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1 Introduction

Recently, the ATLAS collaboration has reported some excesses in searches for diboson

resonances in the highly boosted final states with W+W−, W±Z and ZZ at the 8 TeV

LHC with 20.3 fb−1 [1]. They have adapted boosted techniques to tag hadronically decaying

W and Z gauge bosons, which strongly suppress the QCD dijet backgrounds. All three

excesses emerge at around 2 TeV in the invariant mass distribution formed by two W - or Z-

tagged fat jets. The CMS collaboration also sees a moderate excess at the similar location

in semi-leptonic channel [2] and all hadronic channel [3]. In response to the tantalizing

experimental observations, several papers have already appeared taking this phenomenon

as a new physics signature [4–30].

A typical recipe for a new physics model to explain the above-mentioned excesses

is the introduction of two new heavy states: a charged particle and a neutral particle.

The former takes care of the W±Z channel while the latter does the other two channels.

However, given the fact that a large fraction of events belong to all three channels, it may

be a reasonable attempt to fit the data only with a single new heavy resonance. As a matter

of fact, Allanach, Gripaios and Sutherland recently investigated the diboson resonances in

this direction: they basically introduced a likelihood function for the true signal in the

W+W−, W±Z, and ZZ channels and found that the maximum likelihood has zero events

in the W±Z channel [15].1 If this observation were true, the ATLAS data would indicate

1 Note that the possibility that the events are only in the WZ channel is still allowed at 1σ level [15].
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a single neutral bosonic resonating particle rather than two, which show up in all three

channels due to detector effects and misidentification of W± and Z bosons. We also note

that in the single particle interpretation coincidence of the resonances at 2 TeV in the

three channels can be naturally understood. Keeping this minimality and simplicity of the

single particle interpretation, we further investigate the possible classification of neutral

resonances by considering different spins and CP states in an effective field theory approach

including a set of operators for each case.

Our philosophy is basically the bottom-up approach, invoking a minimal set of effective

operators that may be responsible for the W+W− and ZZ signals. As no spin information

is available, we extensively consider spin-0, spin-1, and spin-2 resonances. Symmetries of

the relevant operators also induce potential signals in different final states, encouraging

experimental collaborations to look into the related channels for consistency.

In the following three sections, we examine scalar, vector, and tensor resonances in

turn, focusing on viable parameter scans in conjunction with production cross sections and

partial decay widths of the resonance at hand. In section 5, we briefly make comments

on kinematic correlations among the final state particles to extract spin, CP states, and

coupling information of the resonance of interest and the proposed interactions. Section 6

is reserved for a summary.

2 Spin-0 resonances

In our new physics interpretation, the resonance particle decays into two bosons so that the

resonance itself should be a bosonic state with an integer spin. In this section, we begin with

considering a spin-0 resonance and study the effects of its CP states with corresponding

effective operators.

A CP-even scalar resonance (henceforth denoted as S) in diboson channel could be

well-parameterized by the following interaction Lagrangian:

Ls = − 1

Λ
S

(
s1F

Y
µνF

Y µν + s2F
W
µνF

Wµν + s3G
a
µνG

aµν+
∑
f

sfmf f̄f

)
, (2.1)

where F Yµν and FWµν denote the field strength tensors for usual U(1)Y and SU(2)W gauge

bosons before the electroweak symmetry breaking while Gaµν denotes the SU(3)c gluon field

strength tensor with the color index a = 1, 2, · · · 8.2 The strengths of the above couplings

are parametrized by s1, s2, and s3, respectively for gauge bosons and sf for fermions. Since

we are agnostic about the origin of higher dimensional operators, we treat the coefficients

as free parameters and consider potential constraints within the set up, including the

unitarity bounds. A conceivable origin of these operators may be loop corrections, in

which the effective cut-off scale would be given by 1/Λ ∼
∑

F y
2/(4πmF ) ∼ NF y

2/(4πmF )

( or NF y
2/(16π2mF ), depending on the explicit realization), where mF is the mass of a

fermion running in the loop, y is the (universal) Yukawa coupling between S and fermions,

2A scalar particle such as gravi-scalar or radion [31–33] potentially provides diboson resonance and may

have other signatures [34–36]. However, we found that the width of 2 TeV radion is unacceptably big to

account for the ATLAS anomaly.
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and NF is the number of fermions. With NF y
2 ∼ O(1), some fermions could be light

enough opening up new decay modes of the resonance in the consideration. In this case,

one needs to extend our analysis including the light fermionic degrees of freedom.

A tiny flavor non-diagonal interaction would lead un-acceptable flavor changing neutral

current (FCNC) effects so that we naturally expect that the coefficients sf are negligibly

small or strictly flavor diagonal. The first generation quarks, u and d, could have the largest

contribution to the production of the scalar at the LHC but they are suppressed by a small

factor ∼ mf/Λ. Furthermore, the coefficient sf can be forbidden by a global symmetry

when the singlet scalar is promoted to a complex scalar field T with Re(T ) ≡ S. The

couplings to the gauge bosons in the form of eq. (2.1), however, are still obtained due to SM

anomalies. A similar argument can be applied to the CP-odd spin-0 resonance. Considering

all these, we would take the gluon fusion as the dominant production mechanism for the

scalar resonance and neglect the production by diquark.

Without loss of generality, we take s3 = 1 by redefining Λ. The other coefficients, s1

and s2, for U(1)Y and SU(2)W gauge kinetic terms, are redefined as relative strengths to

s3. From the interactions in eq. (2.1), we obtain the partial decay widths of S into γγ, Zγ,

ZZ, W+W−, and gg as

ΓS(γγ)=
|sγγ |2m3

S
4πΛ2 , sγγ =s1 cos2 θW + s2 sin2 θW ,

ΓS(ZZ)=
|sZZ |2m3

S
4πΛ2

√
1− 4xSZ

(
1− 4xSZ + 6(xSZ)2

)
, sZZ =s2 cos2 θW + s1 sin2 θW ,

ΓS(Zγ)=
|sZγ |2m3

S
8πΛ2

(
1− xSZ

)3
, sZγ =(s2−s1) sin 2θW ,

ΓS(W+W−)=
|sWW |2m3

S
8πΛ2

√
1−4xSW

(
1−4xSW +6(xSW )2

)
, sWW =2s2

ΓS(gg)=
2|sgg |2m3

S
πΛ2 , sgg=s3 ,

(2.2)

where mS and θW denote the mass of CP-even scalar S and the Weinberg angle. Here and

henceforth, we define the mass squared ratio of a heavy SM boson i (Z, W , or h) to a

resonance R as

xRi ≡
m2
i

m2
R

. (2.3)

Obviously, in this parametrization, S is produced via gluon fusion followed by the

decays into the above final states. Of potential experimental constraints, the two following

conditions should be settled to be in the right “ball park” with respect to the recent

ATLAS data:

• the total decay width should be within ∼ 10% of the mass of the resonance [1],

• the signal production cross section should be as sizable as order of several fb [15].

In general, the single production cross section of a narrow resonance is proportional to the

total decay width of the decaying particle. Therefore, demanding a sizable production cross

section with a (relatively) smaller total decay width is not a trivial task. We remark that

as discussed in the literature, reported excesses in all three diboson final states (W+W−,

W±Z and ZZ) are not independent of one another, and the data in one channel may be
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contaminated by the data in the other channels due to detector effects. As we mentioned

in introduction, in ref. [15], authors performed a general analysis of new physics interpre-

tations of the recent ATLAS diboson excesses by computing a likelihood function for the

true signal in the W+W−, W±Z, and ZZ channels. They found that the maximum likeli-

hood has zero events in the W±Z channel, i.e., one could fit the data in all three channels

with a single neutral resonance in the final state with W+W− and ZZ. The likelihood is

sufficiently flat and the required cross section (for 95% C.L.) is in the following range [15]:

O(4–8) fb . σ ·BR(W+W−) + σ ·BR(ZZ) . O(20–24) fb , (2.4)

where σ is the single production cross section of the resonance.3 For our analysis with the

case of the CP-even scalar, we first fix the mass of the scalar resonance, mS , to 2 TeV,

and then compute the signal cross section, σ(pp → S → W+W− + ZZ), by varying

three parameters, Λ, s1 and s2 (s3=1). We find that in the majority of parameter space,

the consistency (gauge invariance and Lorentz invariance) of the model predicts a large

branching fraction into the diphoton final state. In particular, when two parameters have

the same sign (i.e., s1s2 > 0), diphoton rate (∝ |sγγ |2 = |s1 cos2 θW + s2 sin2 θW |2) turns

out to be too large so that the model is severely constrained by current data at the 8 TeV

LHC [37, 38].

Interestingly enough, the opposite case with s1s2 < 0 constraint provides a way to re-

duce the diphoton rate as clear from eq. (2.2). Especially, the condition of s1 ≈ − tan2 θW s2

gives sγγ ≈ 0 thus vanishingly small diphoton final state, and the condition fixes the relative

branching fractions as follows:

BR(W+W−) : BR(ZZ) : BR(Zγ) : BR(gg)

≈ |s1|2

4 tan4 θW
:
|s1|2 cos2 2θW

8 sin4 θW
:
|s1|2

4 tan2 θW
: 1. (2.5)

We take this relation for illustration and calculate the relevant cross sections in the two

dimensional parameter space of Λ vs. s1, although other relations can be straightforwardly

analyzed. For the relevant data analysis (and remaining analyses throughout this paper),

we employ Monte Carlo event generators CalcHEP [39] and MadGraph5 aMC@NLO [40]. In

figure 1, we show production cross sections (in fb) of the CP-even scalar resonance in the

final states with W+W−+ZZ (red solid curves) and Zγ (blue dashed curves). Contours of

Γ/mS are shown by black-dotted curves. The corresponding branching fractions are shown

in the right panel as a function of s1. The dijet resonance searches provide constraints (at

95% C.L.) on the parameters, which are shown by the dark yellow-shaded region [41, 42].

Combining all constraints together, the allowed parameter space represented by the light

green-shaded region might accommodate the diboson excesses. We remark that the exact

relation of s1 = − tan2 θW s2 is not required, and any minor deviation from this rela-

tion would be easily allowed as long as the associated diphoton rate is below the current

limit [37, 38].

3Note that the main focus in our study is the WW and ZZ channels, but the possibility that the

events are only in the WZ channel is still consistent with current observation at 1σ. In fact, combining

ATLAS data with other channels, ref. [19] showed that the WZ channel is the best-fit within 1σ, with other

possibilities allowed.
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Figure 1. The left panel shows production cross sections (in fb) of the CP-even scalar resonance

in the final states with W+W− + ZZ (red solid curves, labelled by 5, 10, 15 and 20, respectively)

and Zγ (blue dashed curves,labelled by 2, 3, 5 and 10, respectively). The black dotted curves

represent the contours of the total decay width, Γ/mS =0.05, 0.1 and 0.2, respectively. The dark

yellow-shaded region is excluded by the dijet search and the light green-shaded region represents

the allowed parameter space. The right panel shows branching fractions of the spin-0 resonance

(Zγ, ZZ, W+W−, and gg by red dotted, blue dot-dashed, magenta dashed, and black solid curves,

respectively) as a function of s1.

Speaking of CP-odd spin-0 case, a pseudo-scalar or axion-like scalar (denoted as A) can

couple to the SM gauge bosons through anomalies. The gauge interactions are parametrized

in a way similar to the CP-even scalar case with one of the field strength tensors replaced

by a dual field strength tensor:

La = − 1

Λ
A
(
a1F

Y
µνF̃

Y µν + a2F
W
µν F̃

Wµν + a3GµνG̃
µν
)
, (2.6)

where the dual field strength tensors are defined as, for example, F̃ Yµν ≡ 1
2εµνρσF

Y ρσ,

and prefactors a1, a2, and a3 denote the coupling constants which can be determined by

anomalies for a global symmetry. For instance, ai/Λ = ciαi/(8πfA) (i = 1, 2, 3) with fA
being the breaking scale of a global U(1) and ci =

∑
α qα`Gi(rα) where qα is the global

U(1) charge of a heavy fermion and `Gi(rα) is the Dynkin index for a representation rα
under the SM gauge group Gi [43, 44].

The total decay width of the pseudo-scalar resonance [43] is given by the sum of partial

decay widths into γγ, Zγ, ZZ, W+W−, and gg:

ΓA(γγ) =
m3
A

4πΛ2 |cγγ |2, cγγ = a1 cos2 θW + a2 sin2 θW ,

ΓA(Zγ) =
m3
A

8πΛ2 |cZγ |2
(

1− xAZ
)3
, cZγ = (a2 − a1) sin(2θW ),

ΓA(ZZ) =
m3
A

4πΛ2 |cZZ |2
(

1− 4xAZ

)3/2
, cZZ = a2 cos2 θW + a1 sin2 θW ,

ΓA(W+W−) =
m3
A

8πΛ2 |cWW |2
(

1− 4xAW

)3/2
, cWW = 2a2 ,

ΓA(gg) =
2m3

A
πΛ2 |cgg|2 , cgg = a3 ,

(2.7)
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where xAi is defined in eq. (2.3). The case with the CP-odd scalar has similarities compared

to the case with the CP-even scalar in the sense that the corresponding branching fractions

are similar along with associated coefficients, and also we require a1a2 < 0 to suppress the

diphoton rate. Like the CP-even scalar case we simply choose a2 = −a1/ tan2 θW , and

demonstrate the resulting parameter scans in figure 2. We observe that all contours are

similar to those in figure 1, except for the scale of Λ due to a larger cross section for the

CP-odd scalar.

A couple of comments should be made here. Speaking of the unitarity bound for scalar

resonances first, we observe that in both CP-even and CP-odd cases, the spin-0 resonance

couples only to transverse modes of SM gauge bosons. Then, the unitarity cutoff can be

just read from the coefficients of the effective operators, namely, of order max(Λ/si) and

max(Λ/ai) in CP-even and -odd cases, respectively, by power counting. Thus, as shown

in figure 1 and figure 2, the unitarity cutoff is & Λ ∼ 10 TeV, which is consistent with the

effective interactions with a TeV-scale resonance. Second, we find that in both CP-even

and CP-odd cases, the Zγ production cross section is about 1-3 fb at the 8 TeV in the

allowed parameter space. The current experimental data tells that the (95% C.L.) upper

bound on the Zγ production in the dilepton channel is given up to the resonance mass of

1.6 TeV while the higher mass reach is limited by statistics [45]. Nevertheless, we expect

that the corresponding limit for the 2 TeV resonance would be comparable to the result

at the resonance mass of 1.6 TeV in Zγ searches or below the existing limit. Therefore,

σ(pp→ Zγ) = O(1) fb is still allowed for the 2 TeV and this channel would rather provide

an interesting consistency check for ZZ and W+W− excesses. As shown in the right panel

of figure 1, BR(Zγ) is comparable to BR(ZZ), and one cannot turn off BR(Zγ), as it

would also eliminate the signal. In other words, if diboson excesses turned out to be the

real signal with a CP-even or -odd scalar, observation of an excess in the Zγ channel would

corroborate the case.

3 Spin-1 resonances

For spin-1 resonances, we consider an extra U(1)X gauge symmetry that is realized by

the Stueckelberg mechanism. Then, the would-be Goldstone boson aX ensures the gauge

invariance of the effective action.

First, imposing the SM gauge symmetry and U(1)X, we have the dimension-4 interac-

tion Lagrangian between the U(1)X gauge boson and the quarks and/or gauge bosons in

the SM given as follows:

LD4 = −gXZ ′µq̄γµ(cLPL + cRPR)q − 1

2
εF YµνF

Xµν −
(
iηDµaX (H†DµH) + c.c.

)
, (3.1)

where the covariant derivative is defined as DµaX ≡ ∂µaX − gXZ
′
µ with aX being the

Stueckelberg axion, gX is the Z ′ gauge coupling, and cR = cL (cR = −cL) for CP-even (CP-

odd) Z ′. These dimension-4 interactions correspond to diquark couplings, gauge kinetic

mixing and mass mixing in order.

We keep the dimension-4 diquark coupling to Z ′ in eq. (3.1) as a production mechanism,

while the lepton couplings are suppressed as in leptophobic Z ′ models [46]. The gauge

kinetic mixing with ε 6= 0 leads to Γ(Z ′ → Zh) = Γ(Z ′ → WW ) due to the SM gauge

– 6 –
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Figure 2. Same as in figure 1 but for CP-odd scalar resonance. Branching fractions are similar to

those for the CP-even scalar, replacing si by ai. W
+W− + ZZ cross section is shown in red solid

curve (5, 10, 15 and 20 fb, respetively), Zγ in blue dashed curves (2, 3, 5 and 10 fb respectively),

and the total decay width, Γ/mA, in black dotted (0.05, 0.1 and 0.2). The dark yellow-shaded

region is excluded by the dijet search and the light green-shaded region represents the allowed

parameter space.

symmetry. As the Zh channel is strongly constrained by the LHC bound, σ(pp → Z ′) ×
BR(Z ′ → Zh) . 7 fb [47], which is significantly lower than the required value, ' 10 fb,

for explaining the ALTAS diboson excesses [27]. Moreover, no ZZ decay is induced from

the dimension-4 operators. Therefore, we do not consider the possibility of a sizable mass

mixing with Z ′ any more taking ε � 1. Instead, we consider novel effective interactions

for Z ′ containing the ZZ decay mode, coming from dimension-6 operators, as will be

discussed below. The last term with real η in eq. (3.1), which is a CP-even interaction,

should be highly suppressed, because of potential Z ′ decays into ZLh or WLWL. If η is

purely imaginary, namely, the last term in eq. (3.1) is equivalent to a CP-odd operator

(∂µD
µaX)H†H up to a total derivative, thus leading to (∂µZ ′µ)H†H, but a vanishing on-

shell decay amplitude squared for Z ′ → H†H.

It is noteworthy that the interactions of a vector isospin triplet W ′ to the SM elec-

troweak gauge bosons can be introduced by a similar dimension-4 operator in the effective

theory such as W ′aµ H
†σaDµH [15], which mixes the extra gauge boson with the SM massive

gauge bosons. In this case, the ATLAS diboson excesses can be explained by the W±Z

channel, provided that the charged spin-1 resonance is produced via quark annihilation at

the LHC [15]. In our work, we do not investigate the potential of the charged resonance

as mentioned earlier because the dibosonic decays of a neutral resonance suffice to explain

the ATLAS diboson excesses within current experimental errors.

Moving onto higher dimensional operators, we enumerate CP-even dimension-6 oper-

ators as follows [48]:

LD6 =
a1

Λ2
DµaX

[
i(DνH)†F̃ YµνH + c.c.

]
+
a2

Λ2
DµaX

[
(DνH)†F YµνH + c.c.

]
+
a3

Λ2
DµaX

[
i(DνH)†F̃WµνH + c.c.

]
+
a4

Λ2
DµaX

[
(DνH)†FWµνH + c.c.

]
+

1

Λ2
∂µDµaX

(
b1F

Y
ρσF̃

Y ρσ + b2F
W
ρσ F̃

Wρσ + b3GρσG̃
ρσ
)
, (3.2)
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where Λ is of order the mass of extra heavy fermions, and ai (i = 1, 2, 3, 4) and bi (i = 1, 2, 3)

parametrize the coupling strengths. The CP-odd counterparts of dimension-6 interac-

tions are

L̃D6 =
ã1

Λ2
DµaX

[
i(DνH)†F YµνH + c.c.

]
+
ã2

Λ2
DµaX

[
(DνH)†F̃ YµνH + c.c.

]
+
ã3

Λ2
DµaX

[
i(DνH)†FWµνH + c.c.

]
+
ã4

Λ2
DµaX

[
(DνH)†F̃WµνH + c.c.

]
+

1

Λ2
∂µDµaX

(
b̃1F

Y
ρσF

Y ρσ + b̃2F
W
ρσF

Wρσ + b̃3GρσG
ρσ
)
, (3.3)

where ãi (i = 1, 2, 3, 4) and b̃i (i = 1, 2, 3) parametrize the coupling strengths. We com-

ment on the dimension-6 operators composed of one field strength tensor for Z ′ and two

field strength tensors for the SM gauge bosons: Tr(FXλµ FλνF̃
νµ) for CP-even operators

and Tr(FXλµ FλνF
νµ) for CP-odd operators with Fµν = F Yµν , F

W
µν , Gµν . First of all, the

CP-odd operators can be rewritten as FXνµ FνλF
λµ = FXµνFλνF

µλ, which is the same as

FXνµFλνF
µλ = −FXµνFλνFµλ, and as a result, we get FXνµ FνλF

λµ = 0. Likewise, the

CP-even operators can be also rewritten as FXνµ FνλF̃
λµ = FXµνFλνF̃

µλ. Then, using the

identity of FλµF̃
νλ = −1

4δ
ν
µ FαβF̃

αβ , we get FXνµ FνλF̃
λµ = −1

4F
Xµ
µ FαβF̃

αβ = 0. Therefore,

the dimension-6 operators composed of gauge field strength tensors only are identically zero

so that we do not consider them in our analysis.

Given the above observations, the Z ′ gauge boson decays only by symmetry breaking

terms given in LD6 or L̃D6. When it comes to the production modes for the spin-1 reso-

nance, we henceforth assume that it is produced by diquark couplings and ignore the gauge

kinetic mixing and mass mixing. The effective cubic interactions for Z ′ coming from LD6

and L̃D6 are obtained as shown below:

LCP-even =
v

Λ2

(
a1mZZ

νZ ′µF̃ Yµν + a2∂
νhZ ′µF Yµν

)
− v

Λ2

(
1

2
a3mZε

µνρσZνZ
′
µ

(
∂ρW

3
σ − ∂σW 3

ρ

)
+ a4∂

νhZ ′µ
(
∂µW

3
ν − ∂νW 3

µ

))
+
mW v

Λ2
Z ′µ

(
− 1

2
a3ε

µνρσW−ν
(
∂ρW

+
σ −∂σW+

ρ

)
+ ia4W

−ν (∂µW+
ν −∂νW+

µ

)
+c.c.

)
+

1

Λ2
∂µZ ′µ

(
b1F

Y
ρσF̃

Y ρσ + b2F
W
ρσ F̃

Wρσ + b3GρσG̃
ρσ

)
, (3.4)

LCP-odd =
v

Λ2

(
ã1mZZ

νZ ′µF Yµν + ã2∂
νhZ ′µF̃ Yµν

)
− v

Λ2

(
ã3mZZ

νZ ′µ
(
∂µW

3
ν − ∂νW 3

µ

)
+

1

2
ã4ε

µνρσ∂νhZ
′
µ

(
∂ρW

3
σ − ∂σW 3

ρ

))
+
mW v

Λ2
Z ′µ

(
−ã3W

−
ν

(
∂µW+ν−∂νW+µ

)
+

1

2
iã4ε

µνρσW−ν
(
∂ρW

+
σ −∂σW+

ρ

)
+c.c.

)
+

1

Λ2
∂µZ ′µ

(
b̃1F

Y
ρσF

Y ρσ + b̃2F
W
ρσF

Wρσ + b̃3GρσG
ρσ

)
, (3.5)

where the U(1)X gauge coupling is absorbed into a1 and ã1, and so on.
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After the electroweak symmetry breaking (EWSB) and dropping the terms with the

divergence of Z ′, the effective CP-even interactions for Z ′ are

LCP-even = κ1ε
µνρσZ ′µZνFρσ + κ̂1ε

µνρσZ ′µZν(∂ρZσ − ∂σZρ)

+
(
κ2ε

µνρσZ ′µW
−
ν (∂ρW

+
σ − ∂σW+

ρ ) + iκ̂2Z
′µW−ν(∂µW

+
ν − ∂νW+

µ ) + c.c.
)

+
κ3

Λ
Z ′µ∂νhFµν +

κ̂3

Λ
Z ′µ∂νh (∂µZν − ∂νZµ) (3.6)

where Fµν is the photon field strength tensor and κ2, κ̂2 are related to other parameters by

gauge invariance as

κ2 =
mW

mZ

(
κ1 sin θW + κ̂1 cos θW

)
, κ̂2 = −mW

Λ
(κ3 sin θW + κ̂3 cos θW ). (3.7)

We note that the effective triple gauge interactions with Z ′ in the above effective Lagrangian

are the generalized Chern-Simons terms that are generated by extra heavy fermions [44, 48].

Using the effective action above, we obtain the partial decay rates of the spin-1 reso-

nance [44] into Zγ, ZZ, W+W−, hγ, hZ, and qq̄, respectively as:

ΓZ′(Zγ) =
κ21m

3
Z′

24πm2
Z

(
1− xZ′Z

)3 (
1 + xZ

′
Z

)
,

ΓZ′(ZZ) =
κ̂21m

3
Z′

24πm2
Z

(
1− 4xZ

′
Z

)5/2
,

ΓZ′(W
+W−) =

m3
Z′

(
1−4xZ

′
W

)3/2
48πm2

W

[
4κ2

2

(
1− 4xZ

′
W

)
+ κ̂2

2

(
1 + 3xZ

′
W

)]
,

ΓZ′(hγ) =
κ23m

3
Z′

96πΛ2

(
1− xZ′h

)3
,

ΓZ′(hZ) =
κ̂23m

3
Z′

192πΛ2

(
1−

(√
xZ
′

h +
√
xZ
′

Z

)2
)1/2(

1−
(√

xZ
′

h −
√
xZ
′

Z

)2
)1/2

×
(

2 + xZ
′

Z (xZ
′

h − xZ
′

Z )2 + 2xZ
′

h (xZ
′

h + 3xZ
′

Z )− (4xZ
′

h + 3xZ
′

Z )
)
,

ΓZ′(qq̄) =
g2XmZ′

4π (1 + 2xZ
′

q )
(

1− 4xZ
′

q

)1/2
,

(3.8)

where xZ
′

i is defined in eq. (2.3). On the other hand, the effective CP-odd interactions for

Z ′ become

LCP-odd = α1Z
′µZνFµν + α̂1Z

′µZν(∂µZν − ∂νZµ)

+
(
α2Z

′µW−ν(∂µW
+
ν − ∂νW+

µ ) + iα̂2ε
µνρσZ ′µW

−
ν (∂ρW

+
σ − ∂σW+

ρ ) + c.c
)

+
α3

Λ
εµνρσZ ′µ∂νhFρσ +

α̂3

Λ
εµνρσZ ′µ∂νh (∂ρZσ − ∂σZρ) , (3.9)

where α2, α̂2 are related to other parameters by gauge invariance as

α2 =
mW

mZ

(
α1 sin θW + α̂1 cos θW

)
, α̂2 = −mW

Λ

(
α3 sin θW + α̂3 cos θW

)
. (3.10)
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The partial decay widths of the CP-odd vector into Zγ, ZZ, W+W−, hγ, hZ, and qq̄,

respectively are given as follows:

ΓZ′(Zγ) =
α2
1m

3
Z′

96πm2
Z

(
1− xZ′Z

)3 (
1 + xZ

′
Z

)
,

ΓZ′(ZZ) =
α̂2
1m

3
Z′

96πm2
Z

(
1− 4xZ

′
Z

)3/2
,

ΓZ′(W
+W−) =

m3
Z′

√
1−4xZ

′
W

48πm2
W

[
α2

2

(
1− 4xZ

′
W

)
+ 4α̂2

2

(
1 + 2xZ

′
W

)]
,

ΓZ′(hγ) =
α2
3m

3
Z′

24πΛ2

(
1− xZ′h

)3
,

ΓZ′(hZ) =
α̂2
3m

3
Z′

24πΛ2

(
1−

(√
xZ
′

h +
√
xZ
′

Z

)2
)3/2(

1−
(√

xZ
′

h −
√
xZ
′

Z

)2
)3/2

,

ΓZ′(qq̄) =
g2XmZ′

4π

(
1− 4xZ

′
q

)3/2
.

(3.11)

As can be seen clearly from the gauge invariant higher dimensional operators in

eqs. (3.2) and (3.3) and can be checked from the effective gauge interactions in eqs. (3.6)

and (3.9), we note that the unitarity cutoff of Λ ∼ 10 TeV, implies that κ1,2, κ̂1,2, α1,2, α̂1,2 .
O(10−2) and κ3, α3 . O(1).

For a phenomenological study of the spin-1 resonance, we assume that the higher

dimensional operators given in eqs. (3.4) and (3.5) come with pure imaginary coefficients,

i.e. a2 = a4 = 0 and ã2 = ã4 = 0. Then, we get

κ3 = κ̂3 = 0, κ̃2 = 0, κ2 =
mW

mZ
(κ1 sin θW + κ̂1 cos θW ) , (3.12)

for CP-even interactions, and, similarly,

α3 = α̂3 = 0, α̂2 = 0, α2 =
mW

mZ
(α1 sin θW + α̂1 cos θW ) , (3.13)

for CP-odd interactions. There are two free parameters for SM gauge boson couplings

in each case, κ1, κ̂1 and α1, α̂1, respectively. In this case, there are no hγ or hZ decay

modes of the Z ′ gauge boson while Zγ,ZZ and W+W− decay modes exist. Therefore,

the gauge invariance of the higher dimensional operators is crucial in correlating between

different decay channels of the spin-1 resonance. Turning on small couplings to Higgs, we

can maintain the diboson resonances as hinted by ATLAS and at the same time have a

potential to discover or constrain the models with spin-1 resonance further by the decay

mode into hγ or hZ. Henceforth, in order to explain the ATLAS diboson excess from

W+W− andZZ decay modes, we focus on a simple parameter choice with κ3 = κ̂3 = 0

for the CP-even and α3 = α̂3 = 0 for the CP-odd. In this case, the ratio between W+W−

and ZZ branching fractions remains constant, independent of the remaining parameters

for both cases, i.e., BR(Z′→W+W−)
BR(Z′→ZZ) ≈ 1.56. In figure 3, we show branching fractions of the

CP-even vector as a function of the diquark coupling (gX) for above choice of parameters.

In addition, we have fixed κ̂1 = 0.01 (considering the unitarity bound) to maximize the

branching fraction into W+W− and ZZ, as their partial decays widths are proportional
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Figure 3. Branching fractions of the CP-even vector as a function of gX (diquark coupling) for a

given set of parameters, κ̂1 = 0.01 and κ1 = κ3 = κ̂3 = bi = 0. Very similar results are obtained

for the CP-odd vector and the CP-odd tensor cases.

to κ̂2
1 for κ1 = κ3 = κ̂3 = bi = 0. Numerically very similar results are obtained for the

CP-odd vector.

For our numerical study, we set cL = cR = 1 for the CP-even (−cL = cR = 1 for the CP

odd) and ignore the kinetic mixing and mass mixing. We further set bi = 0 for the CP-even

case (b̃i = 0 for the CP-odd case), leaving κ1, κ̂1, κ3, κ̂3, Λ and gX for the CP-even, and

α1, α̂1, α3, α̂3, Λ and gX for the CP-odd, respectively, as relevant parameters. Dependence

on κ3, κ̂3, α3 and α̂3 are weak, and we set them to zero as mentioned above to make σ(hγ)

and σ(hZ) vanish. Furthermore, we conservatively take κ1 = 0 = α1, for which σ(Zγ) also

vanishes. Turning on non-zero values of κ1 and α1 always reduces the branching fractions

of the diboson signal. Finally, after setting Λ = 10 TeV, we show in figure 4 the production

cross sections of the CP-even (left panel) and the CP-odd (right panel) vector bosons in the

ZZ +W+W− final state (red solid curves). As the resonance is produced by pp collision,

it can also decays to the dijet final state. The dark yellow-shaded area is disfavored by

ATLAS dijet searches [42] and the black dotted curves represent ΓZ′/mZ′ = 0.15, 0.1, and

0.05, respectively.

The single production cross section itself is explicitly dependent on the coupling, gX ,

only. However, the decay width changes depending on the rest of parameters, which affect

the shape of the dijet cross section. Our CP-even vector model is the same as one in

discussed in ref. [49], and we are able to use results there by simply rescaling couplings and

branching fractions in our parameter space. The blue (solid, dashed, dotted) curves labelled

by 10 fb−1, 300 fb−1, and 3 ab−1 represent the projected 95% C.L. exclusion contours for

14 TeV LHC, respectively. Unfortunately, this projected sensitivity is not available for

other resonances, and it is not straightforward to recast the results from ref. [49] due to

different efficiencies.

We note that as shown in the right panel of figure 4, the allowed parameter space

requires α̂1 ∼> 0.02, which is close to the unitarity limit. Finally, any reasonable deviation

from the current choice of parameters would be easily allowed, as long as the corresponding

limits can be avoided in the final states with Zγ, hZ, and hγ.
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Figure 4. Production cross sections (in fb) of the CP-even (left panel) and the CP-odd (right

panel) vector bosons in the ZZ + W+W− final state (in red solid curve, labelled by 5, 10 and

20 fb, respectively.). The dark yellow-shaded region is disfavored by ATLAS dijet searches and the

black dotted curves represent ΓZ′/mZ′ = 0.15, 0.1, and 0.05, respectively. The light green-shaded

region represents the allowed space to fit the ATLAS diboson data. The blue (solid, dashed, dotted)

curves (labelled by ‘10 fb−1’, ‘300 fb−1’ and ‘3 ab−1’, respectively) represent the projected 95% C.L.

exclusion contours for 14 TeV LHC with the corresponding luminosity.

4 Spin-2 resonances

The spin-2 resonance Gµν with mass mG couples to the SM particles as graviton does,

that is,

LGCP-even =
1

Λ
GµνTµν , (4.1)

where Tµν is the energy-momentum tensor. We set the spin-2 resonance to couple to

the energy-momentum tensor for each SM particle with an arbitrary coefficient, which is

gauge invariant under the SM gauge groups. The energy-momentum tensor with CP-even

interactions to the SM gauge bosons are

Tµν = c1F
Y
µλF

Y λ
ν + c2F

W
µλF

Wλ
ν + c3GµλG

λ
ν , (4.2)

where c1, c2, and c3 are constant coefficients parametrizing the relevant coupling strengths.4

We assumed that the spin-2 resonance couples dominantly to the transverse modes of

SM gauge bosons [54, 55] while the terms proportional to the metric gµν in the energy-

momentum tensor vanish under the traceless condition. For a heavy spin-2 resonance with

mG � mW,Z , the gauge boson mass terms can be ignored, even if the spin-2 resonance

couples to the longitudinal modes of gauge bosons as well [54, 55].

4Non-universal couplings to spin-2 resonance can be realized by the localization of zero modes of bulk

gauge fields in higher dimensions. For instance, the parameter space accommodating ATLAS diboson

excesses can be justified when weak gauge bosons are localized toward the IR brane while gluons and hy-

percharge gauge bosons are off the IR brane. See, for example, refs. [50–53] for details of model construction

and associated phenomenology.
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Figure 5. Similar to figure 4 but for the CP-even tensor. W+W− + ZZ production cross section

is shown in red solid curve (for 5, 10 and 20 fb), Zγ in blue dashed curves (for 2, 3, 5, 10 fb), and

the total decay width, Γ/mG in black dotted (for 0.05, 0.1 and 0.2). The light green-shaded region

represents the allowed parameter space.

The partial decay widths of the spin-2 resonance with CP-even interactions into γγ,

Zγ, ZZ, W+W−, and gg [54, 55] are



ΓG(γγ)=
|cγγ |2m3

G
80πΛ2 , cγγ = c1 cos2 θW + c2 sin2 θW

ΓG(ZZ)=
|cZZ |2m3

G
80πΛ2

√
1− 4xGZ

(
1− 3xGZ + 6(xGZ )2

)
, cZZ = c2 cos2 θW + c1 sin2 θW

ΓG(Zγ)=
|cγZ |2m3

G
160πΛ2

(
1− xGZ

)3 (
1 + 1

2x
G
Z + 1

6(xGZ )2
)
, cZγ = (c2 − c1) sin(2θW )

ΓG(W+W−)=
|cWW |2m3

G
160πΛ2

√
1−4xGW

(
1−3xGW +6(xGW )2

)
, cWW = 2c2

ΓG(gg)=
|cgg |2m3

G
10πΛ2 , cgg = c3 ,

(4.3)

where again xGi is defined in eq. (2.3). One may notice that for c1 = c2, the decay mode,

G → Zγ, vanishes. We note that the branching fractions of the spin-2 resonance are of

the similar form as the ones of scalar resonances discussed in section 2 because the spin-2

resonance decays through gauge invariant operators composed of field strength tensors. One

can also suppress the diphoton rate by choosing c2 = −c1/ tan2 θW , which forces all relevant

branching fractions to be the same as those in the scalar case. Our parameter scan results

are summarized in figure 5. We also find that production cross section, gg → G → gg, in

the demonstrated parameter space was small and therefore, there is no constraint from the

LHC dijet resonance search.

On the other hand, there is no counterpart of the energy-momentum tensor for CP-odd

interactions, but the Lorentz invariance and the gauge invariance dictate the detailed form

of the interactions. Following the similar step as in the CP-even vector case, the CP-odd
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interactions of the spin-2 resonance to the SM gauge bosons5 are given by

LGCP-odd =
1

Λ
Gµν T̃µν , (4.4)

where

T̃µν = a1 εµλρσ∂
λZνF

ρσ + â1 εµλρσ∂
λZν(∂ρZσ − ∂σZρ)

+
(
a2 εµλρσ∂

λW−ν (∂ρW σ+ − ∂σW ρ+) + iâ2∂
λW−ν (∂µW

+
λ − ∂λW

+
µ ) + c.c.

)
+
a3

Λ
∂λ∂νhFµλ +

â3

Λ
∂λ∂νh (∂µZλ − ∂λZµ). (4.5)

Here a2 and â2 are related to other parameters through gauge invariance as

a2 =
mW

mZ

(
a1 sin θW + â1 cos θW

)
, â2 = −mW

Λ

(
a3 sin θW + â3 cos θW

)
. (4.6)

The operators in T̃µν are induced from higher dimensional gauge-invariant operators such

as [DλDνH]†F̃ YµλH, [DλDνH]†F YµλH, [DλDνH]†F̃WµλH, and [DλDνH]†FWµλH after elec-

troweak symmetry breaking.6 Therefore, the resulting effective CP-odd interactions of the

spin-2 resonance are of strong similarity to those of the spin-1 resonances as discussed in

section 3. Hence, the spin-2 resonance can decay into a pair of electroweak gauge bosons

or Higgs bosons via symmetry breaking terms in T̃µν . We note that as in the CP-odd

vector case, the unitarity cutoff of Λ ∼ 10 TeV implies that a1,2, â1,2 . O(10−2) and

a3, â3 . O(1).

We note, however, that diquark CP-odd operator, q̄γ5(γµ∂ν + γν∂µ)q+ h.c., is a total

derivative, while a nontrivial diquark operator, iq̄γ5(γµ∂ν + γν∂µ)q + h.c. is CP-even [58].

Since the CP-odd diquark operator can be written as (∂νGµν)q̄γ5γµq by integration by

parts, the diquark production of the on-shell CP-odd spin-2 resonance is suppressed due

to ∂νGµν = 0. Instead, the CP-odd spin-2 resonance can be produced by vector boson

fusion. In this case, there are two forward jets accompanying the resonance, so we cannot

explain the ATLAS diboson excess by the CP-odd spin-2 resonance. For this reason, we do

not consider it any longer. We also remark that the operators composed of field strength

tensors only, for example, GµνTr(F̃µλF
λ
ν) with Fµν being F Yµν , FWµν , or Gµν , vanish because

GµνTr(F̃µλF
λ
ν) = −1

4G
µ
µ Tr(FαβF̃

αβ) = 0 due to the traceless condition, i.e., Gµµ = 0.

Therefore, those gauge invariant operators do not contribute to the process with on-shell

CP-odd tensor so that the gluon fusion production of the CP-odd spin-2 resonance is

suppressed. For a future reference on the phenomenological study of the CP-odd spin-2

resonance, we summarize the partial decay rates with CP-odd interactions into Zγ, ZZ,

5The ZZ coupling to the CP-odd tensor field was considered in ref. [56, 57] without gauge invariance

imposed.
6We note that one of higher dimensional operators among [DνD

λH]†F̃YµλH and [DλDνH]†F̃YµλH is re-

dundant because [DλDνH − DνDλH]†F̃YµλH ∼ |H|2FY λ ν F̃Yµλ, which contributes to the gauge invariant

operators of FY λ ν F̃
Y
µλ that becomes a vanishing gauge interaction after electroweak symmetry break-

ing (EWSB).
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W+W−, hγ, hZ and qq̄ as listed below:

ΓG(Zγ) =
a21m

3
G

960πΛ2

(
1− xGZ

)3 (
34 + 3xGZ + 3(xGZ )−1

)
,

ΓG(ZZ) =
â21m

5
G

960πm2
ZΛ2

√
1− 4xGZ

(
3− 4xGZ − 32(xGZ )2

)
,

ΓG(W+W−) =
m5
G

1920πm2
WΛ2

(
1− 4xGW

)3/2 [
3â2

2

(
1− 4xGW

)
+ 4a2

2

(
3 + 8xGW

)]
,

ΓG(hγ) =
a23m

5
G

1280πΛ4

(
1− xGh

)5
,

ΓG(hZ) =
â23m

5
G

3840πΛ4

[(
1− xGh

)2
− 2
(

1 + xGZ

)
xGZ + (xGZ )2

]5/2

×
[
3
(

1− xGZ
)2

+ 2
(
− 2 + 5xGh + (xGh )2

)
xGZ −

(
1 + 4xGh

)
(xGZ )2 + 2(xGZ )3

]
≈ â23m

5
G

1280πΛ4

(4.7)

where again xGi is defined in eq. (2.3).

5 Kinematic correlations in the diboson final state

In this section, we discuss ways of discriminating potential scenarios to give rise to diboson

resonances. Since we have observed that various bosonic particles with different spins and

CP states can accommodate the excesses reported by the ATLAS collaboration with a

suitable choice of parameters, it is of paramount importance to pin down the underlying

physics once those excesses are confirmed experimentally. Of potentially useful variables,

we employ several angular correlations between the decay products of the resonance of

interest. We first suppose that a resonance R decays into two vector bosons V1 and V2

which subsequently decay into two visible particles ui and vi (i = 1, 2):

pp→ R→ V1(→ u1 + v1) + V2(→ u2 + v2), (5.1)

and denote ~Pi as the three momentum of Vi and ~ui(~vi) as those of ui(vi).

With these notations, we enumerate the angular variables to be used here as follows:

Φ =
~P1 · (n̂1 × n̂2)

|~P1 · (n̂1 × n̂2)|
cos−1(n̂1 · n̂2) with n̂i =

~ui × ~vi
|~ui × ~vi|

, (5.2)

Φ1 =
~P1 · (n̂1 × n̂sc)

|~P1 · (n̂1 × n̂sc)|
cos−1(n̂1 · n̂sc) with n̂sc =

ẑ × ~P1

|ẑ × ~P1|
, (5.3)

cos θ∗ =
~P1 · ẑ
|~P1|

, (5.4)

cos θ1 = −
~P2 · ~u1

|~P2||~u1|
. (5.5)

For the first three variables, all the momenta are measured in the rest frame of resonance R,

while for the last one, all the momenta are measured in the rest frame of vector boson V1.

These variables have been used in the context of resonance discrimination in the literature,
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Figure 6. Unit-normalized distributions in Φ (upper left panel), Φ1 (upper right panel), cos θ∗

(lower left panel), and cos θ1 (lower right panel) for the resonance decay into two W gauge bosons.

The spin and CP state of the resonance of interest is represented by JCP.

and they show distinctive structures depending on quantum numbers of each resonance

(see, for example, ref. [56]).

We here study the above-listed observables in the analysis of R→W+W−, and show

the distributions in figure 6. The distributions are plotted with parton-level events with a

10% of Gaussian smearing onto energy of each final state particle for more realistic Monte

Carlo simulation. Again, events were generated by MadGraph aMC@NLO [59] together with

the default set of parton distributions NNPDF23 [60] at the center of mass energy of 13 TeV.

Table 1 summarizes our parameter choices for each scenario. All the parameters not listed

in the table are simply taken to be zero. Note that this choice of parameters is made only

for the purpose of illustration of different kinematic distributions for each scenario. We

find that the shape is not strongly dependent on parameters. The mass and the total decay

width are fixed to be 2 TeV and 0.1 TeV, correspondingly. We remark that the spin-0 and

CP-even spin-2 resonances are produced via gluon fusion while the spin-1 resonances are

produced via quark annihilation. The observables of Φ, Φ1, cos θ∗, and cos θ1 are exhibited

in the upper left panel, the upper right panel, the lower left panel, and the lower right panel,

respectively. Different spin and CP states are symbolized by JCP, and they are histogramed

as follows: CP-even scalar by the blue dashed, CP-odd scalar by the red dashed, CP-even

vector by the green solid, CP-odd vector by the orange solid, and CP-even tensor by the

– 16 –



J
H
E
P
1
1
(
2
0
1
5
)
1
5
0

Scenario Parameter choice R production

0+ s1 = 0.4, s2 = −s1/ tan2 θW , s3 = 1, Λ = 10 TeV gg → R

0− a1 = 0.6, a2 = −a1/ tan2 θW , a3 = 1, Λ = 20 TeV gg → R

1+ κ̂1 = 0.008, gX = 0.02, cL = cR = 1, Λ = 10 TeV qq̄ → R

1− α̂1 = 0.01, gX = 0.04, −cL = cR = 1, Λ = 10 TeV qq̄ → R

2+ c1 = 0.5, c2 = −c1/ tan2 θW , c3 = 1, Λ = 5 TeV gg → R

Table 1. List of scenario choices for a resonance R having a spin and CP-state denoted as JCP.

black dot-dashed. In particular, the theory prediction for cos θ∗ distributions is readily

derived as follows:

dσ

d cos θ∗
∼


1 , for gg → 0+ , 0− →W+W−

1 + cos2 θ∗ , for qq̄ → 1+ , 1− →W+W−

1 + 6 cos2 θ∗ + cos4 θ∗ , for gg → 2+ →W+W−
. (5.6)

which can be directly compared with experimental data.

First of all, we observe that the angular distributions with the Gaussian smearing

are very similar to those without any smearing, from which we expect that the angular

distributions are insensitive to detector effects such as jet energy resolution. Moving onto

figure 6, we clearly see that these observables are useful enough to distinguish potential

scenarios associated with diboson resonances. For example, the CP-even vector resonance

(green solid histograms) shows distinctive behaviors in all four observables. Furthermore,

the unique features according to different spin and CP states in those variables can be used

for cross-checks. Note that one single distribution can not discriminate different scenarios,

and thus it is important to consider all possible kinematic correlations. We also remark

that similar analyses can be straightforwardly applicable to other diboson resonances such

as R → hγ, R → hZ and R → Zγ so that more information can be extracted to confirm

the underlying physics governing the observed phenomena.

Finally, we remark that in the current ATLAS analysis, the two hadronic decay prod-

ucts from each W/Z gauge boson tend to be highly collimated, hence merged into a single

(fat) jet due to the large mass gap between the heavy resonance of ∼ 2 TeV and the W/Z

gauge bosons. It is therefore rather challenging to extract subjet information reliably from

a two-prong W/Z jet (if not impossible), so that kinematic distributions may suffer from

non-negligible smearing effect. Nevertheless, we note that some kinematic features can sur-

vive (at least) qualitatively. For example, in the case of the boosted top jet, morphological

features of the distribution in some angular correlations are well-preserved [61]. Moreover,

as the boosted techniques are being actively developed, we hope that more reliable extrac-

tion will be possible in the future. Although the recent ATLAS observation was made in

the fully hadronic channel, one may look at the leptonic channel which does not involve the

above-given issue. Certainly, our argument perfectly goes through, and this can be taken

as a complementary channel (presumably with more statistics). Also, the cos θ∗ distribu-

– 17 –



J
H
E
P
1
1
(
2
0
1
5
)
1
5
0

tion may be studied without extracting subjets, as it only depends on the momentum of

each boson.

6 Summary

Recently, the ATLAS collaboration has reported some excesses in searches for diboson

resonances using jet-substructure techniques. The excesses show up in the invariant mass

of W+W−, W±Z and ZZ at around 2 TeV. It has been discussed in literature that about

20% of the events in at least one signal region belong to all three categories, which indicates

that these “resonances” may be explained by one single particle rather than two.

Various models have been proposed under the assumption that the excess may arise

due to new physics. Most of studies are based on a specific model with a vector resonance

decaying to the diboson final states. In contrast, in this paper, we have explored a pos-

sible new physics interpretation of the ATLAS diboson excess in an effective field theory

approach, which covers a rather large class of models in a reasonably model independent

manner. We considered the effective operators for scalar (s = 0), vector (s = 1), and

tensor (s = 2) resonances with different CP properties. It is shown that each scenario

may explain the ATLAS diboson excess without contradicting other constraints, except

the CP-odd spin-2 resonance whose diquark or gluon fusion production is suppressed. The

CP-odd vector case might have some tension with the unitary bound. Symmetries of each

scenario predict signals in other final states such as Zγ and γγ in the cases of scalar and

CP-even tensor resonances; Zγ and hZ, hγ at a smaller rate in the cases of vector reso-

nances. Especially, the dijet, tt̄, Zγ, hZ, and hγ resonance searches at the LHC run II

may confirm or constrain these scenarios.

With limited statistics, all these scenarios provide a relatively good fit to the data.

However, a further accumulation of data might reveal the real identity of the resonance. We

showed a few examples of kinematic distributions, which are sensitive to the CP property

and spin of the resonance. We strongly encourage experimental collaborations to look at

these kinematic correlations.
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A Decay widths

In this appendix, we summarize the useful formulas for the decay rates for scalar and tensor

resonances.

A.1 CP-even scalar

For interaction Lagrangian L = −cV1V2
φ
ΛF

µν
V1
FV2µν , the decay width of φ to V1V2 is given as

Γ(φ→ V1V2) =
sV |cV1V2 |2

8π
·

(
m3
φ

Λ2

)
· F
(
m1

mφ
,
m2

mφ

)
, (A.1)

where F(x1, x2) is defined as

F(x1, x2) =
(
1− (x1 + x2)2

)1/2 (
1− (x1 − x2)2

)1/2 (
1 + x4

1 + x4
2 − 2(x2

1 + x2
2) + 4x2

1x
2
2

)
.

(A.2)

sV is symmetric factor, which is 1 for V1 6= V2 and 2 for V1 = V2, respectively.

A.2 CP-odd scalar

For interaction Lagrangian L = −cV1V2 AΛF
µν
V1
F̃V2µν , the decay width of A to V1V2 is given as

Γ(A→ V1V2) =
sV |cV1V2 |2

2π
·
(
m3
A

Λ2

)
· G
(
m1

mA
,
m2

mA

)
, (A.3)

G(x1, x2) =
(
1− (x1 + x2)2

)3/2 (
1− (x1 − x2)2

)3/2
(A.4)

where sV is symmetric factor, which is 1 for V1 6= V2 and 2 for V1 = V2, respectively.

A.3 CP-even tensor

For spin-2 tensor with mass mG, the interaction Lagrangian is L = −cV1V2
Gµν
Λ FV1

µ
λFV2

λν

and the decay width of Gµν → V1V2 is given as

Γ(Gµν → V1V2) =
sV |cV1V2 |2m3

G

160πΛ2
H
(
m1

mh
,
m2

mh

)
, (A.5)

where the convenient dimensionless function, H(x, y), for some interesting cases are

H(x, x) =
√

1− 4x2(1− 3x2 + 6x4), (A.6)

H(x, 0) = (1− x2)3

(
1 +

1

2
x2 +

1

6
x4

)
(A.7)

and the symmetric factor sV is 1 for V1 6= V2 and 2 for V1 = V2, respectively.
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