system Number of atoms in the largest π-system.

R_TpiPCTPC PaDEL Path count The proportion of total path count (up to order 10) to total conventional bond order (up to order 10).

VSA_Estate10 RDKit MOE-type Represents the compound’s electrical state and its propensity to give or receive electrons.

AATS8v PaDEL Autocorrelation Weighted by van der Waals volumes, the average Broto–Moreau autocorrelation (lag 8) follows.

VSA_Estate4 RDKit MOE-type Calculates Estate values for specific atom types.

VSA_Estate3 RDKit MOE-type Calculates Estate values for different atom types.

ATSC3s PaDEL Autocorrelation Weighted by intrinsic state, Centered Broto–Moreau autocorrelation (lag 3).

SpMAD_Dt PaDEL Detour matrix Spectral mean absolute deviation from the detour matrix.

minHCsatu PaDEL Constitutional Minimum number of hydrogen atoms attached to saturated atoms.

fr_Ar_N RDKit Fragment-based Counts the number of aromatic nitrogen atoms in a molecule.

PEOE_VSA12 RDKit MOE-type Represents total van der Waals surface area within a defined range.

mindsCH PaDEL Electrotopological state 
atom type E-State minimum for = CH − atom types.

nHeteroRing PaDEL Ring count Number of rings with heteroatoms (halogens, N, O, P, or S).

Table 4.  Summary of the top 20 contributing descriptors predicted through SHapley additive explanations 
analysis. MOE Molecular Operating Environment, BPol Bond Polarizability, BCUT Burden Eigenvalue.
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associated with the topology and size of the molecule and captures bond order and path information that reveals 
chemical properties69. VSA_Estate10 represents the van der Waals surface area and electronic state information 
of the compound, which is crucial for understanding ligand-receptor interactions70. The AATS8v descriptor 
calculates atomic van der Waals forces at a specific lag, capturing distribution patterns related to steric effects and 
molecular shape71. SpMAD_Dt is a spectral movement descriptor that describes atom-atom distances within 
a molecule and reflects overall molecular topology72. The top-ranked features are those that our model finds 
most important when making predictions. It is not necessarily that such features are the most prevalent in 
the dataset; rather, they are the most predictive of biological activity according to the patterns the model has 
learned. Therefore, the highlighted decision-making descriptors have biological significance and play a major 
role in the model’s decision to classify a compound as anticancer or non-anticancer. Thus, the aforementioned 
analysis suggests that ACLPred shows substantial improvements and is more practically applicable than existing 
methods.

Standalone method
To provide a fast and efficient method for anticancer small-molecule prediction, we have provided a GUI-based 
Python package available at https://github.com/ArvindYadav7/ACLPred. The GUI framework of ACLPred is 
developed using the tkinter library of Python and looks like Fig. 6. This freely accessible, standalone ACLPred 
provides flexibility to users. It allows users to manually input or upload an input CSV file containing one or 
multiple SMILES strings for prediction. The output result stored in a CSV file indicates whether the given 
compounds have predicted as ‘active’ (anticancer) or ‘inactive’ (non-anticancer) with their prediction probability 
score. This flexible, standalone method facilitates the screening of larger datasets and enhances its practical 
utility. Comprehensive user guidelines on using the application can be found on the GitHub link.

Conclusion
In this study, six ML algorithms were used to build robust and efficient predictive models of anticancer 
compounds. Many features, such as molecular descriptors and fingerprints, were utilized for model training 

Fig. 6.  Graphical user interface (GUI)-based prediction platform of ACLPred.
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using different feature selection techniques. The models were evaluated using various performance metrics, and 
the tree-based ensemble method (LGBM) outperformed the others. The results also suggest that the multistep 
feature selection technique effectively reduced data dimensionality while improving the model’s prediction 
performance. FDA-approved cancer drugs were used in the external dataset to evaluate the reliability and 
generalizability of the model. Furthermore, an explainability analysis of the LGBM revealed the important 
molecular characteristics driving its anticancer properties. Finally, by implementing our tree-based ensemble 
method, LGBM, we developed ACLPred for the rapid and efficient prediction of anticancer compounds. 
Moreover, ACLPred outperformed existing methods across all evaluation metrics, and its availability as a 
standalone, GUI-based tool facilitates the screening of anticancer compounds. We believe ACLPred will be a 
beneficial resource for identifying novel and potential anticancer compounds. While the present study provides 
promising in silico predictions, further investigations such as toxicity evaluation, ADMET profiling, and in vivo 
validation are essential to establish the therapeutic relevance of the identified compounds.

Data availability
The code and dataset are available at https://github.com/ArvindYadav7/ACLPred.

Received: 10 June 2025; Accepted: 18 August 2025

References
	 1.	 Organization, W. H. O. Cancer.  ​h​t​t​p​s​:​​​/​​/​w​w​​w​.​w​h​​o​.​i​​n​t​/​n​e​​​w​s​-​r​​o​​o​m​/​f​​a​​c​t​-​s​h​​e​​e​t​s​/​d​​e​​t​a​i​l​/​c​a​n​c​e​r (2025). 
	 2.	 Yadav, A. K. & Singh, T. R. Computational approach for assessing the involvement of SMYD2 protein in human cancers using 

TCGA data. J. Genetic Eng. Biotechnol. 21, 122 (2023).
	 3.	 AlJarf, R., Rodrigues, C. H. M., Myung, Y., Pires, D. E. V. & Ascher, D. B. PiscesCSM: prediction of anticancer synergistic drug 

combinations. J. Cheminform. 16, 81 (2024).
	 4.	 Manica, M. et al. Toward explainable anticancer compound sensitivity prediction via multimodal Attention-Based convolutional 

encoders. Mol. Pharm. 16, 4797–4806 (2019).
	 5.	 Zhong, L. et al. Small molecules in targeted cancer therapy: advances, challenges, and future perspectives. Sig Transduct. Target. 

Ther. 6, 1–48 (2021).
	 6.	 Liu, B., Zhou, H., Tan, L., Siu, K. T. H. & Guan, X. Y. Exploring treatment options in cancer: tumor treatment strategies. Sig 

Transduct. Target. Ther. 9, 1–44 (2024).
	 7.	 Martin, R. L., Heifetz, A., Bodkin, M. J. & Townsend-Nicholson, A. High-Throughput Structure-Based drug design (HT-SBDD) 

using drug docking, fragment molecular orbital calculations, and molecular dynamic techniques. Methods Mol. Biol. 2716, 293–
306 (2024).

	 8.	 Pala, D. & Clark, D. E. Caught between a ROCK and a hard place: current challenges in structure-based drug design. Drug 
Discovery Today. 29, 104106 (2024).

	 9.	 Batool, M., Ahmad, B. & Choi, S. A. Structure-Based drug discovery paradigm. Int. J. Mol. Sci. 20, 2783 (2019).
	10.	 Lin, X., Li, X. & Lin, X. A. Review on applications of computational methods in drug screening and design. Molecules 25, 1375 

(2020).
	11.	 Duo, L. & Liu,Yu, R. Jianfeng, tang, Bencan & and hirst, J. D. Artificial intelligence for small molecule anticancer drug discovery. 

Expert Opin. Drug Discov. 19, 933–948 (2024).
	12.	 Sayers, E. W. et al. Database resources of the National center for biotechnology information in 2025. Nucleic Acids Res. 53, D20–

D29 (2025).
	13.	 Zheng, S. et al. Machine learning–enabled virtual screening indicates the anti-tuberculosis activity of aldoxorubicin and Quarfloxin 

with verification by molecular docking, molecular dynamics simulations, and biological evaluations. Brief. Bioinform. 26, bbae696 
(2025).

	14.	 Dai, W., Li, L. & Guo, D. Integrating bioassay data for improved prediction of drug-target interaction. Biophys. Chem. 266, 106455 
(2020).

	15.	 Schapin, N., Majewski, M., Varela-Rial, A., Arroniz, C. & Fabritiis, G. D. Machine learning small molecule properties in drug 
discovery. Artif. Intell. Chem. 1, 100020 (2023).

	16.	 Paul, D. et al. Artificial intelligence in drug discovery and development. Drug Discov Today. 26, 80–93 (2021).
	17.	 Zhang, K. et al. Artificial intelligence in drug development. Nat. Med. 31, 45–59 (2025).
	18.	 Cai, L. et al. Machine learning for drug repositioning: recent advances and challenges. Curr. Res. Chem. Biology. 3, 100042 (2023).
	19.	 Urbina, F., Puhl, A. C. & Ekins, S. Recent advances in drug repurposing using machine learning. Curr. Opin. Chem. Biol. 65, 74–84 

(2021).
	20.	 Kumar, R., Chaudhary, K., Singla, D., Gautam, A. & Raghava, G. P. S. Designing of promiscuous inhibitors against pancreatic 

cancer cell lines. Sci. Rep. 4, 4668 (2014).
	21.	 He, S. et al. Machine learning enables accurate and rapid prediction of active molecules against breast cancer cells. Front Pharmacol 

12, (2021).
	22.	 Goel, M., Amawate, A., Singh, A., Bagler, G. & ToxinPredictor Computational models to predict the toxicity of molecules. 

Chemosphere 370, 143900 (2025).
	23.	 Setiya, A., Jani, V., Sonavane, U. & Joshi, R. MolToxPred: small molecule toxicity prediction using machine learning approach. RSC 

Adv. 14, 4201–4220 (2024).
	24.	 Menden, M. P. et al. Machine learning prediction of cancer cell sensitivity to drugs based on genomic and chemical properties. 

PLOS ONE. 8, e61318 (2013).
	25.	 Singh, H. et al. Prediction of anticancer molecules using hybrid model developed on molecules screened against NCI-60 cancer 

cell lines. BMC Cancer. 16, 77 (2016).
	26.	 Li, G. H. & Huang, J. F. CDRUG: a web server for predicting anticancer activity of chemical compounds. Bioinformatics 28, 

3334–3335 (2012).
	27.	 Al-Jarf, R., de Sá, A. G. C., Pires, D. E. V. & Ascher, D. B. pdCSM-cancer: using Graph-Based signatures to identify small molecules 

with anticancer properties. J. Chem. Inf. Model. 61, 3314–3322 (2021).
	28.	 Balaji, P. D., Selvam, S., Sohn, H. & Madhavan, T. MLASM: machine learning based prediction of anticancer small molecules. Mol. 

Divers. 28, 2153–2161 (2024).
	29.	 Wang, Y. et al. PubChem’s bioassay database. Nucleic Acids Res. 40, D400–D412 (2012).
	30.	 Weininger, D. SMILES, a chemical Language and information system. 1. Introduction to methodology and encoding rules. J. 

Chem. Inf. Comput. Sci. 28, 31–36 (1988).

Scientific Reports |        (2025) 15:31268 11| https://doi.org/10.1038/s41598-025-16575-4

www.nature.com/scientificreports/

https://github.com/ArvindYadav7/ACLPred
https://www.who.int/news-room/fact-sheets/detail/cancer
http://www.nature.com/scientificreports


	31.	 Bajusz, D., Rácz, A. & Héberger, K. Why is Tanimoto index an appropriate choice for fingerprint-based similarity calculations? J. 
Cheminform. 7, 20 (2015).

	32.	 Carracedo-Reboredo, P. et al. A review on machine learning approaches and trends in drug discovery. Comput. Struct. Biotechnol. 
J. 19, 4538–4558 (2021).

	33.	 Galushka, M. et al. Prediction of chemical compounds properties using a deep learning model. Neural Comput. Applic. 33, 13345–
13366 (2021).

	34.	 Yap, C. W. PaDEL-descriptor: an open source software to calculate molecular descriptors and fingerprints. J. Comput. Chem. 32, 
1466–1474 (2011).

	35.	 RDKit Open-Source Cheminformatics Software. https://www.rdkit.org/.
	36.	 Sanner, M. F. Python: a programming Language for software integration and development. J. Mol. Graph Model. 17, 57–61 (1999).
	37.	 Pedregosa, F. et al. Scikit-learn: machine learning in python. J. Mach. Learn. Res. 12, 2825–2830 (2011).
	38.	 Kursa, M. B. & Rudnicki, W. R. Feature selection with the Boruta package. J. Stat. Softw. 36, 1–13 (2010).
	39.	 Steuer, R., Kurths, J., Daub, C. O., Weise, J. & Selbig, J. The mutual information: detecting and evaluating dependencies between 

variables. Bioinformatics 18 (Suppl 2), S231–240 (2002).
	40.	 SONG, Y. & LU, Y. Decision tree methods: applications for classification and prediction. Shanghai Arch. Psychiatry. 27, 130–135 

(2015).
	41.	 Biau, G. & Scornet, E. A random forest guided tour. TEST 25, 197–227 (2016).
	42.	 Friedman, J. H. Greedy function approximation: A gradient boosting machine. Annals Stat. 29, 1189–1232 (2001).
	43.	 Ke, G. et al. Curran associates, Inc.,. LightGBM: A highly efficient gradient boosting decision tree. In Advances in Neural 

Information Processing Systems 30, (2017).
	44.	 Kleinbaum, D. G. & Klein, M. Introduction to logistic regression. In Logistic Regression: A Self-Learning Text (eds. Kleinbaum, D. 

G. & Klein, M.) 1–39. https://doi.org/10.1007/978-1-4419-1742-3_1 (Springer, 2010). 
	45.	 Kramer, O. K-Nearest neighbors. In Dimensionality Reduction with Unsupervised Nearest Neighbors (ed. Kramer, O.) 13–23 

(Springer, 2013). https://doi.org/10.1007/978-3-642-38652-7_2.
	46.	 Mahajan, P., Uddin, S., Hajati, F. & Moni, M. A. Ensemble learning for disease prediction: A review. Healthc. (Basel). 11, 1808 

(2023).
	47.	 Rodríguez-Pérez, R. & Bajorath, J. Interpretation of machine learning models using Shapley values: application to compound 

potency and multi-target activity predictions. J. Comput. Aided Mol. Des. 34, 1013–1026 (2020).
	48.	 Ribeiro, M. T., Singh, S. & Guestrin, C. ‘Why Should I Trust You?’: Explaining the Predictions of Any Classifier. ​h​t​t​p​s​:​/​/​d​o​i​.​o​r​g​/​1​0​.​4​

8​5​5​0​/​a​r​X​i​v​.​1​6​0​2​.​0​4​9​3​8​​​​  (2016).
	49.	 Polishchuk, P. Interpretation of quantitative Structure–Activity relationship models: past, present, and future. J. Chem. Inf. Model. 

57, 2618–2639 (2017).
	50.	 Lundberg, S. & Lee, S. I. A Unified Approach to Interpreting Model Predictions. https://doi.org/10.48550/arXiv.1705.07874 (2017). 
	51.	 Karim, M. R. et al. Explainable AI for bioinformatics: methods, tools and applications. Brief. Bioinform. 24, bbad236 (2023).
	52.	 Rodríguez-Pérez, R. & Bajorath, J. Interpretation of compound activity predictions from complex machine learning models using 

local approximations and Shapley values. J. Med. Chem. 63, 8761–8777 (2020).
	53.	 Pantziarka, P., Capistrano, I., De Potter, R., Vandeborne, A., Bouche, G. & L. & An open access database of licensed cancer drugs. 

Front. Pharmacol. 12, 627574 (2021).
	54.	 Yadav, A. K., Singh, T. R. & and Novel inhibitors design through structural investigations and simulation studies for human PKMTs 

(SMYD2) involved in cancer. Mol. Simul. 47, 1149–1158 (2021).
	55.	 Vamathevan, J. et al. Applications of machine learning in drug discovery and development. Nat. Rev. Drug Discov. 18, 463–477 

(2019).
	56.	 Rehman, A. U. et al. Role of artificial intelligence in revolutionizing drug discovery. Fundamental Res. ​h​t​t​p​s​:​/​/​d​o​i​.​o​r​g​/​1​0​.​1​0​1​6​/​j​.​f​m​

r​e​.​2​0​2​4​.​0​4​.​0​2​1​​​​ (2024).
	57.	 Singh, S., Gupta, H., Sharma, P. & Sahi, S. Advances in artificial intelligence (AI)-assisted approaches in drug screening. Artif. Intell. 

Chem. 2, 100039 (2024).
	58.	 Pudjihartono, N., Fadason, T., Kempa-Liehr, A. W. & O’Sullivan, J. M. A review of feature selection methods for machine Learning-

Based disease risk prediction. Front. Bioinform. 2, 927312 (2022).
	59.	 Wang, H. et al. An effective multi-step feature selection framework for clinical outcome prediction using electronic medical 

records. BMC Med. Inf. Decis. Mak. 25, 84 (2025).
	60.	 Boldini, D., Grisoni, F., Kuhn, D., Friedrich, L. & Sieber, S. A. Practical guidelines for the use of gradient boosting for molecular 

property prediction. J. Cheminform. 15, 73 (2023).
	61.	 Shaker, B. et al. LightBBB: computational prediction model of blood–brain-barrier penetration based on LightGBM. Bioinformatics 

37, 1135–1139 (2021).
	62.	 Zhang, J., Mucs, D., Norinder, U., Svensson, F. & LightGBM An effective and scalable algorithm for prediction of chemical 

Toxicity–Application to the Tox21 and mutagenicity data sets. J. Chem. Inf. Model. 59, 4150–4158 (2019).
	63.	 Zhang, C., Lei, X. & Liu, L. Predicting Metabolite–Disease associations based on LightGBM model. Front. Genet. 12, 660275 

(2021).
	64.	 Kırboğa, K. K., Abbasi, S. & Küçüksille, E. U. Explainability and white box in drug discovery. Chem. Biol. Drug Des. 102, 217–233 

(2023).
	65.	 Nolte, T. M., Peijnenburg, W. J. G. M., Hendriks, A., Jan & van de Meent, D. Quantitative structure-activity relationships for green 

algae growth Inhibition by polymer particles. Chemosphere 179, 49–56 (2017).
	66.	 Guo, H. et al. Tailoring Chemical Molecular Representation to Specific Tasks via Text Prompts.  ​h​t​t​p​s​:​/​/​d​o​i​.​o​r​g​/​1​0​.​4​8​5​5​0​/​a​r​X​i​v​.​2​4​0​1​

.​1​1​4​0​3​​​​ (2024).
	67.	 Bertato, L., Chirico, N. & Papa, E. QSAR models for the prediction of dietary biomagnification factor in fish. Toxics 11, 209 (2023).
	68.	 Morak-Młodawska, B., Jeleń, M., Martula, E. & Korlacki, R. Study of lipophilicity and ADME properties of 1,9-Diazaphenothiazines 

with anticancer action. Int. J. Mol. Sci. 24, 6970 (2023).
	69.	 Chen, T. & Manz, T. A. Bond orders of the diatomic molecules. RSC Adv. 9, 17072–17092.
	70.	 Du, X. et al. Insights into Protein–Ligand interactions: mechanisms, models, and methods. Int. J. Mol. Sci. 17, 144 (2016).
	71.	 Escayola, S., Bahri-Laleh, N. & Poater, A. % V Bur index and steric maps: from predictive catalysis to machine learning. Chem. Soc. 

Rev. 53, 853–882 (2024).
	72.	 Kehrein, J., Bunker, A., Luxenhofer, R. & POxload Machine learning estimates drug loadings of polymeric micelles. Mol. Pharm. 

21, 3356–3374 (2024).

Acknowledgements
We thank the National Research Foundation of Korea (NRF), Ministry of Education for providing us with finan-
cial support through grants.

Scientific Reports |        (2025) 15:31268 12| https://doi.org/10.1038/s41598-025-16575-4

www.nature.com/scientificreports/

https://www.rdkit.org/
https://doi.org/10.1007/978-1-4419-1742-3_1
https://doi.org/10.1007/978-3-642-38652-7_2
https://doi.org/10.48550/arXiv.1602.04938
https://doi.org/10.48550/arXiv.1602.04938
https://doi.org/10.48550/arXiv.1705.07874
https://doi.org/10.1016/j.fmre.2024.04.021
https://doi.org/10.1016/j.fmre.2024.04.021
https://doi.org/10.48550/arXiv.2401.11403
https://doi.org/10.48550/arXiv.2401.11403
http://www.nature.com/scientificreports


Author contributions
J.M.K. conceived the study. A.K.Y. carried out all the experiments and data analysis. A.K.Y. and J.M.K. partic-
ipated in the overall design and coordination of the study. The first draft of the manuscript was prepared by 
A.K.Y. Both authors read and approved the final manuscript.

Funding
This work was supported by the Basic Science Research Program through the National Research Foundation of 
Korea (NRF) funded by the Ministry of Education [grant number: RS-2018-NR031061].

Declarations

Competing interests
The authors declare no competing interests.

Additional information
Supplementary Information The online version contains supplementary material available at ​h​t​t​p​s​:​/​/​d​o​i​.​o​r​g​/​1​
0​.​1​0​3​8​/​s​4​1​5​9​8​-​0​2​5​-​1​6​5​7​5​-​4​​​​​.​​

Correspondence and requests for materials should be addressed to J.-M.K.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access   This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 
4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in 
any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide 
a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have 
permission under this licence to share adapted material derived from this article or parts of it. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence 
and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to 
obtain permission directly from the copyright holder. To view a copy of this licence, visit ​h​t​t​p​:​/​/​c​r​e​a​t​i​v​e​c​o​m​m​o​
n​s​.​o​r​g​/​l​i​c​e​n​s​e​s​/​b​y​-​n​c​-​n​d​/​4​.​0​/​​​​​.​​

© The Author(s) 2025 

Scientific Reports |        (2025) 15:31268 13| https://doi.org/10.1038/s41598-025-16575-4

www.nature.com/scientificreports/

https://doi.org/10.1038/s41598-025-16575-4
https://doi.org/10.1038/s41598-025-16575-4
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://www.nature.com/scientificreports

	﻿ACLPred: an explainable machine learning and tree-based ensemble model for anticancer ligand prediction
	﻿Materials and methods
	﻿Data collection and processing
	﻿Feature calculation
	﻿Feature selection
	﻿Variance and correlation filter
	﻿Boruta algorithm
	﻿Mutual information


	﻿Model training
	﻿Model evaluation
	﻿Model prediction explanation
	﻿Results
	﻿Performance evaluation of models
	﻿Comparison of our model with the existing model
	﻿SHAP analysis for feature interpretation
	﻿External validation and benchmarking

	﻿Discussion
	﻿Standalone method

	﻿Conclusion
	﻿References


