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A B S T R A C T   

Knowledge recombination, combining knowledge existing (exploitation) or new knowledge capacity (explora-
tion) for creating knowledge collaboration, is one of the important ways of achieving innovation. However, little 
has known about how the knowledge recombination types affect differently to production efficiency at a regional 
level. This study explores the relationship between the knowledge recombination types of exploitation and 
exploration and regional technical efficiency by using the empirical data sets combining EPO PATSTAT, Eurostat, 
and Cambridge Econometrics regional database. For this purpose, three stages of analysis have been deployed. 
Firstly, CPC co-occurrence network analysis and relative comparative advantage (RCA) measures are used to 
construct knowledge space and measure regional capacity. Then, using the stochastic frontier analysis, the 
production efficiencies of the European NUTS 2 regions are measured. With all estimated measures, the effects of 
both exploration and exploitation of knowledge recombination on regional production efficiencies are estimated. 
The results show the positive effect of exploration on regional production efficiency, which highlights the 
importance of extending the range and variety of knowledge bases.   

1. Introduction 

The importance of regional knowledge structure has continuously 
gained attention as an explanatory factor for innovation, economic 
performance, and productivity gains (Capello and Lenzi, 2015). Identi-
fying the nature of knowledge cores across regions has become impor-
tant to figure out region’s competitive advantage in technological 
capabilities and restructuring of economies. Especially, studies have 
found that the competitive advantage is mainly due to region’s respec-
tive capacity of producing high-value, complex, and tacit knowledge 
(Balland and Rigby, 2017; Lawson and Lorenz, 1999; Storper and Ven-
ables, 2004). Regions are therefore encouraged to build technological 
capacity by expanding knowledge stocks and developing novel knowl-
edge with higher complexity. 

In specific, technological changes in a geographical space involve 
dynamic process of generation and utilization of the knowledge base of 
an economy (Cooke et al., 1997; Kogler, 2015), such as recombination 

activities of knowledge. Indeed, innovations largely depend on the 
recombination of existing knowledge of the knowledge structure 
(Fleming, 2001; Nelson and Winter, 1982; Yayavaram and Ahuja, 2008). 
Knowledge can be generated from either combining technologies and 
knowledge that have never been combined before or exploiting already 
known combinations to solve new problems and innovate. The two re-
combinant activities are easily distinguishable because they differ in 
terms of required recombinant capabilities and face different challenges 
(Carnabuci and Operti, 2013). Thus, their impacts on economic per-
formance and growth may also vary; however, questions concerning the 
relationship between these recombinant types of knowledge and 
regional production efficiency remain unanswered. 

Most novel innovations originate by combining previously uncon-
nected technologies (new recombination) or by reconfiguring and 
improving existing technological knowledge combinations (exploiting 
the recombination space) (Aharonson and Schilling, 2016). For 
example, at the firm level, firms’ recombinant capabilities are a key 
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source of firms’ innovative performance (Carnabuci and Operti, 2013; 
Henderson and Clark, 1990; Yayavaram and Ahuja, 2008). At the 
regional level, by virtue of the knowledge space methodology, stochastic 
frontier analysis, and a newly updated patent database, it is now feasible 
to investigate the effects of explorative and exploitative capacity in 
recombination on production efficiency at the regional level. 

Thus, this study explores how the regional type of technological 
recombination is associated with the regional production efficiency. For 
the empirical analysis, PATSTAT and regional socio-economic data of 
the European NUTS 2 level regions for the period between 1980 and 
2014 are utilized. Using accumulated pan-European knowledge space 
and stochastic frontier analysis, each region’s regional capability in new 
and exploitative recombination, and production efficiencies are 
measured. With these measures, the effect of recombination type on 
production efficiency is regressed to determine which type has a positive 
and significant relationship with production efficiency. 

The remainder of this paper is structured as follows. Section 2 re-
views the literature on knowledge recombination type, exploration, and 
exploitation, and the relationship between recombination type and 
production efficiency. Section 3 describes the methodology and data 
used in the analysis, and the results are presented in Section 4. Finally, 
the discussion and concluding remarks are provided in Section 5. 

2. Literature review 

2.1. Structural change in regional knowledge 

The evolutionary perspective is fundamental to understanding the 
geographies of technological progress, dynamics, restructuring of 
economies, and economic growth. It is believed that regions transform 
through constant structural changes, and those changes are very often 
path-dependent on the stock of knowledge at a given place and time 
(Boschma et al., 2015). Pre-existing local knowledge sets and activities 
over time configurate both the present and future pathways of region’s 
technological trajectories and variety of economic structures (Cooke 
et al., 1997; Kogler, 2015). In other words, regional transformations 
arise endogenously within the socio-economic system through the un-
derlying process of continuous internal development of knowledge 
(Metcalfe et al., 2006). 

This path- and place-dependent property of knowledge base has been 
identified by numerous studies. Those studies constructed a knowledge 
space built upon co-exporting product data or patent data to identify 
knowledge domains and to trace the evolving process of structural 
changes over time within a certain geographical scope. For example, 
Hidalgo et al. (2007) proved that countries seek out new industrial 
possibilities from existing sets of industrial capabilities. Then scholars 
also confirmed the same logic at regional level studies (Boschma et al., 
2013), since sub-national level regions have more specific technological 
capabilities than those at the national level because capabilities are not 
easily moved even within the nation (Neffke et al., 2011). The evolution 
of local knowledge space over time depicted strong dependency on 
pre-existing knowledge profile: regions tend to diversify their economic 
or technological capabilities based on relatedness (Boschma et al., 2015; 
Kogler et al., 2017; Kogler et al., 2013). 

Identifying the nature of knowledge cores across regions is therefore 
important to figure out region’s competitive advantage and to find the 
best way forward while facing diverse technological possibilities and 
uncertainties (Balland et al., 2019). Studies have found that the 
competitive advantage of regions is due to their respective capacity of 
producing high-value, non-ubiquitous, elaborate, and tacit knowledge 
(Lawson and Lorenz, 1999; Storper and Venables, 2004), and Balland 
and Rigby (2017) revealed that as knowledge gains higher complexity, it 
becomes less spatially mobile, which gives the region a competitive 
advantage and results in divergence among cities. Complexity of 
knowledge can be described in terms of diversity of knowledge combi-
nation upon distinct and multiple components (Zander and Kogut, 

1995), and Mewes and Broekel (2020) found that technological 
complexity measured by structural diversity (Broekel, 2019) contributes 
to regional economic growth. 

Thus, the capability to expand knowledge cores and to develop 
knowledge from low complexity toward greater complexity is crucial to 
regions. Regions are encouraged to build new comparative advantages 
by initially exploiting related and existing knowledge domains. Then, 
regions should strive to develop new technologies with higher 
complexity than they already have produced (Balland and Rigby, 2017). 
Here, recombinant possibilities or remapping of linkages between 
knowledge components drive the dynamics of structural change of 
knowledge space in regions (Kogler et al., 2017). 

However, while a lot of studies have focused on tracking the change 
of the shapes of knowledge space over time, relatively little attention has 
been paid to the underlying mechanism of how and through what ac-
tivities regions diversify. Specifically, investigation on knowledge pro-
duction practices operated within the region, such as knowledge 
recombinant activities, is required. Questions such as what type of 
combinations of technologies are more productive and how cities and 
regions can achieve efficient transition to diversification should be 
answered. 

2.2. Knowledge recombination and its impact on production efficiency 

Nelson and Winter (1982) stated that “innovation consists to a sub-
stantial extent of a recombination of conceptual and physical materials 
that were previously in existence” (p. 130). Most innovative outcomes 
are achieved either by combining knowledge in a completely novel 
manner or by reusing the already known or existing combinations for 
different applications (Fleming, 2001; Yayavaram and Ahuja, 2008). 
Consequently, studies have introduced two types of knowledge recom-
bination: one is creating new technological combinations that have not 
previously been used, recombinant creation, and the other is reusing 
known combinations, recombinant reuse (Carnabuci and Operti, 2013). 
Levinthal and March (1993) referred to these as “exploration” and 
“exploitation”, defined as “the pursuit of new knowledge, of things that 
might come to be known,” and “the use and development of things 
already known” (p. 105), respectively. 

The concept of knowledge recombination has often been discussed in 
firm level analysis, since a firm’s recombinant capability affects its 
innovative performance and helps to secure its competitive position 
(Arthur, 2007; Kaplan and Vakili, 2015; Rosenkopf and Nerkar, 2001). 
According to the literature, firms’ seeking new knowledge starts with 
the reuse of already existing knowledge combinations, and firms then 
often develop new combinations initially through incremental processes 
(Fleming, 2001; March, 1991). This is because exploitation of knowl-
edge has been proven to secure certain returns to a firm and therefore 
reduces the risks and uncertainties. Since it is the refinement and 
expansion of existing capabilities, technologies, or applications, the re-
sults are mostly positive, proximate, and likely to be guaranteed (Audia 
and Goncalo, 2007). However, this repeated mechanism of learning, 
continuous exploitation of known combinations, would lead to 
decreasing returns due to the problems of overlooking distant times, 
distant areas, and failures and to obsolescence in the long run (Ahar-
onson and Schilling, 2016; Levinthal and March, 1993). 

On the other hand, most breakthrough innovations come from new 
recombination (Fleming, 2001). Innovative performance can be fully 
achieved by increasing recombination sets of knowledge that can be 
accessed (Ahuja et al., 2008), and the explorative approach facilitates 
the new breakthrough opportunities due to its extended variety of 
knowledge bases (Ahuja and Lampert, 2001). Linking distant and 
diverse sources increases creativity, which in turn creates breakthroughs 
and thus, brings economic wealth and social welfare (Audia and Gon-
calo, 2007; Kaplan and Vakili, 2015). However, although exploration 
enables the discovery of novel ideas, technologies, and solutions, it is not 
always positive in the short run due to high uncertainty in performance 
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(Aharonson and Schilling, 2016). In short, exploitation increases 
short-term productivity, but exclusively engaging in exploitation is not 
enough for long-term productivity. In contrast, exploration decreases 
short-term productivity, but it may result in greater long-term produc-
tivity and returns. 

In terms of the effect on production efficiency, studies have argued 
that technological innovation spurs greater levels of productivity: 
technological change involving new ways of production increases pro-
ductivity which shifts the production frontier outward. Mohnen and 
Hall (2013) illustrates some explanations on how innovation affects 
productivity, such as an introduction of a new product by a new pro-
duction process or technology which engages new pool of demand and a 
process innovation which reduces production costs. Among them, the 
paper emphasized the degree of novelty of a given production innova-
tion, because the more novel the product, the larger potential it has for 
success in the market. By the benefit of scale effects, it increases pro-
ductivity. Also, a process breakthrough could lower costs even more that 
creates stronger growth (Duguet, 2006). Moreover, even when con-
trolling for labor skill, higher innovation output and productivity are 
positively correlated (Crépon et al., 1998). 

The emphasis on the degree of novelty or breakthrough-ness is based 
on the assumption that growth gains depend on innovation level. For 
example, small modifications, which are also generally recorded as 
innovation, may do not have significant effects on production efficiency. 
On the other hand, improvements such as altering an element of a 
product or a process would have large effects, since it raises the prob-
ability for a firm to create a new product or develop technological 
breakthroughs. In this regard, Duguet (2006) distinguished French 
manufacturing firms’ innovation heights into incremental innovation 
and radical innovation and investigated whether their contribution to 
TFP growth differ. Incremental innovation includes improvement of a 
pre-existing product or process, and radical innovation incorporates 
creation of a new product or a process breakthrough. The results indi-
cated that only radical innovations contribute to productivity growth. 

In addition, radical innovations tend to rely on the degree of di-
versity and complexity of knowledge source or technological opportu-
nities which are a key source of economic growth (Ahuja and Lampert, 
2001; Ahuja et al., 2008; Carnabuci and Operti, 2013; Fleming, 2001). 
Consequently, they are more likely to generate important knowledge 
spillovers than increment innovations, so are likely to succeed in 
capturing gains from innovation. Further, disruptive innovations are 
more positively related to the economic gains when it is a tacit knowl-
edge, while incremental innovations are more positively related to 

explicit knowledge (Hsiao et al., 2017; Lawson and Lorenz, 1999), 
which in turn indicates radical innovations are related to greater pro-
duction efficiency growth. 

Exploration and exploitation in this study can be identified as radical 
innovation and incremental innovation, respectively, discussed above. 
Because radical innovations, which come from a new way of producing 
that did not exist before, affect production efficiency by both the market 
demand and technological opportunities, we can expect that it is the 
exploration that facilitates production efficiency growth. 

In the meanwhile, exploration and exploitation of knowledge have 
often been discussed in firm-level analysis, while only few attempts have 
been made to investigate regions’ recombinant capabilities. Those 
studies were limited to analyzing the recombinant activities in micro- 
level firms within a specific region, rather than accounting on the re-
gion’s knowledge space at meso-level (Rosenkopf and Nerkar, 2001). 
Therefore, this study aims to investigate the knowledge recombinant 
activities of a region using the knowledge space methodology and patent 
data to determine their effects on region’s innovative performance. 

3. Methods 

3.1. Research design 

To understand the relationship between knowledge recombination 
type and production efficiency, the overall analysis was conducted in 
three stages. First, regional knowledge space for each European NUTS 2 
level region was constructed with patent data for every five years for the 
period from 1980 to 2014. We use Cooperative Patent Classification 
(CPC) codes, which is a joint classification system between USPTO and 
EPO, for technological classes. Knowledge space is depicted by a tech-
nology class co-occurrence matrix as shown in Fig. 1, and it illustrates 
the scheme for calculating regional capacity in the exploration and 
exploitation of region R in period T (T∈[2,7]). 

On the left side of the figure, two index matrices are derived from 
cumulated knowledge space of EU until the period T-1. New recombi-
nation index matrix represents explorative combinations which are 
completely new, and existing recombination index matrix represents 
exploitative combinations which have existed already. For example, 
there are four new recombinant spaces where the two technologies had 
never co-occurred until the period T-1 (combinations of A-D, B-E, C-D, 
and C-E). These four sets are coded 1 in the new combination matrix as a 
completely new recombination set compared to the cumulative knowl-
edge space, and the others are coded 0. The same method was applied to 

Fig. 1. Cycle of innovation and imitation.  
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existing recombination index matrix. 
Then, the relative comparative advantage (RCA) of technological 

recombination in region R at T is measured to evaluate the region’s 
knowledge exploration and exploitation capacity. First, we calculated 
the number of co-occurrences of the recombination sets identified in 
each index matrix and the number of co-occurrences of the whole 
pairwise sets in knowledge space both in region R and EU at period T. 
We then compared the numbers of co-occurrences of R to that of EU to 
estimate the region R’s RCA in recombination against other regions in 
EU. The calculation of regions R’s RR(RCA in Recombination) used 
herein is specified in Eq. (1): 

RR(RCA in Recombination)ij =
Si,j,R

/∑
i
∑

jSi,j,R

Si,j,EU

/∑
i
∑

jSi,j,EU

(1)  

where Si,j,R and Si,j,EU represent the number of co-occurrences of tech-
nology i and j in region R and EU, respectively. Lastly, region R’s 
exploration capability and exploitation capability during period T are 
calculated as Eqs. (2) and (3), respectively: 

ExplorationR,T =

∑
i
∑

jRR in New Recombinationi,j,R,T
∑

pISp,R,T
(2)  

ExploitationR,T =

∑
i
∑

jRR in Existing Recombinationi,j,R,T
∑

pISp,R,T
(3)  

where RR in New Recombination is the RR measured in Eq. (1) for the new 
recombination sets, and RR in Existing Recombination is the RR for the 
existing recombination sets. ISp,R,T refer to region R’s inventor share of 
patents listing technology i in period T compared to EU. Inventor share 
details were extracted from the address data for patents across NUTS 2 
regions. 

Using these measures, technical efficiency (TE) was measured using 
stochastic frontier analysis (SFA) to assess regional production effi-
ciency. SFA is often used to identify efficiency (Cullinane et al., 2002) 
and produce relevant measures for testing hypothesis (Lee et al., 2015). 
With this approach, we can investigate whether exploration or exploi-
tation contributes to the production efficiency under assumption of 
exhibiting the same quantity of input. In this respect, we firstly measure 
production efficiency of the region, then regress our key measures on it. 

We apply the efficiency analysis instead of the production function 
approach, because we believe that the difference in efficiency between 
regions is due to the heterogeneity of the regions’ knowledge structure, 
here focusing on the regional recombination capacity. We hypothesize 
that a local knowledge recombination capacity shapes the region’s 
knowledge structure, and this makes a difference in the regional pro-
duction efficiency. 

As the distance between the frontier production function and 
regional technology level decreases, the region’s TE increases. This 
study adopts Battese and Coelli (1995)’s SFA model and measures TE to 
capture the change in efficiency over time as follows: 

YR,T = f
(
XR,T ; β

)
evR,T − uR,T (4)  

where YR,T is the observed amount of output of region R at T, XR,T is a 
vector of region R’s input set in period T, f is the production function, β is 
a vector of unknown parameters to be estimated, vR,T is an independent 
and identically distributed random variable that follows a normal dis-
tribution of the regression equation, and uR,T refers to the inefficiency of 
region R from the frontier production function. To reflect the fact that 
inefficiency is always above zero, uR,T is non-negative and follows a half- 
normal distribution. 

For the production function f, the trans-log production function 
instead of Cobb–Douglas production function is used to account for 
complicated interactions between inputs because the latter assumes 
output as a log-linear combination of inputs, which is too simplified. 

Thus, using the random effects time-varying production model and 
trans-log production function, Eq. (4) can be rewritten as Eq. (5): 

lnYR,T = β0 +
∑3

m=1
βmlnxmRT +

∑3

m=1

∑3

k=1,

k≥m

βmklnxmRT lnxkRT + vR,T − uR,T (5)  

where X1,R,T indicates the size of capital, X2,R,T indicates the size of cost, 
and X3,R,T indicates the size of the labor pool of region R at T. Gross fixed 
capital (GFC), compensation of employees, and number of employees 
were used for each variable. YR,T refers to Gross value-added (GVA) of 
region R at T. Then, the TE is calculated as in Eq. (6): 

TER,T = e− uR,T =
YR,T

f
(
XR,T ; β

)
evR,T

(6) 

Lastly, there is a vector of exogenous variables that influence the 
level of the regional technical inefficiency. We assume that the in-
efficiency of region R, uR,T , is a function of each region’s recombination 
capacity which consists of ExplorationR,T and ExploitationR,T as shown in 
Eq. (7): 

uR,T = f
(
ExplorationR,T , ExploitationR,T

)
(7) 

Table 1 shows four models we used for the function of each region’s 
technical inefficiency. Model 1 and 2 includes the exploration and the 
exploitation capacity, respectively. In Model 3 and 4, we put the two 
types of recombination capacity together in the same model with 
considering the interaction effect. The interaction term and the ratio of 
exploration capacity are used in Model 3 and 4. 

3.2. Data 

The analysis requires two types of data sets: patent data, which can 
identify technological fields and where the technologies were invented, 
and regional socio-economic data. The patent data are from EPO’s 
PATSTAT as it contains all patents applied for through the EPO and 
detailed information on year of application, inventors, assignees, tech-
nological fields, and citations. In this study, technological fields are split 
using CPC codes at the four-digit level. The advantage of using CPC is 
that it contains new categories under section Y of new technological 
developments and crossover technologies (Leydesdorff et al., 2017). In 
addition, technologies are separated by NUTS 2 regions based on the 
information on inventors’ residence. 

Moreover, socio-economic data for SFA analysis are from Eurostat 
and Cambridge Econometrics. The variables used in herein include 
Gross Domestic Products (GDP), Gross fixed capital (GFC), compensa-
tion of employees (CE), and number of employees (NE). In addition, the 

Table 1 
A design of exogenous variables in SFA.  

Model 1 Model 2 Model 3 Model 4 

Exploration  Exploration Exploration  
Exploitation Exploitation Exploitation   

Exploration × Exploitation     
Exploration ratio  

Table 2 
Descriptive statistics of variables (N = 1306).  

Variable Mean Std. Dev. Min Max 

Y: Ln(GDP) 3.605 0.727 1.707 6.345 
X1: Ln(GFC) 8.906 0.712 6.865 11.681 
X2: Ln(CE) 9.760 0.767 7.627 12.409 
X3: Ln(Emp) 6.514 0.692 4.407 8.712 
Exploration 0.1044 0.0595 0.0000 0.7869 
Exploitation 1.0654 0.5668 0.1935 6.2371 
Exploration ratio 0.0960 0.0420 0.0000 0.2639  
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time variables are included as dummy variables. 
For the purpose of this study, an analytic sample is created as follows. 

First, the sample is restricted to those patents in which the filing year for 
the first application was between 1980 and 2014. Then, the period is 
grouped into every five years to smooth annual fluctuations in patent 
applications for regions and codes (Kogler et al., 2017). Second, the 
sample includes only observations that have all values in the variables in 
use. Third, the analysis uses standardized values for exploration and 
exploitation. Descriptive statistics of the variables for the regression 

models are reported in Table 2. 

4. Results 

With technology class co-occurrence matrices of regions for every 
five years, average exploitation and average exploration are calculated 
for measuring regions’ recombination capacity. Fig. 2 shows the regions’ 
recombination capacity for exploration and exploitation. The x- and y- 
axis represent the average exploration and exploitation, respectively, 
and the patent share of regions is also illustrated. The scatter plot shows 
that exploitation and exploration have a positive linear relationship. 
Further, despite their relatively smaller share in the number of patents, 
regions such as Munster, Hamburg, and Schwaben showed their strength 
in both exploration and exploitation. According to this analysis, regions 
from Germany (DE) tend to have high capabilities in knowledge 
recombination. 

Table 3 shows the estimation results of SFA without inefficiency ef-
fect. Four different frontier functions were compared to find the best 
production efficiency estimation model. Model 1 is purely estimated by 
putting the three inputs of labor, capital, and cost into the frontier 
function without variants of the input variables. Model 2 was estimated 
by putting the square values of the inputs. Model 3 considers the 
interaction between inputs, and Model 4 considers everything. The 
model fit can be known through the change in AIC and BIC values. Model 
2 had the lowest fit based on Model 1 as a reference, and the fitted values 
are increased in Models 3 and 4. Model 4 is the best fit among the four, 
therefore we adopt Model 4 as a basic frontier function in further 
analyses. 

The stochastic frontier function is estimated by using Model 4 above, 
and then the TE for each region over the years is calculated. Fig. 3 shows 
the highest 35 regions and the lowest 35 regions in rank of average TE. 
The “Blue Banana” shape, which indicates the main economic devel-
opment and innovation centers in Europe (Hospers, 2003) also appears 
on the map on the left side of the figure. 

The results of the estimation of SFA equation are reported in Table 4. 
In all models, regional- and periodic-specific fixed effect are included. 
According to the results, while exploitation has a positive association 
with the inefficiency of the region (Model 3), exploration has a negative 
association (Models 1, 3, and 4). The synergy between Exploration and 

Fig. 2. Regional recombination capacity and patenting.  

Table 3 
Results of the estimation of SFA without inefficiency effect (Sample using 5-year 
window).   

Model 1 Model 2 Model 3 Model 4 

Frontier     
X1 (Ln_Labor) 0.067*** 0.785*** 0.309* 0.153  

(0.011) (0.200) (0.127) (0.137) 
X2 (Ln_Cost) 0.601*** 1.400*** 0.448* 0.590**  

(0.015) (0.313) (0.175) (0.201) 
X3 (Ln_Capital) 0.308*** -2.250*** -0.427** -0.312  

(0.016) (0.387) (0.159) (0.206) 
X12  -0.060***  0.073***   

(0.016)  (0.021) 
X22  -0.040*  -0.048   

(0.016)  (0.036) 
X32  0.146***  -0.091*   

(0.022)  (0.043) 
X1*X2   -0.050* -0.134***    

(0.022) (0.036) 
X2*X3   0.056*** 0.208**    

(0.013) (0.073) 
X3*X1   0.026 0.028    

(0.025) (0.053) 
Const. -5.446*** -0.245 -2.186*** -2.901***  

(0.050) (0.813) (0.450) (0.479) 
Observations 1,306 1,306 1,306 1,306 
Number of NUTS2 216 216 216 216 
Degree of Freedom 7 10 10 12 
AIC -1797.748 -1116.054 -1863.732 -1881.363 
BIC -1761.525 -1064.307 -1811.984 -1819.266 

Note: Standard error is in parenthesis. Stars (*, **, and ***) indicate significance 
at p < .05, p < 0.01, andp < 0.001, respectively. 
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Exploitation was negatively significant (β = -0.161, p < 0.001) in Model 
3. Moreover, the ratio of exploration also negatively affects the in-
efficiency of the region (β = 0.0857, p < 0.001) in Model 4. In this result, 

Fig. 3. Regional production efficiency.  

Table 4 
Results of the estimation of SFA equation (Sample using 5-year window).   

Model 1 Model 2 Model 3 Model 4 

Frontier     
X1 (Ln_Labor) 0.240 0.0436 -0.111 0.0326  

(0.201) (0.181) (0.318) (0.163) 
X2 (Ln_Cost) 0.673*** 0.703*** 0.900*** 0.673***  

(0.231) (0.226) (0.375) (0.222) 
X3 (Ln_Capital) -0.399 -0.225 -0.298 -0.181  

(0.221) (0.218) (0.587) (0.214) 
X12 0.0761*** 0.0786*** 0.0574 0.0753***  

(0.0304) (0.0283) (0.0399) (0.0265) 
X22 -0.0296 -0.00142 -0.0184 0.00397  

(0.0390) (0.0415) (0.164) (0.0416) 
X32 -0.0693 -0.0827 -0.0548 -0.0835  

(0.0461) (0.0466) (0.0501) (0.0462) 
X1*X2 -0.152*** -0.194*** -0.127 -0.195***  

(0.0400) (0.0399) (0.174) (0.0390) 
X2*X3 0.169*** 0.133 0.105 0.125  

(0.0855) (0.0859) (0.219) (0.0847) 
X3*X1 0.0381 0.103 0.0761 0.111***  

(0.0612) (0.0573) (0.184) (0.0551) 
Const. -3.091*** -3.346*** -3.528*** -3.356***  

(0.585) (0.561) (0.525) (0.573) 
Inefficiency (U sigma)          

Exploration -0.116***  -0.212*** -0.259***  
(0.132)  (0.536) (0.268) 

Exploitation  0.368 0.824* 0.406   
(0.215) (1.745) (0.234) 

Exploration × Exploitation   -0.161***     
(1.492)  

Ratio of Exploration    0.0857***     
(0.457) 

Const. -2.982 -3.729 -3.484 -3.562  
(2.363) (2.991) (13.97) (3.971)      

Regional FE Yes Yes Yes Yes 
Time FE Yes Yes Yes Yes      

Observations 1,306 1,306 1,306 1,306 
Number of NUTS2 216 216 216 216 

Note: Standard error is in parenthesis. Stars (*, **, and ***) indicate significance 
at p < .05, p < 0.01, and p < 0.001, respectively. 

Table 5 
Results of the estimation of SFA equation (Sample using 3-year window).   

Model 1 Model 2 Model 3 Model 4 

Frontier     
X1 (Ln_Labor) 0.167 0.0610 0.0986 0.178  

(0.322) (0.125) (0.128) (0.275) 
X2 (Ln_Cost) 0.587 0.668*** 0.633*** 0.562***  

(0.338) (0.158) (0.171) (0.215) 
X3 (Ln_Capital) -0.221 -0.256 -0.194 -0.202  

(0.214) (0.155) (0.159) (0.205) 
X12 0.0791 0.0363*** 0.0745*** 0.0813***  

(0.0442) (0.0169) (0.0214) (0.0242) 
X22 -0.00787 -0.0679*** -0.0114 -0.0113  

(0.0323) (0.0230) (0.0302) (0.0301) 
X32 -0.0998*** -0.122*** -0.108*** -0.110***  

(0.0448) (0.0315) (0.0339) (0.0406) 
X1*X2 -0.206*** -0.116*** -0.205*** -0.213***  

(0.0405) (0.0255) (0.0303) (0.0308) 
X2*X3 0.165 0.226*** 0.168*** 0.180***  

(0.0923) (0.0499) (0.0626) (0.0658) 
X3*X1 0.103 0.0773*** 0.117*** 0.107***  

(0.0627) (0.0372) (0.0415) (0.0461) 
Const. -3.180*** -3.096*** -3.294*** -3.171***  

(1.617) (0.424) (0.440) (0.985) 
Inefficiency (U sigma)          

Exploration -0.0284**  -0.0656*** -0.00322**  
(0.104)  (0.103) (0.170) 

Exploitation  0.257*** 0.339*** 0.293   
(0.123) (0.139) (0.152) 

Exploration ×
Exploitation   

-0.0666     

(0.0798)  
Ratio of Exploration    0.0707**     

(0.262) 
Const. -3.830 -3.098 -3.464 -3.532  

(34.83) (3.807) (3.038) (2.615)      

Regional FE Yes Yes Yes Yes 
Time FE Yes Yes Yes Yes      

Observations 2,226 2,226 2,226 2,226 
Number of NUTS2 216 216 216 216 

Note: Standard error is in parenthesis. Stars (*, **, and ***) indicate significance 
at p < .05, p < 0.01, and p < 0.001, respectively. 
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Exploration is clearly proved as a plus factor for the regional production 
efficiency, whereas Exploitation is not. Furthermore, it was found that 
the two competencies have a stronger trade-off effect than the comple-
mentary effect, showing that the strengthening of the Exploitation ca-
pacity inevitably leads to the weakening of the Exploration capacity. 

We also proceeded a robustness check with another sample by using 
3-year window setting. Although 5-year window is widely accepted 
setting in relevant research, this should be clearly stated as it influences 
the sample size and estimation result. The result confirms that our 
findings do not change depending on the length of time period (See 
Table 5). 

5. Discussion and conclusion 

This study investigates regional capacity in knowledge recombina-
tion and its impact on the regional production efficiency of regions in 
Europe. As knowledge is accumulated, knowledge diversity and novel 
recombination of knowledge become new drivers for economic growth, 
especially for sustainable long-term regional development in advanced 
regions. However, questions regarding the relationship between 
recombination capacity and production efficiency at a regional level 
have remained unanswered. In this regard, this study specifies regional 
types of technological recombination into exploration, which is 
completely new recombination of knowledge, and exploitation, which is 
recombination of already existing knowledge, and measures their effects 
on regional production efficiency in NUTS 2 level European regions from 
1980 to 2014. 

For the analysis, the knowledge space of regions is constructed based 
on technology class co-occurrence matrices with patent data retrieved 
from EPO’s PATSTAT, and a region’s RCA for each recombination type is 
calculated. TE is then estimated with a stochastic frontier analysis model 
using a random-effects time-varying production model and a trans-log 
production function with socio-economic data. Lastly, the full model 
regarding the exogenous regional knowledge recombination type is 
considered to estimate the production frontier and to calculate each 
region’s production efficiency. 

The results in Tables 4 and 5 show that new recombination, which is 
explorative activities, had a positive and significant influence on pro-
duction efficiency, while exploitation of knowledge had no significance 
or even negative effect. In other words, regions with strength and that 
focus on the exploration of knowledge tend to gain greater production 
efficiency and faster growth in terms of production efficiency. 

Subsequently, this result is a supportive extension of the arguments 
of a series of regional diversification studies. Previous studies on tech-
nological diversification and its effect on regional economic growth 
show that the more diversified and complex the knowledge base, the 
more competitiveness and growth the regions achieve (Balland and 
Rigby, 2017; Boschma, 2017; Kogler et al., 2017). In addition, a more 
diverse knowledge base tends to prevent exploitative activities but en-
hances a region’s capacity to innovate through explorative recombinant 
activities (Carnabuci and Operti, 2013). As the result of this analysis 
proves that explorative recombination has a significant positive effect on 
regional production efficiency, and since the explorative approach ex-
tends the range and variety of knowledge bases to facilitate new 
breakthrough innovations (Ahuja and Lampert, 2001; Ahuja et al., 
2008), this study supports the logic of regional diversification and 
economic growth. Thus, to achieve regional growth through enhancing 
production efficiency, explorative research needs to be promoted. 

This study contributes by providing implications for regional inno-
vation policy. Previous studies have noted the importance of knowledge 
structure and technological diversification and their effect on innova-
tion in the region (Boschma et al., 2013; Lawson and Lorenz, 1999; 
Storper and Venables, 2004). However, they have failed to consider how 
new knowledge is effectively created and expanded upon and how it 
affects innovation and production efficiency growth. This study brought 
such discussion from the knowledge management field within the firm 

level to the geographical regional level by considering regional recom-
binant capacity in the process of innovation and production efficiency 
with the estimation of regional knowledge capacity and technical effi-
ciencies of regions. Although reconfiguration of existing knowledge 
combinations costs less and secures returns on effort, completely new 
recombination is the factor that leads to production efficiency. 

Thus, regional policies should be strategically designed to under-
stand a region’s knowledge structure, diversify technologically through 
an explorative knowledge production mechanism, and expand based on 
relatedness. Thinking of path-dependent nature of knowledge, exploit-
ative knowledge production is more preferred because of its less un-
certainty and greater efficiency. In this respect, regional policy should 
provide enough motivation for local inventors or firms to develop the 
new technology. More importantly, it should address long-term regional 
development roadmap so that the newly developed local knowledge can 
be settled down successfully. To do so, the newly explored local 
knowledge is better to be something that can be easily attached to the 
existing local knowledge structure, and this should be addressed based 
on the diagnosis on local knowledge structure. Moreover, by confirming 
that explorative combinatorial knowledge dynamics is significant, 
means for collaborative and collective learning for explorative search of 
knowledge within a region should be considered. This is also needed to 
be supported by regional policy to enhance more collaborative part-
nership between local agents. Especially, collaboration between in-
dustry, academia, and government can create a significant synergy 
effect, and the government should play the role as a broker between the 
two. 

The importance of explorative knowledge recombination capacity to 
generate new knowledge should be emphasized even more, especially 
for regions with high levels of knowledge accumulation, as decreasing 
returns to scale from focusing on known knowledge combinations occur, 
and the regions have a large potential to expand their knowledge do-
mains they can access for long-term economic growth. 

However, this study has some limitations. First, the analysis applied 
a dichotomous classification of regional knowledge recombination, and 
second, the dependent variable, production efficiency, is limited to TE. 
Therefore, future research may apply more specific classifications of 
knowledge recombination types, such as new, low-, and high-related 
recombination. In addition, sectors or industries can be split up, for 
example, recombination effects in the manufacturing and service sec-
tors. In our econometric estimation, spatial effects could be only 
controlled through regional dummy due to the complexity of our model 
such as imbalance panel. Furthermore, variables such as total factor 
production efficiency or technical progress can be applied. Finally, as 
exploration appears to be significant for production efficiency, future 
research can investigate knowledge spillovers transferred between 
regions. 
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