Detailed Information

Cited 5 time in webofscience Cited 5 time in scopus
Metadata Downloads

1,3-Butadiene as an Adhesion Promoter Between Composite Resin and Dental Ceramic in a Dielectric Barrier Discharge Jet

Authors
Han, Geum-JunChung, Sung-NoChun, Bae-HyeockKim, Chang-KeunOh, Kyu HwanCho, Byeong-Hoon
Issue Date
Apr-2013
Publisher
SPRINGER
Keywords
Dielectric barrier discharge (DBD) jet; Precursor monomer; Plasma enhanced chemical vapor deposition; Dental ceramic adhesion; Surface characterization
Citation
PLASMA CHEMISTRY AND PLASMA PROCESSING, v.33, no.2, pp 539 - 551
Pages
13
Journal Title
PLASMA CHEMISTRY AND PLASMA PROCESSING
Volume
33
Number
2
Start Page
539
End Page
551
URI
https://scholarworks.bwise.kr/cau/handle/2019.sw.cau/14722
DOI
10.1007/s11090-013-9437-9
ISSN
0272-4324
1572-8986
Abstract
A pencil-type floating electrode dielectric barrier discharge (FE-DBD) jet was designed to improve adhesion of composite resin to dental ceramic by plasma deposition. Among various monomers used for plasma deposition, 1,3-butadiene (BD) merged as a promising monomer. Shear bond strength (SBS) and fracture modes were evaluated with specimens prepared at various flow rates of BD. The SBS values of the experimental groups were significantly higher than that of the negative control group and approached that of the positive control group when flow rate was higher than or equal to 2 sccm. Surface characterizations of plasma polymer-deposited ceramic surfaces were performed with FTIR-ATR and XPS. The deposited polymer on the ceramic surface contained methyl and methylene groups, ether and ester groups, and carbon-carbon double bonds. Formation of plasma deposited layer from BD was verified with TEM and EDS from specimens prepared using a focused ion beam technique. Adhesion between ceramic and composite resin was enhanced with BD plasma deposition using the FE-DBD jet. The adhesion effect was stemmed from chemical reactions between C=C double bonds remaining in the plasma deposited polymer and those in the adhesive monomers as well as increased wettability due to the ester and ether groups involved in deposited polymer.
Files in This Item
Appears in
Collections
College of Engineering > School of Chemical Engineering and Material Science > 1. Journal Articles

qrcode

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetrics

Total Views & Downloads

BROWSE