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Bluetooth Low Energy (BLE) and the iBeacons have recently gained large interest for enabling various proximity-based application
services. Given the ubiquitously deployed nature of Bluetooth devices including mobile smartphones, using BLE and iBeacon
technologies seemed to be a promising future to come. This work started off with the belief that this was true: iBeacons could provide
us with the accuracy in proximity and distance estimation to enable and simplify the development of many previously difficult
applications. However, our empirical studies with three different iBeacon devices from various vendors and two types of smartphone
platforms prove that this is not the case. Signal strength readings vary significantly over different iBeacon vendors, mobile platforms,
environmental or deployment factors, and usage scenarios. This variability in signal strength naturally complicates the process of
extracting an accurate location/proximity estimation in real environments. Our lessons on the limitations of iBeacon technique lead
us to design a simple class attendance checking application by performing a simple form of geometric adjustments to compensate
for the natural variations in beacon signal strength readings. We believe that the negative observations made in this work can
provide future researchers with a reference on how well of a performance to expect from iBeacon devices as they enter their system

design phases.

1. Introduction

Bluetooth is ubiquitous in today’s everyday life, used in
laptops, mobile devices, keyboards, headsets, and many other
consumer electronics for wire replacement. Bluetooth Low
Energy (BLE) is an extension of the Bluetooth standard in ver-
sion 4.0 that enables low-power low-cost short-range wireless
communication [1, 2]. It has significantly reduced its power
consumption, among other extended features, compared to
classical Bluetooth versions, and is now possible to run BLE
devices for several months to even a couple years on a coin
cell battery. Such aspects make BLE ideal for applications
requiring infrequent or periodic transfers of small amount
of data; thus, it can be applied in a wide range of medical,
industrial, and consumer applications.

iBeacon is a BLE-based proximity sensing framework
proposed by Apple [3], which allows a mobile device to detect

its proximity to an iBeacon station (and possibly its location)
by knowing how close it is to (usually wall-mounted) low-
complexity, low-cost BLE transmitters, the iBeacons. Each
iBeacon transmits periodically short identification frames
that are received by a mobile BLE device to estimate the
distance between the mobile device and the iBeacon using
received signal strength indicator (RSSI). Based on this detec-
tion of proximity, iBeacons provide automatic and location
specific triggering of services on the mobile device such
as advertising, coupons, or route guidance. Although the
specifications of the iBeacon were initially proposed by Apple
(i0S7 or later), it is just one way of utilizing BLE’s proximity
features, and thus it is (and can be made) compatible with
other devices (e.g., Android 4.3 or later) that use BLE. More
generally, any BLE device can use the same concept to
provide similar proximity functionality. Technically, iBeacon



technology is a subset of BLE beacons, but iBeacon and BLE
proximity beacons became nearly synonyms today despite
Google’s recent release of their own open beacon format
called Eddystone (Eddystone is a protocol specification by
Google that defines a Bluetooth Low Energy message format
for proximity beacon messages) [4].

Note here that the original goal of BLE beacons was
to provide proximity-based application services, possibly to
extend the features to coarse-grained location-based applica-
tions. Given that BLE beacons solely focus on RSSI measure-
ments, combined with lessons learned from the long history
of research in RF-based localization, it is somewhat expected
to be able to achieve only a limited accuracy in indoor
localization services. It is well known that the variability of RF
signals with respect to the indoor environment complicates
the accurate estimation of the mobile devices’ location or its
relative distance to the BLE beaconing transmitter device.
However, most prior work on BLE-based indoor localization
merely states the possibility of error due to signal variation
but does not quantify them, and their reported results show
only the positive side of the picture. For example, the work
in [5] reports a positioning accuracy of 0.53 meters, but this
work was bounded by a 9 x 10 m* area. The work in [6] reports
a L.2-meter accuracy with fingerprinting, but only within a
474 x 15.9 m? area. Recently work in [7] shows that distance
estimation error can increase significantly with longer dis-
tance when the measured signal RSSI vary over time but does
not show other dimensions of possible error.

In this work, we perform an extensive set of experiments
to quantify the impact of various indoor obstacles on the BLE
signal variance. Specifically, we show that different iBeacon
devices from different vendors along with the paired mobile
device platform (e.g., iOS or Android) can give significant
impact on the RSSI measurements to complicate the process
of designing a generally acceptable distance/location esti-
mation model. Furthermore, practical factors such as the
deployment height or environmental factors also introduce a
significant amount of impact on the RSSI values to introduce
an additional level of complexity in designing highly accurate
location estimation systems using iBeacons. Lessons from
these empirical studies lead us to design an application that is
“practically designable.” Specifically, we design and evaluate a
class attendance monitoring application system, by combin-
ing distance estimations made from locally accessible iBeacon
signals and an estimation adjustment scheme designed from
the lessons from our empirical signal measurements.

This paper is structured as follows. Section 2 introduces
the relationship between RSSI readings and the estimated
distances and then motivates our empirical studies on the
relationship. Section 3 describes our approaches to the
empirical studies and experiment settings including various
parameters that we change during our studies. Section 4 is
the main section, and it describes our measurements data and
illustrates our analysis results based on the data. Section 5
presents an application case study, an automatic attendance
monitoring system, which is based on our empirical stud-
ies. This system also proposes a novel geometric approach
to overcome the limitations of practical iBeacon systems.
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Section 6 reviews prior and related work and finally Section 7
concludes the paper.

2. Limitations of Bluetooth Low Energy-Based
Localization Systems

As Bluetooth Low Energy (BLE) and Apple’s iBeacon pro-
tocols begin to see widespread adoption and deployment,
indoor proximity and/or location enabled applications are
quickly penetrating into our everyday lives and consumer
space. iBeacon has been installed in Apple stores in the
US to provide product information as well as customer
services, and the National Football League (NFL) has used
iBeacons in the MetLife Stadium to provide personalized
advertisements to football fans during the Super Bowl game
[8]. Furthermore, iBeacon can be used to track luggage at
the airport [9], provide interactive experiences to visitors in
museums [10], plan evacuation paths in emergency guiding
systems [11], track patients in emergency rooms [12], guide
indoor/outdoor routes [13, 14], and detect the occupancy of
rooms [15, 16]. The application space to which iBeacons and
BLE proximity applications can be applied is extremely large.
These applications all use proximity measurements based on
the received signal strength indicator (RSSI) as the sole source
of information; thus, these applications exploit information
on how close a mobile device is to an iBeacon rather than
trying to pinpoint the exact and absolute location of the
mobile device.

The original purpose of iBeacon technology is to pro-
vide proximity-based application services and coarse-grained
indoor location positioning and navigation based solely on
proximity. Note that proximity (being near to some object) is
related to the location (where you are) but is not necessarily
identical. A location (or position) is more than just proximity,
and it is an absolute value usually defined by some coordinate
system (e.g., latitude and longitude for GPS). Recently,
however, there have been several proposals to use BLE for
indoor positioning, extending several prior works that use
other technologies such as ultrasonic sound, infrared, WiFi,
GSM, RFID, IEEE802.15.4, and earlier versions of Bluetooth
for indoor localization [17-22] (there are many more related
prior work on indoor localization that uses other wireless
technologies, but we list only a subset here for brevity and to
keep the reference list focused on BLE only since there are too
many of them). Indoor positioning and localization are still
an active area of research, and BLE is extending the literature
using its new wireless features.

There are several approaches (beyond simple proximity-
based ones [12]) that can be applied to BLE-based indoor
positioning. In all cases, an iBeacon will periodically broad-
cast an advertisement packet containing a unique ID and
a calibrated RSSI value (R%) corresponding to one-meter
distance (d°). This value allows us to determine the distance
between an iBeacon and a device using a model in (1), where
y is a calibration parameter for the path loss exponent. Based
on the RSSI or the estimated distances between iBeacons and
a mobile device, a weighted average model [5], trilateraliza-
tion/triangulation model [23], or fingerprinting [7, 24] can
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FIGURE I: Three different types of iBeacons used for the experiments: top row shows the images of the Estimote, GELO, and Wizturn Pebble
iBeacons. Bottom row shows the icons of their corresponding smartphone applications.

be applied for the localization process. The estimations can
also be combined with Pedestrian Dead Reckoning (PDR)
or filtering techniques to improve tracking or to reduce
positioning errors [6, 25]. Of course, all of these approaches
assume that all installed iBeacons possess their predefined
location information including their exact coordinates.

d
RSSI = R’ - 10ylog<ﬁ) — 0

d- 10(R°—RSSI)/10y'

If distances are used instead of raw RSSI values for
positioning, RF propagation model such as (1) is used to
convert RSSI readings into distances. The main challenge
here is the sensitivity of RSSI values to environment changes
such as object movements or obstacles, which result in signal
propagation or radio map changes. It is obvious that the
accuracy and efficiency of this distance estimation (and thus
the location estimation) depend heavily on the accuracy of
the measured RSSI values and the model used to derive
and calculate the distance and also significantly influenced
by the surrounding environment. Therefore, in this work,
we perform a detailed empirical measurement study on
the location/distance estimation performance based on RSSI
measurements for different types of iBeacon devices and
mobile device platforms. We consider various environmental
factors to gather a practical perspective on the performance
limitations of iBeacon technologies.

3. Approach and Experiment Setup

We carried out experiments in two different environments: an
open soccer field of a university campus without any obstacles
and an unblocked corridor of an office building to ensure line-
of-sight (LOS) signal propagation. In these environments, we
used three different types of iBeacons: Estimote [26], Wizturn
Pebble [27], and GELO [28] iBeacons to examine differences

in performance among vendors. Furthermore, we used two
different mobile devices: iPhone 5 with i0S 7.1.2 and Galaxy
Round (SM-G910S) with Android 4.4.2, to verify any existing
particularities. Mobile applications used for data collection
are the applications provided by the respective iBeacon ven-
dors: “Estimote app” for Estimote iBeacons, “GELO toolkit
app” for GELO iBeacons, and “Wizturn beacon manager” app
for Wizturn Pebble iBeacons (Figure 1).

The default configuration parameters used in the experi-
ments are as follows. The transmission (TX) power of iBeacon
was set to the maximum of 4 dBm unless stated otherwise
to verify the maximum distance that can be covered by
any iBeacon. We also experiment with minimum TX power
(which is -19~-23 dBm depending on the device) to observe
the lower-bounds of connectivity. The advertising interval
of the iBeacons was set to 950 milliseconds, which was the
factory default for all three devices. Device placement height
from ground was set to 1.2 meters for both the iBeacons and
the mobile phones unless stated otherwise. We selected this
height of 1.2 meters to imitate the height at which a user holds
their mobile device in their hands. Finally, the orientation of
the iBeacon was set to face the direction of LOS towards the
mobile device. Using these configurations, a mobile applica-
tion continuously detected signals from iBeacons and logged
their RSSI measurements while the distance between the
iBeacon and the mobile device was increased from 1 meter to
the maximum distance and recorded manually until reaching
the maximum distance. Here, we note that the maximum
distance is defined to be the farthest distance where the RSSI
value can be detected by the device. At each location (e.g.,
relative distance to the iBeacon) we took twenty RSSI mea-
surements for each configuration.

4. Measurement Data Analysis

In this section, we focus on identifying and quantifying
the various characteristics related to the performance of
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FIGURE 2: Distance versus RSSI plot for iOS and Android comparison. (Estimote, 4 dBm TX power, 1.2 m height, and LOS).

iBeacons for localization applications by carefully analyzing
the extensive measurement data that we have collected.

4.1. Difference between iOS and Android Phones. We first start
by comparing the differences between iPhone 5 with iOS
71.2 and Galaxy Round (SM-G910S) with Android 4.4.2 in
receiving iBeacon signals. The experiment was conducted
outdoors in an open soccer field using an Estimote beacon
with 4 dBm TX power at 1.2-meter height in LOS. Figure 2
presents our results from this experiment, where the dotted
line represents the average RSSI reading at each distance, and
the boxes represent the 25 and 75 percentile values along with
their minimum and maximum error bars.

From this result, we can identify several interesting
facts. First, compared to the 100 meters for the Android
platform, iOS showed notably shorter maximum distances
of 85 meters. Note that the 100 meters observed for the
Android is not the actual maximum distance, given that
100 m was the maximum length we could achieve for LOS
links in our environment. Therefore, the difference between
the maximum distances of the two platforms turned out
to be very large. Second, RSSI readings on Android phone
decreased more gradually whereas iOS showed a sudden
drop in RSSI after ~10 meters. Lastly, RSSI readings on
the Android platform had more temporal variation than
iOS. While it is difficult to conclude whether the hardware

specification shows any difference or this is an effect of
the software platform, it is known that there is a difference
between iOS and Android in scanning and sampling iBeacon
advertisements [16]. More importantly, the RSSI readings
differ between different phones (regardless of it being an
impact of the operating system or the hardware), and we
should point out that this effect itself will have significant
implications for distance estimation and localization, causing
difficulties for the application developers to generalize infor-
mation extracted from the collected RSSI values.

4.2. Effect of Device Placement Height. In this experiment,
we examine the impact of the iBeacon installation height
from the ground on RSSI. For this, we place an Estimote
beacon on the ground (e.g., 0-meter height) and measure
the RSSI readings using the Android mobile phone. We
compare this value with the case when the same beacon
is installed at a 1.2-meter height. Figure 3 shows the result
from this experiments. We can first notice that the values are
substantially different for the two experiment cases. When the
iBeacon is placed on the ground while all other configurations
are identical, the maximum distance reduces from 100+
meters to only 12 meters with significant and drastic drop in
RSSI. This result implies that the placement of iBeacon is very
important when designing and deploying an iBeacon system.
Distance estimation and thus the localization accuracy can be
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significantly impacted by the precise placement of iBeacons,
and planning the installation carefully as part of the site
survey will be very important. Based on our experimental
data, the optimistic advertisements that declare “ease of
deployment” and “place nodes anywhere!” may not be valid
when targeting precise accuracy on the iBeacon systems.

4.3. Difference between iBeacons from Different Manufactur-
ers. Next, we compare the RSSI reading differences between
different iBeacon products for three different manufacturers:
Estimote, GELO, and Wizturn Pebble. iPhone5 was used as
the mobile device, and both the beacons and the mobile
devices were installed at 1.2 meters’ height in an outdoor
soccer field. One important thing to note is that the maximum
transmission power supported by GELO iBeacon was 0 dBm
whereas Estimote and Wizturn Pebble allowed configuration
up to 4 dBm. We used respective maximum powers for each
device to examine the maximum distance coverage. Our
initial intuition was that GELO iBeacon will exhibit 4 dBm
lower RSSI values compared to other beacons at identical
distances, and thus it will result in a shorter maximum
transmission distance.

Surprisingly, Figure 4 shows that, unlike our expecta-
tion, GELO along with Wizturn beacons shows a maxi-
mum distance of 100+ meters, far exceeding Estimote’s 85
meters. Furthermore, the RSSI readings were all similar
between distinct iBeacon types despite the 4 dBm difference
in transmission power. This implies several interesting points.
First, the configured TX power difference does not directly
translate into received RSSI reading difference, which makes
the calibration process for distance estimation (and thus
indoor localization) more challenging when the transmission
power must be adjusted for the given environment. Second,
iBeacons from different vendors exhibit different maximum
distances, and higher maximum TX power configuration
does not necessarily lead to longer maximum transmission
distances. Lastly, due to the aforementioned reasons, it will
be very challenging for application developers and service
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FIGURE 4: Distance versus RSSI plot for three different types of
iBeacons: Estimote, GELO, and Wizturn Pebble (4 dBm/0 dBm TX
power, 1.2 m height, LOS, and iOS).

providers to design an iBeacon-based system with heteroge-
neous iBeacons since multiple sets of calibration parameters
will be required for each pair of iBeacon and mobile device
type. Again, these results imply that designing a reasonably
reliable iBeacon-based localization system can be extremely
challenging.

4.4. Reducing to Minimum TX Power. We now focus on the
fact that not all systems fully benefit from the use of maxi-
mum transmission power. For example, if we are designing
an indoor localization system based on trilateralization or
fingerprinting method, we would prefer a higher transmis-
sion power to cover a larger area and/or achieve denser
deployments while using fewer number of iBeacons (e.g.,
for cost reasons). However, when building a system based
on only the proximity function, reducing the transmission
power to the minimum just enough to cover the target region
(e.g., in front of a store or a product for advertisement) while
keeping the energy cost low to extend the lifetime of the
batteries can be a reasonable system design option. With this
motivation in mind, we conducted an experiment using the
respective minimum TX power for the three types of beacons.
The minimum TX power configuration allowed on Estimote,
GELO, and Wizturn Pebble beacons was —20 dBm, =23 dBm,
and —19 dBm, respectively.

Figure 5 depicts the results from this study. First, we
observe the drastic drop in the maximum distance (note the
different x-axis values compared to the previous figures).
Estimote with —20 dBm showed a maximum distance of 8
meters and Wizturn Pebble with —19dBm gave 8 meters
while the RSSI from a GELO beacon with —23dBm TX
power was detectable within only 0.3 meters. The second
observation is that while the RSSI reductions for Estimote
and Wizturn Pebble approximately matched their reduction
in TX power (24 and 23 dBm, resp.), this was not true for the
GELO beacons. GELO beacons showed RSSI reductions of
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power is used by three different types of iBeacons (minimum TX
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44-58 dBm while the TX power was reduced only by 23 dBm.
Again, as our previous results concluded, these differences
can cause significant complication when designing a system
with multiple types of iBeacons; different TX powers, differ-
ent reductions in RSSI, and different maximum distances will
make the calibration process practically impossible unless
only a single TX power configuration and a homogeneous
iBeacon from a particular vendor is used for designing
the entire system. This may be a plausible approach in the
initial system design phase, but with the system scaling
overtime for supporting additional regions or new use cases,
considerations for heterogeneous systems are a must.

4.5. Indoors versus Outdoors. iBeacon is often referred to
and is well known as an “indoor proximity/location system”
because a major motivator for its development was to provide
indoor location awareness where the already widely used GPS
is unavailable. However, physically, there is no reason why
iBeacon cannot be used outdoors. In fact, there are man-
ufacturers (e.g., GELO) that provide durable weather-proof
iBeacons for outdoor use. Through our next experiments
we wanted to compare the performance of iBeacons in the
indoor and outdoor environments. For this, we performed
additional experiments in an unblocked 3 meters’ wide
corridor of a university building. Here, we use the Estimote
beacons and an Android phone, again at 1.2 meters height
and 4 dBm TX power so that we can make direct comparisons
with our experiments performed outdoors.

Figure 6 presents our results. To our surprise, after ~25
meters in distance, the RSSI readings remained almost steady,
or even increased slightly with distance. The maximum
distance is shown as 50 meters only because our corridor
within the building was 50 meters’ long, and the actual
maximum distance is projected to be longer with more
physical space. To verify our unexpected results, we also
conducted additional experiments with the Wizturn Pebble
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comparison (Estimote, 4dBm TX power, 1.2 m height, LOS, and
Android).

and GELO beacons and found similar results (plots omitted
for brevity). The only plausible explanation for such behavior
is the multipath effect caused from the walls and ceiling of
the corridor. What is more important here is the fact that
the RSSI value did not decay for a wide range of distances
(25-50 m in our case). This means that the distance model
in (1) is no longer valid, and any indoor localization method
that relies on distance estimation and trilateralization can face
large errors in the order of tens of meters. In bolder words, it is
not possible to design an accurate indoor localization system
with iBeacons using simple distance estimation.

4.6. Effect of WiFi on iBeacon Signal Reception. Another
issue when using iBeacons for indoor applications is the
interference effect of WiFi signals, which operates on the
same 2.4 GHz ISM frequency band. BLE was designed to use
channels 37, 38, and 39 for advertisement (out of 40 total
channels and the remaining 37 channels for data communi-
cation), and their allocated frequencies are designed to avoid
the most popular WiFi channels 1, 6, and 11 (c.f. Figure 7).
Unfortunately, the WiFi AP deployment at our university
campus used channels 1, 5, and 9, and WiFi channel 5 happens
to interfere with BLE channel 38. This is not an unusual case
and can occur generally in any WiFi environment. Therefore,
we performed an additional experiment to quantify the
consequences of WiFi-oriented collisions.

For this experiment, we placed an Estimote beacon
directly under a WiFi AP and measured the RSSI readings
from an Android phone 5 meters apart (c.f. Figure 8). We
show a subset of observations in Figure 9 where the x-axis
represents the sequence of measurements (e.g., time) and
the y-axis is again RSSI. The dotted line with squares shows
the readings when WiFi AP was powered off, and the solid
line with circles shows the readings when the WiFi AP is in
normal operation. The shaded rectangle regions, along with
the disconnection in the solid line, represent the cases when
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FIGURE 9: Time versus RSSI plot for a sequence of beacon reception
that shows reception failures (packet losses) and reduction in RSSI
(identical configuration as Figure 8).

there was no iBeacon RSSI reading on the mobile phone, due
to the lack of packet reception.

We make two important observations from this experi-
ment. First, when the WiFi AP is active, the beacon reception
ratio dropped to around 75% even at a short distance of
5 meters, a distance where a 100% beacon reception can
be achieved without the WiFi AP. Second, even when an
iBeacon advertisement was successfully received, the RSSI
readings showed significantly lower values (e.g., more than
10 dBm reduction) for ~53% of the beacons. Note that the
packet loss of low-power BLE beacons under high-power
WiFi interference is somewhat expected, but a consistent
reduction in RSSI is an unexpected phenomenon that can be
regarded as another type of wireless signal “gray region” [29].
These findings suggest that, with the widely deployed and
ubiquitously utilized WiFi in today’s indoor environments,
an iBeacon system can be significantly affected with reduced
reliability and higher estimation errors.

4.7. Effect of Obstacles. In this experiment, we examine the
effect of physical obstacles on the iBeacon signal reception
and compare against the LOS case. Specifically, here, we
considered six different cases: three cases with obstacles of an
iron door, a wooden door and a window each, one case for
signal amplification using a sheet of aluminum foil, and two
cases where the mobile phone is covered by hand or paper.
In this experiment, we used the Estimote beacon paired with
an iPhone5, and the distance between the iBeacon and the
mobile phone was ~3 meters. Again, the height was 1.2 meters
and the TX power was 4 dBm.

We present the results from this study in Figure 10. As
expected, the iron door blocked the signal drastically with an
RSSI drop of ~20 dBm, but the wooden door or window also
had some (nonnegligible) effect of ~3 to 8 dBm drop, while
covering the phone with a pile of paper caused a ~6 dBm drop.
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FIGURE 10: Average RSSI plot for different types of obstacles
(Estimote, 4 dBm TX power, 1.2 m height, 3 m distance, and iOS).

More interestingly, however, covering the mobile phone with
the hands of the user resulted in a noticeable reduction of
~30 dBm. This suggests that, in an indoor localization system,
despite undergoing a careful deployment phase and extensive
calibrations, the distance and/or position estimation can have
significant errors just because the user is holding the phone
tightly in his/her hands or the environment changes naturally
(e.g., door statuses). This is another challenge in designing
an iBeacon-based system since mobile devices will inevitably
be held by the users’ hands and obstacle statuses will change
actively in an indoor environment.

As a final note, we were able to amplify the beacon signal
by using a sheet of aluminum foil behind the iBeacon which
resulted in an RSSI increase of 6 dBm. While it is unlikely
that iBeacon deployment will intentionally be wrapped in
a sheet of aluminum foil, this result suggests that some
environmental artifact or ornament can also unexpectedly
cause such an effect: implying that obstacles not only reduce
the RSSI levels but can also amplify the signal strength.

4.8. Distance Estimation Using the Curve-Fitted Model.
Finally, we now take all the measurement data from the
four iBeacon-mobile device pairs, combination of Estimote
and Wizturn Pebble beacons with Android and iOS phones,
and fit the data on to the model in (1) using the least-mean
square method to calculate the estimated distance based on
the RSSI. We note that all data are for the outdoors, LOS, 1.2-
meter height, and 4 dBm TX power experiments. We then
use this derived model to compare the real distance to the
estimated distance as in Figure 11. One point to take away
from this plot is the fact that distance estimation can show
significant errors even under LOS conditions due to high
signal strength variations. Furthermore, the errors increase
as distance increases (e.g., as RSSI gets closer to the reception
sensitivity). While we omit additional figures for brevity, we
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FIGURE 11: Real distance versus estimated distance plot where the
previously collected RSSI data was used to curve fit the model in (1)
and empirically determine the model parameter.

note that we can see similar plots even with data from a single
pair of iBeacon-mobile device. Quantitatively, the errors can
increase from tens of meters to even hundreds of meters.
This means that when designing an iBeacon-based system,
a system designer should either cope with the large distance
estimation errors (and hence positioning errors) or densely
deploy a large number of iBeacons to reduce the errors,
which can threat the “low-cost” argument in iBeacon systems.
Unfortunately, as per our experimental results, neither is
satisfactory.

5. Application Case Study: Automatic
Attendance Checker System

As our experimental results show, the main challenge in
using iBeacon signals for accurate indoor positioning is the
variability of RSSI readings and its sensitivity to environment
changes which result in drastic changes in signal propagation.
Our findings in Section 4 show that the RSSI value (and
the corresponding signal propagation model for estimating
distances) varies significantly among iBeacons from different
vendors (e.g., Estimote versus Wizturn Pebble versus GELO),
mobile device types (iOS versus Android), height of the
device installation from the ground, indoor or outdoor
environmental factors, and physical obstacle types. Overall,
these experiences suggest that, with such iBeacon devices, we
should take these limitations and performance characteristics
into consideration when designing applications and apply
improvement schemes with respect to the intuitions collected
from such real-world pilot deployment experiences.

In this case study, we extend the line of possible iBeacon
applications by proposing an automatic attendance checker
system that automatically checks the attendance of a college
student to her classes in a university. However, simple
proximity is not enough to accurately determine whether
a student is inside the classroom or not since the beacon
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FIGURE 12: Overall system architecture of our iBeacon-based automatic attendance checker system.

signal can be received behind the walls of the classrooms as
well. Thus, we use the trilateration-based position estimation
to make a decision on whether the student is attending the
class in the room or not. To compensate for RSSI reading
errors due to unexpected obstacles (e.g., users holding their
mobile phone tightly, or their phones being in a bag), we
make simple yet novel geometric adjustments in trilateration
calculation to improve the detection accuracy. On a system-
level perspective, our system is composed of not only iBea-
cons and mobile devices, but also a database server which
maintains and handles information about students, classes,
classrooms, time-table, and attendance information. As we
later show, the complete system allows for a fully automated
attendance checking mechanism to take place with 100%
accuracy under the circumstance that the students have
enabled our application on their smartphones. Our system
not only saves time wasted for manual attendance checking
during classes, but also prevents attendance cheatings since it
is very unlikely that a student will give his/her smartphone to
a friend just for attendance checking.

5.1. System Architecture. Figure 12 shows the overview of our
system architecture. Three iBeacons are deployed in each
classroom with unique identification numbers (major-minor
pair) for each iBeacon, and the relative x-y coordinate of
each classroom is preconfigured. We developed an Android
application for our system, which receives beacon signals
in the background and communicates with the web/DB
server over the Internet for attendance checking without
user intervention. The server maintains all the necessary
information to compute and confirm attendance in the
database. The recorded attendance data can be viewed on our
system’s website by the faculty and staff members as well as
on the students’ mobile devices.

Specifically, we used an Oracle DB to maintain infor-
mation regarding students, professors, classes, time tables,
and, most importantly, deployed iBeacons including their x-
y coordinates (relative, within each classroom) and identifi-
cation numbers. This information is relatively static in the
sense that student information changes only when they join
and login for the first time, and class/time-table information
changes only at the beginning of each semester for which we
use web-crawling to automatically populate from the univer-
sity website. To store the actual attendance information (the
class, date, time, and x-y coordinate within classroom) for
each student, we used the MongoDB to handle the frequently
updated data. Figure 13 shows our database structure.

Using the aforementioned system, the automatic atten-
dance check process operates as follows. When a student
enters a classroom, the smartphone application will receive
beacon advertisements from three or more iBeacons (there
may be signals from nearby classrooms). At this point, the
application sends the list of identification numbers (UUID,
major/minor values [3]) and RSSI readings from the iBeacons
to the server and queries the server for verification of
attendance. Given this information, the server will first check
the classroom information of each iBeacon and validates
it against the classroom at which the student should be
attending at the given time instance. If the classroom infor-
mation indicates that the student is in a wrong classroom
or if there are only two or less number of beacons detected
from the target classroom, then the server returns FALSE for
attendance. If no beacon is detected, attendance is FALSE by
default. For all other cases, the server uses the relative x-y
coordinates (within the target classroom) of the iBeacons to
estimate a position of the mobile device and checks whether
the device is within the boundaries of the classroom. If so,
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FIGURE 13: Databased structure in our iBeacon-based automatic attendance checker system server.

the server returns TRUE for attendance and records it in
the database. This process is repeated periodically so that
attendance can be checked during the class as well. This is
to account for students who are a few minutes late, as well
as those students who leave early during class. However, to
reduce the unnecessary power consumption from the use of
BLE for the duration when a student does not have a class
to attend, her time-table can be locally cached on the mobile
device to enable attendance checking only when needed.

Note that the x-y coordinates stored in the database are
only relative and local to the target classroom. This is in
contrast to other indoor positioning systems where global x-
y coordinate within the entire target area (e.g., whole floor
of the building to map) is required and is made possible
given that we maintain preknowledge on which classroom
a student should be at a given time. This greatly simplifies
the system architecture not only in terms of estimating
the position of the mobile device, but also in terms of
iBeacon deployment, replacement, and reconfiguration. In
other words, if systems are mostly concerned for a small geo-
graphical region, iBeacon placements can be independently
(and better) customized and optimized. We provide detailed
descriptions on such calibration procedures in the following
section.

5.2. Geometric Adjustment for Improved Accuracy. The main
challenge in using iBeacon signals for accurate indoor
positioning is the variability of RSSI readings and their
sensitivity to environment changes such as obstacles or user
handling of the mobile device. Our findings earlier show

that RSSI values can drop significantly when a beacon signal
is received behind an obstacle, and the amount of signal
attenuation varies depending on the obstacle types (e.g.,
window, wooden/metal door, walls, etc.). Furthermore, the
height of the mobile device from the ground also affects the
RSSI (height of the iBeacon also introduces a high impact, but
iBeacons are usually wall-mounted and its height is fixed in
typical scenarios). More significantly, the signal attenuation
due to holding the mobile device tightly in users’ hands
(which happens often) can be as much as 30 dBm. Such a high
variation is a significant challenge when using trilateration
for position estimation. However, we see one commonality
from the aforementioned cases; the signal attenuates (RSSI is
lower than the model for a given distance), and it is extremely
rare to see higher RSSI than the (best-case) line-of-sight
environment. Using this intuition, we use a simple yet novel
geometric adjustment scheme to improve accuracy rather
than trying to calibrate the model based on highly varying
RSSI values.

For example, Figure 14 shows one example of an exception
case where the distance estimation from three iBeacons
results in three RSSI-coverage distance circles (circles drawn
by the estimated distance as radii for trilateration) without
any intersection; one circle is completely enclosed by the
biggest circle, and a third circle is completely outside of the
biggest one. In this case, standard trilateration calculation
is not possible. However, our intuition is that the distance
of the larger circle (larger distance from higher RSSI value)
is closer to the estimation model, and the signals of the
two smaller circles have been attenuated due to some reason
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FIGURE 14: An example of possible exception scenario where trilat-
eration calculation will fail due to high variation in RSSI reading,
thus causing error.
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FIGURE 15: [Case 1] where two distance circles (circles representing
the estimated distance using RSSI) from two iBeacons are nonin-
tersecting because the sum of two distance estimations are smaller
than the distance between the two iBeacons. This results in no
intersection point for trilateration calculation. Thus, we gradually
increase the sizes of the circles until they intersect.

such as obstacles. Based on this intuition, our approach is
as follows. For each pair of circles (out of three pairs from
three iBeacons), we first check whether [Case 1] two circles
have no intersection points (upper figure of Figure 15) or
whether [Case 2] one circle is completely enclosed by another
circle (left figure of Figure 16). If neither is true, then there is
nothing else to consider for that specific pair of RSSI-coverage
distance circles.

If a pair of circles have no intersection points (i.e.,
[Case 1]), we first increase the size of the smaller circle with an
increment of 1 meter until there are two intersection points or
up to the point where the two circles become the same sizes.
If no intersection points are created even after two circles are
of the same sizes, then we increase the size of both circles
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FIGURE 16: [Case 2] where a distance circle (a circle representing
the estimated distance using RSSI) from one iBeacon is completely
enclosed by another distance circle (from another iBeacon), result-
ing in no intersection point for trilateration calculation. In this case,
we gradually increase the size of the inner circle until the two circles
intersect.
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FIGURE 17: An example of position estimation from an exception
case where the original distance circles (from distances estimated
by RSSI) had two circles completely enclosed in a third circle.

with an increment of 1 meter until there are two intersection
points (c.f. Figure 15). Again, this adjustment comes from
the assumption that the indoor RSSI levels are disrupted by
obstacles, which make the RSSI levels degrade more rapidly.
In the second case where, for a pair of circles, one circle
is completely enclosed by another circle (i.e., [Case 2]), we
increase the size of the smaller circle with an increment of 1
meter until there are two intersection points (c.f. Figure 16).
The resulting circles after the adjustments represent the
“adjusted distances” from each iBeacon. Now, since all pairs
of “adjusted circles” each have two intersection points, we can
use these six intersection points to apply the trilateration and
estimate the approximate position of the mobile device.
Figures 17 and 18 show the position estimation results
from the two exception cases where the estimated distances
from three iBeacons did not provide sufficient coverage for
trilateration. After the geometric adjustment based on our
prior observations, the resulting estimations were detected
to be very close to the actual positions. As a final note, the
entire position estimation process, including the geometric
adjustment and trilateration, takes place at the server. The
mobile device simply detects iBeacon signals during the
period of classes for the student, sends the list of iBeacon
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FIGURE 18: An example of position estimation from the exception
case in Figure 14 where the original distance circles (from distances
estimated by RSSI) had one circle enclosed in another and a third
circle is nonintersecting with the other two circles.

advertisement data to the server, and queries for attendance
check. Thus, there is practically no computation burden on
the mobile device, and this leads to minimizing the energy
usage as well.

5.3. Evaluation. We have evaluated our automatic attendance
checker system with the help of four undergraduate students
attending classes in three classrooms. While this case study
was done in a limited scale due to challenges in getting indi-
vidual consent for accessing students personal information,
the system reported no false reports (neither false positive
nor false negatives for attendance) for our student volunteers
during the course of 1 month. We plan to scale the experiment
to a larger number of students and classes in the future.

6. Related Work

There are several pieces of prior work that proposes appli-
cations and services using iBeacon devices. The work in
[9] uses iBeacons for tracking luggage at the airport, and
the work in [10] provides interactive experience to visitors
in museums. iBeacon has been used for path planning in
emergency guiding system[11] and also for tracking patients
in emergency rooms [12]. Furthermore, the work in [13]
proposes an indoor route guidance system, and the work
in [15, 16] uses iBeacons for occupancy detection within
buildings. These applications all use proximity-based on RSSI
as the source of information rather than trying to pinpoint
the exact and absolute location of the mobile device. There
are also a number of prior works that focus on using iBeacon
devices for precise indoor positioning [6, 7, 12, 23, 24].
However, none of these efforts provide an in-depth and
extensive measurement study of iBeacon RSSI measurements
and its variability with different environmental factors.

The work in [30] implements an Android application
that collects statistics of RSSI values from nearby iBeacons
and provides some measurement results but only at a fixed
distance. The work in [5] provides some measurement
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data regarding the transmission power and reception ratio
along with the estimated distance, and the work in [31]
attempts to calibrate the distance estimation model using
measurement data and perform error analysis. However,
none of these works provide extensive and comprehensive
measurement data in the dimensions of several different types
of iBeacons, mobile devices software platforms, transmis-
sion power configurations, indoor/outdoor comparisons, and
WiFi interference impacts and with several different types of
controlled yet practical obstacles. Furthermore, we combine
the experiences from the RSSI measurements to design a well-
suited and practically applicable system and propose a case
study application for automatic attendance checking, which
uses localized trilateration techniques along with geometric
adjustments to limit the scope of error due to RSSI variability
and meet the target accuracy.

7. Conclusion

The original goal of this research was to develop an improved
indoor positioning system using iBeacon technologies. How-
ever, after numerous and extensive experiments, we realized
that the signal variation was too high to retrieve accurate
distance estimation for designing a reliable and robust local-
ization system. Instead we decided to report on this varia-
tion and inaccuracy to clarify the misunderstanding caused
by numerous sugar-coated news articles on how accurate
iBeacon technology can be. Our finding shows that iBeacon
RSSIvalues (and the corresponding signal propagation model
to estimate the distance) vary significantly across iBeacon
vendors, mobile device platforms, deployment height of the
device, indoor/outdoor environmental factors, and obstacles.
It is obvious that the accuracy and efficiency of location
estimation depend heavily on the accuracy of the measured
RSSI measurements and the model used to estimate the
distance, not to mention the surrounding environmental
factors. We believe that our work provides evidence on
the challenges for designing an indoor localization system
using commercial-off-the-shelf (COTS) iBeacons devices
and dismantles the misunderstanding of its overestimated
accuracy. Furthermore, based on the observations made in
this work, our future work is to find a way to approach these
errors differently and develop an iBeacon-based system that
is resilient and robust to such RSSI dynamics.
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