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Abstract: High-dimensional optimization problems are more and more common in the era of big data
and the Internet of things (IoT), which seriously challenge the optimization performance of existing
optimizers. To solve these kinds of problems effectively, this paper devises a dimension group-based
comprehensive elite learning swarm optimizer (DGCELSO) by integrating valuable evolutionary
information in different elite particles in the swarm to guide the updating of inferior ones. Specifically,
the swarm is first separated into two exclusive sets, namely the elite set (ES) containing the top best
individuals, and the non-elite set (NES), consisting of the remaining individuals. Then, the dimensions
of each particle in NES are randomly divided into several groups with equal sizes. Subsequently,
each dimension group of each non-elite particle is guided by two different elites randomly selected
from ES. In this way, each non-elite particle in NES is comprehensively guided by multiple elite
particles in ES. Therefore, not only could high diversity be maintained, but fast convergence is also
likely guaranteed. To alleviate the sensitivity of DGCELSO to the associated parameters, we further
devise dynamic adjustment strategies to change the parameter settings during the evolution. With
the above mechanisms, DGCELSO is expected to explore and exploit the solution space properly to
find the optimum solutions for optimization problems. Extensive experiments conducted on two
commonly used large-scale benchmark problem sets demonstrate that DGCELSO achieves highly
competitive or even much better performance than several state-of-the-art large-scale optimizers.

Keywords: large-scale optimization; particle swarm optimization; dimension group-based compre-
hensive elite learning; high-dimensional problems; elite learning

MSC: 37N40; 46N10; 47N10

1. Introduction

Large-scale optimization problems, also called high-dimensional problems, are ubiqui-
tous in daily life and industrial engineering in the era of big data and the Internet of Things
(IoT), such as water distribution optimization problems [1], cyber-physical systems design
problems [2], control of pollutant spreading on social networks [3], and offshore wind farm
collector system planning problems [4]. As the dimensionality of optimization problems
increases, most existing optimization methods encounter the degradation of optimization
effectiveness, due to the “curse of dimensionality” [5,6].

Specifically, the increase of dimensionality results in the following challenges for exist-
ing optimization algorithms: (1) With the growth of dimensionality, the properties of opti-
mization problems become much more complicated. In particular, in the high-dimensional
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environment, optimization problems usually are non-convex, non-differentiable, or even
non-continuous [7–9]. This makes traditional gradient-based optimization algorithms
become infeasible. (2) The solution space grows exponentially as the dimensionality
increases [10–13]. This greatly challenges the optimization efficiency of most existing
algorithms. (3) The landscape of optimization problems becomes more complex in a high-
dimensional space. On the one hand, some unimodal problems may become multimodal
with the increase of dimensionality; on the other hand, in some multimodal problems, not
only does the number of local optimal regions increase rapidly, but also the local regions
become much wider and flatter [11,12,14]. This likely leads to premature convergence and
stagnation of existing optimization techniques.

As a kind of metaheuristic algorithm, particle swarm optimization (PSO) maintains
a population of particles, each of which represents a feasible solution to optimization
problems, to search the solution space for the global optimum solutions [15–17]. By means
of its great merits, such as strong global search ability, independence in the mathematic
properties of optimization problems, and inherent parallelism [17], PSO has witnessed
rapid development and excellent success in solving complex optimization problems [18–22]
since it was proposed in 1995 [15]. As a result, PSO has been widely employed to solve
real-world optimization problems in daily life and industrial engineering [1,23].

However, most existing PSOs are initially designed for low-dimensional optimization
problems. Confronted with large-scale optimization problems, their effectiveness usually
deteriorates due to the previously mentioned challenges [24–26]. To improve the optimiza-
tion effectiveness of PSO in tackling high-dimensional problems, researchers have been
devoted to designing novel and effective evolution mechanisms for PSO. Broadly speaking,
existing large-scale PSOs can be divided into two categories [27], namely cooperative
coevolutionary large-scale PSOs [6,28,29] and holistic large-scale PSOs [24,26,30–32].

Cooperative coevolutionary PSOs (CCPSOs) [6,28,29,33] adopt the divide-and-conquer
technique to decompose one large-scale optimization problem into several exclusive smaller
sub-problems and then optimize these sub-problems individually by traditional PSOs
designed for low-dimensional problems to find the optimal solution to the large-scale opti-
mization problem. Since the decomposed subproblems are separately optimized, the key
component of CCPSOs is the decomposition strategy [6,28]. Ideally, a good decomposition
strategy should place interacted variables into the same sub-problem, so that they can
be optimized together. However, without prior knowledge, it is considerably difficult to
decompose a large-scale problem accurately. As a result, current research on CCPSOs lies in
developing novel decomposition strategies to divide the large-scale optimization problem
as accurately as possible. Hence, many effective decomposition strategies [6,34–38] have
been put forward.

However, CCPSOs heavily rely on the quality of the decomposition strategies. Ac-
cording to the no free lunch theorem, there is no decomposition strategy suitable for all
large-scale problems. Therefore, some researchers attempt to design large-scale PSOs from
another perspective, namely the holistic large-scale PSOs [5,26,30,39].

In contrast to CCPSOs, holistic large-scale PSOs [5,26,30,39,40] still optimize all vari-
ables simultaneously such as traditional PSOs. Since the learning strategy in updating the
velocity of particles plays the most important role in PSO [15,16,18], the key to improving
the effectiveness of PSO in coping with large-scale optimization is to devise effective learn-
ing strategies for particles, which should not only help particles explore the solution space
efficiently to locate promising areas fast, but also aid particles to exploit the promising areas
effectively to obtain high-quality solutions. Along this line, researchers have developed
many remarkable learning strategies for PSO to solve high-dimensional problems, such
as the competitive learning scheme [26], the social learning strategy [30], the two-phase
learning method [1], and the level-based learning approach [25]. Recently, some researchers
even have attempted to develop novel coding schemes for PSO to improve its optimization
performance in solving large-scale optimization problems [41].
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Although the above-mentioned large-scale PSOs have presented excellent optimiza-
tion performance in solving some large-scale optimization problems, they still encounter
limitations, such as premature convergence and stagnation into local areas, in solving
complicated high-dimensional problems, especially those with overlapping correlated
variables or fully non-separable variables. Therefore, the optimization performance of
PSOs in tackling large-scale optimization still deserves improvement, which still remains
an open and hot topic to study in the evolutionary computation community.

In nature, individuals with better fitness usually preserve more valuable evolutionary
information than those with worse fitness, to guide the evolution of one species [42]. More-
over, in general, different individuals usually preserve different useful genes. Inspired by
these observations, in this paper, we propose a dimension group-based comprehensive elite
learning swarm optimizer (DGCELSO) by integrating useful genes embedded in different
elite individuals to guide the update of particles to search the large-scale solution space
effectively and efficiently. Specifically, the main components of the proposed DGCELSO
are summarized as follows:

(1) A dimension group-based comprehensive elite learning scheme is proposed to guide
the update of inferior particles by learning from multiple superior ones. Instead of
learning from only at most two exemplars in existing holistic large-scale PSOs [24–26,30],
the devised learning strategy first randomly divides the dimensions of each inferior
particle into several equally sized groups and then employs different superior par-
ticles to guide the update of different dimension groups. Moreover, unlike existing
elite strategies that only use one elite to direct the evolution of an individual [43,44],
it employs a random dimension group-based recombination techniques to try to
integrate valuable evolutionary information in multiple elites to guide the update of
each non-elite particle. In this way, the learning diversity of particles could be largely
promoted, which is beneficial for particles to avoid falling into local traps. Moreover,
it is also possible that useful evolutionary information embedded in different superior
particles could be integrated to direct the learning of inferior particles, which may be
profitable for particles to approach promising areas quickly.

(2) Dynamic adjustment strategies for the control parameters involved in the proposed
learning strategy are further designed to cooperate with the learning strategy to help
PSO search the large-scale solution space properly. With these dynamic strategies,
the developed DGCELSO could appropriately compromise the intensification and
diversification of the search process at the swarm level and the particle level.

To verify the effectiveness of the proposed DGCELSO, extensive experiments are
conducted to compare DGCELSO with several state-of-the-art large-scale optimizers on the
widely used CEC’2010 [7] and CEC’2013 [8] large-scale benchmark optimization problem
sets. Meanwhile, deep investigations on DGCELSO are also conducted to discover what
contributes to its good performance.

The rest of this paper is organized as follows. Section 2 introduces the classical PSO
and large-scale PSO variants. Then, the proposed DGCELSO is elucidated in detail in
Section 3. Section 4 conducts extensive experiments to verify the effectiveness of the
proposed DGCELSO. Finally, Section 5 concludes this paper.

2. Related Work

In this paper, a D-dimensional single-objective minimization optimization problem is
considered, which is defined as follows:

min f (x), x ∈ RD (1)

where x consisting of D variables is a feasible solution to the optimization problem, and D
is the dimension size. In this paper, we directly use the function value as the fitness value
of one particle.
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2.1. Canonical PSO

In the canonical PSO [15,16], each particle is represented by two vectors, namely the po-
sition vector x and the velocity vector v. During the evolution, in the canonical PSO [15,16],
each particle is guided by its historically personal best position and the historically best
position of the whole swarm. Specifically, each particle is updated as follows:

vd
i ← wvd

i + c1r1(pbestd
i − xd

i ) + c2r2(gbestd − xd
i ) (2)

xd
i ← xd

i + vd
i (3)

where vd
i is the dth dimension of the velocity of the ith particle, xd

i is the dth dimension
of the position of the ith particle, pbestd

i is the dth dimension of the historically personal
best position found by the ith particle, and gbestd is the dth dimension of the historically
global best position found by the whole swarm. As for the parameters, c1 and c2 are two
acceleration coefficients, while r1 and r2 are two real random numbers uniformly generated
within [0, 1]. w represents the inertia weight.

As shown in Equation (2), in the canonical PSO, each particle is cognitively directed
by its pbest (the second part in the right hand of Equation (2) and socially guided by gbest
of the whole swarm (the third part in the right hand of Equation (2). Due to the greedy
attraction of gbest, the swarm in the canonical PSOs usually becomes trapped in local areas
when tackling multimodal problems [18,45]. Therefore, to improve the effectiveness of PSO
in searching multimodal space with many local areas, researchers developed many novel
learning strategies to guide the learning of particles, such as the comprehensive learning
strategy [46], the genetic learning strategy [47], the scatter learning strategy [18], and the
orthogonal learning strategy [48], etc.

Though a lot of novel learning strategies have helped PSO achieve very promising
performance in solving multimodal problems, most of them are particularly designed
for low-dimensional optimization problems. Encountered with large-scale optimization
problems, most existing PSOs lose their effectiveness due to the “curse of dimensionality”
and the aforementioned challenges in high-dimensional problems.

2.2. Large-Scale PSO

To solve the previously mentioned challenges of large-scale optimization, researchers
devoted extensive attention to designing novel PSOs. As a result, numerous large-scale
PSO variants have sprung up [1,26]. In a broad sense, existing large-scale PSOs can be
classified into the following two categories.

2.2.1. Cooperative Coevolutionary Large-Scale PSO (CCPSO)

Cooperative coevolutionary PSOs (CCPSOs) [6,29,49] mainly use the divide-and-
conquer technique to separate all variables of one high-dimensional problem into several
exclusive groups, and then optimize each group of variables independently to obtain the
optimal solution to the high-dimensional problem. Bergh and Engelbrecht put forward
the earliest CCPSO [49]. In this algorithm, all variables in a large-scale optimization
problem are randomly divided into K groups with each containing D/K variables (where
D is the dimension size). Then the canonical PSO described in Section 2.1 is employed
to optimize each group of variables. Nevertheless, the performance of this algorithm
heavily relies on the setting of the number of groups (namely K). To alleviate this issue,
in [29], an improved CCPSO, named CCPSO2, was proposed by first predefining a set of
group numbers and then randomly selecting a group number in each iteration to separate
variables into groups. In the above two algorithms, the correlations between variables
are not taken into account explicitly. Hence, their optimization effectiveness degrades
dramatically in solving problems with many interacted variables [11,12].

To alleviate the above issue, researchers have attempted to design effective variable
grouping strategies to separate variables into groups by detecting the correlations between
variables [6,35–37]. In the literature, the most representative grouping strategy is the



Mathematics 2022, 10, 1072 5 of 32

differential grouping (DG) method [6], which uses the differential function values to
detect the correlation between any two variables by exerting the same disturbance on the
two variables. Based on the detected correlations between variables, DG could separate
variables into groups satisfactorily. However, this method has two drawbacks. (1) It
cannot detect the indirect interaction between variables [36], and (2) it consumes a lot of
fitness evaluations (O(D2), D is the number of variables) in the variable decomposition
stage [35,37].

To fill the first gap, Sun et al. devised an extended DG (XDG) [36], and Mei et al.
brought up a global DG (GDG) [50] to detect both the direct and indirect interactions
between variables. To alleviate the second predicament, a fast DG, named DG2 [35],
and a recursive DG (RDG) [37] were put forward to reduce the consumption of fitness
evaluations in the variable grouping stage. To further improve the detection efficiency
of RDG, an efficient recursive differential grouping (ERDG) [51] was devised to reduce
the used fitness evaluations in the decomposition stage, and to alleviate the sensitivity of
RDG to parameters, an improved version, named RDG2, was developed [52] by adaptively
adjusting the setting of parameters. In [53], Ma et al. proposed a merged differential
grouping method based on subset-subset interaction and binary search by first identifying
separable variables and non-separable variables, and putting all separable variables into the
same subset, while dividing the non-separable variables into multiple subsets via a binary-
tree-based iterative merging method. To further promote the variable grouping accuracy,
Liu et al. proposed a deep grouping method by considering both the variable interaction
and the essentialness of the variable to decompose one high-dimensional problem [54].
Instead of decomposing a large-scale optimization problem into fixed variable groups,
Zhang et al. developed a dynamic grouping strategy to dynamically separate variables into
groups during the evolution [55]. Specifically, the proposed algorithm first evaluates the
contribution of variables based on the historical information and then constructs dynamic
variable groups for the next generation based on the evaluated contribution and the detected
interaction information.

By means of their promising performance in solving large-scale optimization problems,
cooperative coevolutionary algorithms have been widely applied to solve various industrial
engineering problems. For instance, Neshat et al. [56] proposed a novel multi-swarm coop-
erative co-evolution algorithm with the multi verse optimizer algorithm, the equilibrium
optimization method, and the moth flame optimization approach, to optimize the layout
of offshore wave energy converters. To tackle distributed flowshop group scheduling
problems, Pan et al. [57] proposed a cooperative co-evolutionary algorithm with a collabo-
ration model and a re-initialization scheme to tackle them. In [58], a hybrid cooperative
co-evolution algorithm with a symmetric local search plus Nelder–Mead was devised to
optimize the positions and the power-take-off settings of wave energy converters. In [59],
Liang et al. developed a cooperative coevolutionary multi-objective evolutionary algorithm
to tackle the transit network design and frequency setting problem.

Although the above-mentioned cooperative coevolutionary algorithms including
CCPSOs achieved good performance in dealing with certain kinds of high-dimensional
problems and have been applied to solve real-world problems, they are still confronted
with limitations in tackling complicated high-dimensional problems. On the one hand,
according to the theorem of No Free Lunch, there is no universal grouping method that
could accurately separate variables into groups for all types of large-scale optimization
problems; on the other hand, faced with high-dimensional problems with overlapping
variable correlations, most existing variable grouping strategies would separate all these
variables into the same group, leading to a very large variable group. Under this situation,
traditional PSOs designed for low-dimensional problems used in CCPSO still cannot
effectively optimize such a large group of variables. As a result, some researchers have
attempted to design large-scale PSOs from another perspective to be elucidated next.
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2.2.2. Holistic Large-Scale PSO

Unlike CCPSOs, holistic large-scale PSOs [18,26] still consider all variables as a whole
and optimize them simultaneously like in traditional low-dimensional PSOs [16]. To
solve the previously mentioned challenges of large-scale optimization, the key to holistic
large-scale PSOs is to devise effective and efficient learning strategies for particles to
largely promote the swarm diversity so that particles could explore the exponentially
increased solution space efficiently and exploit the promising areas extensively to obtain
high-quality solutions.

In [60], a dynamic multi-swarm PSO along with the Quasi-Newton local search method
(DMS-L-PSO) was proposed to optimize large-scale optimization problems by dynamically
separating particles into smaller sub-swarms in each generation. Taking inspiration from
the competitive learning scheme in human society, Cheng and Jin proposed a competi-
tive swarm optimizer (CSO) [26]. Specifically, this optimizer first separates particles into
exclusive pairs and then lets each pair of particles compete with each other. After the
competition, the winner is not updated and thus directly enters the next generation, while
the loser is updated by learning from the winner. Likewise, inspired by the social learning
strategy in animals, a social learning PSO (SLPSO) [61] was devised to let each particle
probabilistically learn from those which are better than itself. By extending the pairwise
competition mechanism in CSO to a tri-competitive strategy, Mohapatra et al. [62] devel-
oped a modified CSO (MCSO) to accelerate the convergence speed of the swarm to tackle
high-dimensional problems. Taking inspiration from the comprehensive learning strategy
designed for low-dimensional problems [46] and the competitive learning approach in
CSO [26], Yang et al. designed a segment-based predominant learning swarm optimizer
(SPLSO) [30] to cope with large-scale optimization. Specifically, this optimizer first uses
the pairwise competition mechanism in CSO to divide particles into two groups, namely
the relatively good particles and the relatively poor particles. Then, it further randomly
separates the dimensions of each relatively poor particle into a certain number of exclusive
segments, and subsequently randomly selects a relatively good particle to direct the update
of each segment of the inferior particle.

Unlike the above large-scale PSOs [26,30,62], which let the updated particle learn from
only one superior, Yang et al. devised a level-based learning swarm optimizer (LLSO) [25]
by taking inspiration from the teaching theory in pedagogy. Specifically, this optimizer first
separates particles into different levels and then lets each particle in lower levels learn from
two random superior exemplars selected from higher levels. Inspired by the cooperative
learning behavior in human society, Lan et al. put forward a two-phase learning swarm
optimizer (TPLSO) [24]. This optimizer separates the learning of each particle into the
mass learning phase and the elite learning phase. In the former learning phase, the tri-
competitive mechanism is employed to update particles, while in the elite learning phase,
the elite particles are picked out to learn from each other to further exploit promising areas
to refine the found solutions. Similarly, Wang et al. proposed a multiple strategy learning
particle swarm optimization (MSL-PSO) [40], in which different learning strategies are used
to update particles in different evolution stages. In the first stage, each particle learns from
those with better fitness and the mean position of the swarm to probe promising positions.
Then, all the best probed positions are sorted based on their fitness and the top best ones
are used to update particles in the second stage. In [41], Jian et al. developed a novel region
encoding scheme to extend the solution representation from a single point to a region, and
a novel adaptive region search strategy to keep the search diversity. These two schemes are
then embedded into SLPSO to tackle large-scale optimization problems.

To find a good compromise between exploration and exploitation, Li et al. devised a
learning structure to decouple exploration and exploitation for PSO in [63] to solve large-
scale optimization. In particular, an exploration learning strategy was devised to direct
particles to sparse areas based on a local sparseness degree measurement, and then an
adaptive exploitation learning strategy was developed to let particles exploit the found
promising areas. Deng et al. [39] devised a ranking-based biased learning swarm optimizer
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(RBLSO) based on the principle that the fitness difference between learners and exemplars
should be maximized. In particular, in this algorithm, a ranking paired learning (RPL)
scheme was designed to let the worse particles learn peer-to-peer from the better ones, and
at the same time, a biased center learning (BCL) strategy was devised to let each particle
learn from the weighted mean position of the whole swarm. Lan et al. [64] proposed a
hierarchical sorting swarm optimizer (HSSO) to tackle large-scale optimization. Specifically,
this optimizer first divides particles into a good swarm and a bad swarm with equal
sizes based on their fitness. Then, particles in the bad group are updated by learning
from those in the good one. Subsequently, the good swarm is taken as a new swarm to
execute the above swarm division and particle updating operations until there is only one
particle in the good swarm. Kong et al. [65] devised an adaptive multi-swarm particle
swarm optimizer to cope with high-dimensional problems. Specifically, it first adaptively
divides particles into several sub-swarms and then employs the competition mechanism to
select exemplars for particle updating. Huang et al. [66] put forward a convergence speed
controller to cooperate with PSO to deal with large-scale optimization. Specifically, this
controller is triggered periodically to produce an early warning to PSO before it falls into
premature convergence.

Though most existing large-scale PSOs have presented their success in solving certain
kinds of high-dimensional problems, their effectiveness still degrades in solving compli-
cated high-dimensional problems [11,12,27,67], especially on those with many wide and
flat local areas. Therefore, promoting the effectiveness and efficiency of PSO in solving
large-scale optimization still deserves extensive attention and thus this research direction is
still an active and hot topic in the evolutionary computation community.

3. Dimension Group-Based Comprehensive Elite Learning Swarm Optimizer

In nature, during the evolution of one species, those elite individuals with better
adaptability to the environment usually preserve more valuable evolutionary information,
such as genes, to direct the evolution of the species [42]. Moreover, different individuals
may preserve different useful genes. Likewise, during the evolution of the swarm in PSO,
different particles may contain useful variable values that may be close to the true global
optimal solutions. Therefore, a natural idea is to integrate those useful values embedded in
different particles to guide the evolution of the swarm. To this end, this paper proposes
a dimension group-based comprehensive elite learning swarm optimizer (DGCELSO) to
tackle large-scale optimization. The detailed components of this optimizer are elucidated
as follows.

3.1. Dimension Group-Based Comprehensive Elite Learning

Given that NP particles are maintained in the swarm, the proposed DGCEL strategy
first partitions the swarm into two exclusive sets, namely the elite set, denoted by ES,
and the non-elite set, denoted by NES. Specifically, ES contains the best es particles in the
swarm, while NES consists of the rest nes = (NP − es) particles. Since the size of ES, namely
es, is related to NP, we set es = [tp ∗ NP] (where tp is the ratio of the elite particles in ES out
of the whole swarm), for the convenience of parameter fine-tuning.

Since elite particles usually preserve more valuable evolutionary information than the
non-elite ones, in this paper, we first develop an elite learning strategy (EL). Specifically,
we let the elite particles in ES directly enter the next generation, while only updating the
non-elite particles in NES. Moreover, the elite particles in ES are employed to guide the
learning of non-elite particles in NES.

With respect to the elite particles, during the evolution, though they may be far from
the global optimal area, they usually contain valuable genes that are very close to the true
global optimal solution. To integrate the useful evolutionary information embedded in
different elites, we propose a dimension group-based comprehensive learning strategy
(DGCL). Specifically, during the update of each non-elite particle, the whole dimensions
of this particle are first randomly shuffled and then are partitioned into NDG dimension
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groups (where NDG denotes the number of dimension groups), with each group containing
D/NDG dimensions. In this way, the dimensions of each non-elite particle are randomly
divided into NDG groups, namely DG = [DG1, DG2, . . . , DGNDG].

Here, it should be mentioned that for each non-elite particle, the dimensions are
randomly shuffled, and thus it is likely that the division of dimension groups is different
for different non-elite particles. In addition, if D%NDG is not zero, then the remaining di-
mensions are equally allocated to the first (D%NDG) groups, i.e., each of the first (D%NDG)
groups contains (D/NDG + 1) dimensions.

Subsequently, unlike most existing large-scale PSOs [25,26,30] which use the same
exemplars to update all dimensions of one inferior particle, the proposed DGCL uses one
exemplar to update each dimension group of each non-elite particle, and thus one non-elite
particle could learn from different exemplars.

Incorporating the proposed EL into the DGCL, the DGCEL is developed by using the
elite particles in ES to direct the update of each dimension group of a non-elite particle.
Specifically, each non-elite particle is updated as follows:

VDGi
NESj

← r1VDGi
NESj

+ r2(XDGi
ESr1
− XDGi

NESj
) + φr3(XDGi

ESr2
− XDGi

NESj
) (4)

XDGi
NESj

← VDGi
NESj

+ XDGi
NESj

(5)

where NESj represents the jth non-elite particle in NES; DGi denotes the ith dimension

group of the jth non-elite particle; XNGi
NESj

and VDGi
NESj

are the ith dimension group of the
position and velocity of the jth particle in NES, respectively; ESr1 and ESr2 are two different
elite particles randomly selected from ES; r1, r2, and r3 are three random real parameters
uniformly sampled within [0, 1]; φ ∈ [0, 1] is a control parameter in charge of the influence
of the second elite particle.

As for the update of each non-elite particle in NES, as shown in Equation (4), the
following details should be paid careful attention:

(1) As previously mentioned, for each non-elite particle, the dimensions are randomly
shuffled. As a result, the partition of dimension groups is different for different
non-elite particles.

(2) For each dimension group DGi, two different elite particles XESr1 and XESr2 are first
randomly selected from ES. Then, the better one between these two elites (suppose it
is XESr1) acts as the first exemplar in Equation (4), while the worse one (suppose it is
XESr2 ) acts as the second exemplar to guide the update of the dimension group of the
non-elite particle.

(3) The two elite particles guiding the update of each dimension group are both randomly
selected. Therefore, they are likely to be different for different dimension groups.

As a whole, a complete flowchart of the proposed DGCEL is shown in Figure 1. Taking
deep analysis on Equation (4) and Figure 1, we find that the proposed DGCEL strategy
brings the following advantages to PSO:

(1) Instead of using historical evolutionary information, such as the historically global
best position (gbest), the personal best positions (pbest), and the neighborhood best
position (nbest), in traditional PSOs [18,47], the devised DGCEL employs the elite par-
ticles in the current swarm to direct the learning of the non-elite particles. In contrast
to the historical information, which may remain unchanged for many generations,
particles in the swarm are usually updated generation by generation. Therefore, in
the proposed DGCEL, the selected two guiding exemplars are not only likely different
for different particles but also probably different for the same particle in different
generations. This is very beneficial for the promotion of swarm diversity.

(2) Instead of updating each particle with the same exemplars for all dimensions in
most existing large-scale PSOs [5,24–26,30], the proposed DGCEL updates non-elite
particles at the dimension group level. Therefore, for different dimension groups, the
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two guiding exemplars are likely different. In this way, not only could one non-elite
particle learn from multiple different elite ones, but also the useful genes hidden in
different elites could be incorporated to direct the evolution of the swarm. As a result,
not only the learning diversity of particles could be improved, but also the learning
efficiency of particles could be promoted.

(3) In DGCEL, each dimension group of a non-elite particle is guided by two randomly
selected elite particles in ES. With the guidance of multiple elites, each non-elite
particle is expected to approach promising areas quickly. In addition, since the elite
particles in ES are not updated and directly enter the next generation, the useful
evolutionary information in the current swarm is protected from being destroyed by
uncertain updates. Therefore, the elites in ES become better and better as the evolution
iterates, and at last, it is expected that these elites converge to the optimal areas.

Figure 1. Flowchart of the proposed DGCEL strategy.

Remark

To the best of our knowledge, there are four existing PSOs that are very similar to
the proposed DGCELSO. They are CLPSO [46], OLPSO [48], GLPSO [47], and SPLSO [30].
The first three were originally designed for low-dimensional problems, while the last one
was initially devised for large-scale optimization. Compared with these existing PSOs, the
developed DGCELSO distinguishes from them in the following ways:

(1) In contrast to the three low-dimensional PSOs [46–48], the proposed DGCELSO
uses the elite particles in the swarm to comprehensively guide the learning of the
non-elite particles at the dimension group level. First, the three low-dimensional
PSOs all use the personal best positions (pbests) of particles to construct only one
guiding exemplar for each updated particle, whereas DGCELSO leverages the elite
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particles in the current swarm to construct two different guiding exemplars for each
non-elite particle. Second, the three low-dimensional PSOs construct the guiding
exemplar dimension by dimension. Nevertheless, DGCELSO constructs the two
guiding exemplars group by group. With these two differences, DGCELSO is expected
to construct more promising guiding exemplars for the updated particles, and thus
the learning effectiveness and efficiency of particles could be largely promoted to
explore the large-scale solution space.

(2) In contrast to the large-scale PSO, namely SPLSO [30], DGCELSO uses two different
elite particles to direct the update of each dimension group of each non-elite particle.
First, the partition of the swarm in DGCELSO is very different from the one in SPLSO.
In DGCELSO, the swarm is divided into two exclusive sets according to the fitness of
particles, with the best es particles entering ES and the rest entering NES. However,
in SPLSO, particles in the swarm are paired together and each paired two particles
compete with each other, with the winner entering the relatively good set and the
loser entering the relatively poor set. Second, for each non-elite particle, DGCELSO
adopts two random elites in ES to guide the update of each dimension group, whereas
in SPLSO, each dimension group of a loser is updated by only one random relatively
good particle with the other exemplar being the mean position of the relatively good
set, which is shared by all updated particles. Therefore, it is expected that the learning
effectiveness and efficiency of particles in DGCELSO are higher than in SPLSO. Hence,
DGCELSO is expected to explore and exploit the large-scale solution space more
appropriately than SPLSO.

3.2. Adaptive Strategies for Control Parameters

Taking deep investigation on the proposed DGCELSO, we find that except for the
swarm size NP, it has three control parameters, namely the ratio of elite particles out of the
whole swarm tp, the number of dimension groups NDG, and the control parameter φ in
Equation (4). The swarm size NP is a common parameter for all evolutionary algorithms,
which is usually problem-dependent and thus remains fine-tuned. As for φ, it subtly
controls the influence of the second guiding exemplar in the velocity update. We also
leave it to be fine-tuned in the experiment as NP. For the other two control parameters, we
devise the following dynamic adjustment schemes to alleviate the sensitivity of DGCELSO
to them.

3.2.1. Dynamic Adjustment for tp

With respect to the ratio of elite particles out of the whole swarm tp, it determines the
size of the elite set ES. When tp is large, on the one hand, a large number of particles are
preserved and enter the next generation directly; on the other hand, the learning of non-elite
particles is diversified due to a large number of candidate exemplars, namely the elite
particles. In this situation, the swarm biases to explore the solution space. In contrast, when
tp is small, only a small number of elites are preserved. In this case, the learning of non-elite
particles is concentrated to exploit the promising areas where the elites locate. Therefore,
the swarm biases to exploit the solution space. However, it should be mentioned that such
a bias is not at the serious sacrifice of swarm diversity because the guiding exemplars are
both randomly selected for each dimension group of each non-elite particle.

Based on the above consideration, it seems rational not to keep tp fixed during the
evolution. To this end, we devise a dynamic adjustment strategy for tp as follows:

tp = 0.4− 0.2× f es
Fesmax

(6)

where fes represents the number of fitness evaluations used so far, and Fesmax is the
maximum number of fitness evaluations.

From Equation (6), it is found that tp is linearly decreased from 0.4 to 0.2. Therefore, at
the early stage, tp is high, while at the late stage, tp is small. As a result, as the evolution
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proceeds, the swarm gradually tends to exploit the solution space. This just matches the
expectation that the swarm should explore the solution fully in the early stages to find
promising areas while exploiting the found promising areas in the late stage to obtain high-
quality solutions. The effectiveness of this dynamic adjustment scheme will be verified in
the experiments in Section 4.3.

3.2.2. Dynamic Adjustment for NDG

In terms of the number of dimension groups NDG, it directly affects the learning
of non-elite particles. A large NDG leads to a large number of elite particles that might
participate in the learning of non-elite particles. This might be useful when the useful genes
are scattered in very diversified dimensions. In this situation, with a large NDG, the chance
of integrating the useful genes together to direct the learning of non-elite particles could
be promoted. By contrast, when the useful genes are scattered in centered dimensions,
a small NDG is preferred. However, without prior knowledge of the positions of useful
genes embedded in the elite particles, it is difficult to give a proper setting of NDG.

To alleviate the above concern, we devise the following dynamic adjustment of NDG
for each non-elite particle based on the Cauchy distribution:

NDGNESj ∼ Cauchy(60, 10) (7)

NDGNESj = f loor(NDGNESj /10) ∗ 10 +

{
0 i f mod(NDGNESj , 10) < 5
10 otherwise

(8)

where NDGNESj denotes the setting of NDG for the jth particle in NES, Cauchy (60, 10) is a
Cauchy distribution with the position parameter 60 and scaling parameter 10. floor(x) is a
function that returns the largest integer smaller than x. mod(x,y) is a function that returns
the remainder when x/y.

In Equations (7) and (8), two details deserve careful attention. First, the Cauchy
distribution is used here because it can generate values around the position parameter
with a long fat tail. With this distribution, the generated NDGs for different non-elite
particles are likely diversified. Second, with Equation (8), we keep the setting of NDG for
each non-elite particle at multiple times of 10. This setting is adopted here for promoting
the difference between two different values of NDG to improve the learning diversity of
non-elite particles and for the convenience of computation.

From Equations (7) and (8), it is found that different non-elite particles likely preserve
different NDGs. On the one hand, the learning diversity of non-elite particles could be
further improved. On the other hand, the chance of integrating useful genes embedded
in different elite particles is likely promoted with different settings of NDG. The effective-
ness of this dynamic adjustment scheme for NDG will be verified in the experiments in
Section 4.3.

3.3. Overall Procedure of DGCELSO

By integrating the above components, DGCELSO is developed with the overall proce-
dure outlined in Algorithm 1 and the complete flowchart shown in Figure 2. Specifically,
after the swarm is initialized and evaluated (Line 1), the algorithm goes to the main iteration
loop (Lines 2~17). First, the swarm is partitioned into the elite set (ES) and the non-elite set
(NES) as shown in Lines 3 and 4. Then, each particle in NES is updated as shown in Lines
5~16. During the update of one non-elite particle, the dimensions of this particle are first
separated into several dimension groups (Lines 6 and 7). Then, for each dimension group
of the non-elite particle, two different elite particles are randomly selected from ES (Line 9),
and then the dimension group is updated by learning from these two elites (Line 13). The
above process iterates until the termination condition is met. At the end of the algorithm,
the best solution in the swarm is output (Line 18).
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Figure 2. Flowchart of the proposed DGCELSO.

With respect to the computational complexity in time, from Algorithm 1, it is found
that in each generation, it takes O(NPlog2NP) to sort the swarm and O(NP) to partition
the swarm into two sets in Line 4; then, it takes O(NP∗D) to shuffle the dimensions and
O(NP∗D) to partition the shuffled dimensions into groups for all non-elite particles (Line 7);
at last, it takes O(NP∗D) to update all non-elite particles (Lines 8~14). To sum up, the time
complexity of DGCELSO is O(NP∗D) based on the consideration that the swarm size is
usually much smaller than the dimension size in large-scale optimization.

Algorithm 1: The Pseudocode of DGCELSO.

Input: Population size NP, Maximum number of fitness evaluations FESmax, Control parameter φ;
1: Initialize NP particles randomly and calculate their fitness; fes = NP;
2: While (fes ≤ FESmax) do
3: Calculate tp according to Equation (6) and obtain the elite set size es = [tp ∗ NP];
4: Sort particles based on their fitness and divide them into two sets, namely ES and NES;
5: For each non-elite particle NESj in NES do
6: Generate NDGNESj based on Equation (7);
7: Random shuffle the dimensions and then split the dimensions into NDGNESj groups;
8: For each dimension group DGi do
9: Randomly select two different elite particles from ES: XESr1 and XESr2;

10: If (f (XESr2) < f (XESr1)) then
11: Swap ESr1 and ESr2;
12: End If
13: Update the dimension group of NESj according to Equations (3) and (4);
14: End For
15: Calculate the fitness of the updated NESj, and fes ++;
16: End For
17: End While
18: Obtain the best solution in the swarm gbest and its fitness f (gbest)

Output: f (gbest) and gbest
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Regarding the computational complexity in space occupation, in Algorithm 1, we can
see that except for O(NP∗D) to store the positions of all particles and O(NP∗D) to store
the velocities of all particles, it only takes extra O(NP) to store the index of particles in the
two sets, and O(D) to store the dimension groups. Comprehensively, DGCELSO only takes
O(NP∗D) space.

Based on the above time and space complexity analysis, it is found that the proposed
DGCELSO remains as efficient as the classical PSO, which also takes O(NP∗D) time in each
generation and O(NP∗D) space.

4. Experimental Section

To verify the effectiveness of the proposed DGCELSO, extensive experiments are
conducted on two sets of large-scale optimization problems, namely the CEC’2010 [7] and
the CEC’2013 [8] large-scale benchmark sets in this section. The CEC’2010 set contains
20 high-dimensional problems with 1000 dimensions, while the CEC’2013 set consists of
15 problems with 1000 dimensions as well. In particular, the CEC’2013 set is an extension
of the CEC’2010 set by introducing more complicated features, such as overlapping interac-
tions among variables and imbalance contribution of variables. Therefore, compared with
the CEC’2010 problems, the CEC’2013 problems are more complicated and more difficult
to optimize. For more detailed information on the two benchmark large-scale problem sets,
readers are referred to [7,8].

In this section, we first investigate the settings of two key parameters (namely the
swarm size NP and the control parameter φ) for DGCELSO in Section 4.1. Then, extensive
experiments are conducted on the two benchmark sets to compare DGCELSO with several
state-of-the-art large-scale optimizers in Section 4.2. At last, a deep investigation into the
proposed DGCELSO is performed to observe what contributes to the good performance
of DGCELSO.

In the experiments, unless otherwise stated, the maximum number of fitness eval-
uations is set as 3000 × D, where D is the dimension size. In this paper, the dimension
size of all optimization problems is 1000, and thus the total number of fitness evaluations
is 3 × 106. To make fair and comprehensive comparisons, the median, the mean, and
the standard deviation (Std) values over 30 independent runs are used to evaluate the
performance of all algorithms. Moreover, to tell the statistical significance, the Wilcoxon
rank-sum test at the significance level of “α = 0.05” was conducted to compare two different
algorithms. Furthermore, to obtain the overall ranks of different algorithms on one whole
benchmark set, the Friedman test at the significance level of “α = 0.05” was conducted on
each benchmark set.

Lastly, it is worth noting that we use the C programming language and Code Blocks
software to implement the proposed DGCELO. Moreover, all experiments were run on a
PC with 8 Intel Core i7-10700 2.90-GHz CPUs, 8-GB memory, and the 64-bit Ubuntu 12.04
LTS system.

4.1. Parameter Setting

Due to the proposed two dynamic adjustment strategies of the associated parameters
in DGCELSO, there are only two parameters, namely the swarm size NP and the control
parameter φ that need fine-tuning. Therefore, to investigate the optimal setting of the
two parameters for DGCELSO in solving 1000-D large-scale optimization problems, we
conduct experiments by varying NP from 100 to 600 and φ ranging from 0.1 to 0.9 for
DGCELSO on the CEC’2010 benchmark set. Table 1 shows the mean fitness values obtained
by DGCELSO with different settings of NP and φ on the CEC’2010 set. In this table, the best
results are highlighted in bold, and the average rank of each configuration is also presented,
which was obtained using the Friedman test at the significance level of “α = 0.05”.
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Table 1. Comparison results among DGCELSO with different settings of NP and φ on the 1000-D CEC’2010 problems.

F
NP = 100 NP = 200

φ = 0.1 φ = 0.2 φ = 0.3 φ = 0.4 φ = 0.5 φ = 0.6 φ = 0.7 φ = 0.8 φ = 0.9 φ = 0.1 φ = 0.2 φ = 0.3 φ = 0.4 φ = 0.5 φ = 0.6 φ = 0.7 φ = 0.8 φ = 0.9

F1 3.31 × 102 5.18 × 107 8.23 × 107 1.34 × 107 1.12 × 103 2.92 ×
10−23

9.51 ×
10−20 5.27 × 105 1.01 × 108 5.12 × 10−26 6.22 × 10−29 5.73 × 10−27 0.00 × 100 1.10 × 10−26 2.11 ×

10−22 9.04 × 102 5.08 × 107 1.22 × 109

F2 2.93 × 103 3.58 × 103 3.64 × 103 3.22 × 103 2.50 × 103 1.62 × 103 1.12 × 103 9.12 × 103 1.13 × 104 1.16 × 103 1.61 × 103 1.69 × 103 1.40 × 103 8.84 × 102 2.95 × 103 1.07 × 104 1.14 × 104 1.19 × 104

F3 5.74 × 100 1.13 × 101 1.14 × 101 8.23 × 100 3.24 × 100 2.18 × 10−1 6.43 ×
10−14 3.89 × 10−1 1.36 × 101 3.47 × 10−14 2.90 × 10−2 1.19 × 10−1 3.42 × 10−14 3.81 × 10−14 4.88 ×

10−14 3.63 × 10−1 1.27 × 101 1.71 × 101

F4 4.77 × 1011 5.57 × 1012 5.93 × 1012 2.88 × 1012 1.66 × 1011 1.14 × 1011 1.53 × 1011 2.90 × 1011 7.08 × 1011 1.74 × 1011 1.96 × 1011 4.21 × 1011 1.28 × 1011 1.25 × 1011 1.67 × 1011 2.48 × 1011 6.04 × 1011 2.14 × 1013

F5 2.96 × 107 3.16 × 107 3.01 × 107 3.54 × 107 1.30 × 108 2.75 × 108 2.86 × 108 2.96 × 108 3.05 × 108 2.81 × 108 2.36 × 108 2.24 × 108 2.55 × 108 2.77 × 108 2.84 × 108 2.91 × 108 3.04 × 108 3.09 × 108

F6 1.99 × 101 2.02 × 101 2.02 × 101 2.01 × 101 1.99 × 101 2.01 × 101 2.15 × 101 2.15 × 101 2.03 × 101 1.94 × 101 1.97 × 101 1.97 × 101 1.98 × 101 1.96 × 101 4.00 × 10−9 3.82 × 10−1 1.34 × 101 1.78 × 101

F7 2.94 × 106 9.82 × 108 1.28 × 109 3.37 × 108 7.90 × 105 7.40 × 105 1.17 × 105 8.40 × 104 7.80 × 105 3.34 × 10−6 3.70 × 104 1.75 × 106 1.40 × 103 8.73 × 10−6 3.14 × 10−1 2.51 × 104 5.02 × 105 1.76 × 107

F8 3.39 × 107 4.89 × 107 4.72 × 107 4.42 × 107 1.67 × 105 6.68 × 104 1.58 × 107 4.17 × 107 4.89 × 107 3.33 × 105 5.47 × 106 2.47 × 107 1.86 × 103 3.95 × 103 1.73 × 107 3.97 × 107 4.52 × 107 4.62 × 107

F9 8.72 × 107 1.03 × 109 1.17 × 109 6.34 × 108 2.80 × 107 1.75 × 107 4.08 × 107 4.70 × 108 1.36 × 1010 1.97 × 107 3.44 × 107 6.48 × 107 1.98 × 107 1.47 × 107 4.03 × 107 3.65 × 109 2.29 × 1010 4.11 × 1010

F10 3.14 × 103 3.85 × 103 3.97 × 103 3.43 × 103 2.65 × 103 1.69 × 103 2.66 × 103 1.09 × 104 1.16 × 104 1.20 × 103 1.76 × 103 1.82 × 103 1.48 × 103 9.59 × 102 1.01 × 104 1.08 × 104 1.14 × 104 1.20 × 104

F11 7.08 × 101 9.71 × 101 9.38 × 101 8.60 × 101 5.22 × 101 3.03 × 101 2.47 × 101 2.53 × 101 6.32 × 101 1.57 × 101 2.00 × 101 2.03 × 101 2.00 × 101 1.09 × 101 1.85 ×
10−13 1.38 × 100 5.04 × 101 1.41 × 102

F12 9.54 × 104 1.03 × 106 1.13 × 106 6.89 × 105 4.82 × 103 8.18 × 102 6.14 × 104 5.07 × 106 6.64 × 106 2.35 × 103 1.71 × 104 7.25 × 104 1.72 × 103 1.92 × 103 2.36 × 106 5.14 × 106 6.61 × 106 7.97 × 106

F13 5.89 × 103 3.83 × 106 4.40 × 106 9.77 × 105 5.29 × 103 3.06 × 103 2.35 × 103 6.58 × 104 1.36 × 108 6.55 × 102 8.02 × 102 1.02 × 103 5.58 × 102 4.97 × 102 5.48 × 102 2.96 × 103 3.95 × 107 9.38 × 109

F14 2.68 × 108 2.11 × 109 2.30 × 109 1.45 × 109 8.31 × 107 4.56 × 107 1.39 × 108 3.47 × 109 3.23 × 1010 5.82 × 107 1.12 × 108 2.20 × 108 6.07 × 107 4.61 × 107 2.11 × 108 2.02 × 1010 5.18 × 1010 7.58 × 1010

F15 3.33 × 103 4.07 × 103 4.13 × 103 3.53 × 103 2.81 × 103 1.11 × 104 1.09 × 104 1.12 × 104 1.17 × 104 1.07 × 104 3.71 × 103 3.33 × 103 1.07 × 104 1.05 × 104 1.05 × 104 1.08 × 104 1.14 × 104 1.21 × 104

F16 1.89 × 102 2.56 × 102 2.56 × 102 2.22 × 102 1.47 × 102 8.35 × 101 5.10 × 101 6.61 × 101 2.58 × 102 6.10 × 10−1 1.60 × 101 2.71 × 101 6.75 × 100 3.42 × 10−2 2.93 ×
10−13 1.35 × 101 2.52 × 102 3.39 × 102

F17 3.02 × 105 1.61 × 106 1.71 × 106 1.27 × 106 3.52 × 104 1.06 × 104 2.08 × 106 9.92 × 106 1.40 × 107 4.93 × 104 9.98 × 104 2.77 × 105 2.24 × 104 1.18 × 105 6.85 × 106 1.08 × 107 1.47 × 107 1.80 × 107

F18 1.70 × 104 7.87 × 108 1.16 × 109 3.75 × 107 2.67 × 103 1.71 × 103 2.72 × 103 6.17 × 106 4.49 × 1010 1.95 × 103 2.54 × 103 3.90 × 103 1.66 × 103 1.30 × 103 1.59 × 103 1.71 × 107 2.95 × 1010 1.40 × 1011

F19 2.34 × 106 4.66 × 106 4.74 × 106 3.92 × 106 1.72 × 106 6.52 × 106 1.48 × 107 2.01 × 107 2.49 × 107 9.10 × 106 2.46 × 106 2.41 × 106 5.98 × 106 1.09 × 107 1.60 × 107 2.09 × 107 2.58 × 107 3.04 × 107

F20 8.41 × 103 1.01 × 109 1.39 × 109 4.32 × 107 2.93 × 103 1.29 × 103 1.25 × 103 7.61 × 106 4.93 × 1010 1.41 × 103 2.13 × 103 2.72 × 103 1.51 × 103 1.10 × 103 1.02 × 103 2.27 × 107 3.25 × 1010 1.47 × 1011

Rank 3.75 6.35 7.05 5.30 2.80 2.45 3.25 5.75 8.30 3.25 4.25 5.25 3.15 2.45 3.95 6.25 7.70 8.75

F
NP = 300 NP = 400

φ = 0.1 φ = 0.2 φ = 0.3 φ = 0.4 φ = 0.5 φ = 0.6 φ = 0.7 φ = 0.8 φ = 0.9 φ = 0.1 φ = 0.2 φ = 0.3 φ = 0.4 φ = 0.5 φ = 0.6 φ = 0.7 φ = 0.8 φ = 0.9

F1 9.78 × 10−27 0.00 × 100 0.00 × 100 0.00 × 100 0.00 × 100 7.97 ×
10−10 5.83 × 105 1.86 × 108 2.23 × 109 6.50 × 10−24 0.00 × 100 0.00 × 100 0.00 × 100 8.36 × 10−24 4.18 × 10−3 3.39 × 106 3.30 × 108 3.01 × 109

F2 6.93 × 102 1.06 × 103 1.15 × 103 8.88 × 102 5.90 × 102 1.04 × 104 1.09 × 104 1.15 × 104 1.21 × 104 5.75 × 102 8.12 × 102 8.78 × 102 6.57 × 102 9.82 × 103 1.05 × 104 1.10 × 104 1.16 × 104 1.22 × 104

F3 3.36 × 10−14 3.05 × 10−14 3.15 × 10−14 3.18 × 10−14 3.88 × 10−14 1.15 × 10−7 5.14 × 100 1.47 × 101 1.77 × 101 3.51 × 10−14 2.99 × 10−14 2.98 × 10−14 3.15 × 10−14 3.98 × 10−14 3.29 × 10−4 7.64 × 100 1.54 × 101 1.79 × 101

F4 2.22 × 1011 2.13 × 1011 2.00 × 1011 1.60 × 1011 1.57 × 1011 2.06 × 1011 3.80 × 1011 1.31 × 1012 6.16 × 1013 2.88 × 1011 2.60 × 1011 2.27 × 1011 1.96 × 1011 1.82 × 1011 2.48 × 1011 5.19 × 1011 3.12 × 1012 1.09 × 1014

F5 2.83 × 108 2.81 × 108 2.76 × 108 2.80 × 108 2.82 × 108 2.86 × 108 2.93 × 108 3.02 × 108 3.18 × 108 2.82 × 108 2.82 × 108 2.81 × 108 2.78 × 108 2.83 × 108 2.89 × 108 2.94 × 108 3.06 × 108 3.16 × 108

F6 4.00 × 10−9 6.18 × 100 1.86 × 101 4.00 × 10−9 4.00 × 10−9 2.08 × 10−7 5.36 × 100 1.54 × 101 1.84 × 101 4.00 × 10−9 3.88 × 10−9 4.00 × 10−9 4.00 × 10−9 4.00 × 10−9 4.72 × 10−4 8.08 × 100 1.61 × 101 1.86 × 101

F7 3.43 × 10−3 1.20 × 10−3 3.63 × 10−2 2.15 × 10−5 2.54 × 10−3 3.60 × 102 1.83 × 105 9.66 × 105 4.68 × 108 8.32 × 10−1 3.50 × 10−2 3.16 × 10−2 7.06 × 10−3 1.03 × 100 7.18 × 103 3.40 × 105 5.23 × 106 1.55 × 109

F8 1.37 × 107 3.51 × 105 3.72 × 104 4.36 × 103 9.82 × 105 3.01 × 107 4.30 × 107 4.58 × 107 4.65 × 107 2.23 × 107 1.00 × 107 3.36 × 106 6.67 × 105 1.33 × 107 3.52 × 107 4.41 × 107 4.61 × 107 4.67 × 107

F9 2.47 × 107 2.28 × 107 2.49 × 107 1.77 × 107 2.14 × 107 1.69 × 108 1.40 × 1010 3.19 × 1010 5.08 × 1010 3.12 × 107 2.42 × 107 2.41 × 107 2.01 × 107 3.01 × 107 1.36 × 109 1.92 × 1010 3.70 × 1010 5.55 × 1010

F10 8.49 × 102 1.13 × 103 1.22 × 103 9.23 × 102 9.75 × 103 1.05 × 104 1.09 × 104 1.15 × 104 1.22 × 104 9.74 × 103 8.59 × 102 9.25 × 102 1.11 × 103 1.02 × 104 1.05 × 104 1.10 × 104 1.16 × 104 1.22 × 104

F11 1.25 × 10−13 2.23 × 10−1 6.68 × 100 1.10 × 10−13 1.17 × 10−13 3.45 × 10−7 8.82 × 100 7.59 × 101 1.59 × 102 1.30 × 10−13 1.11 × 10−13 1.05 × 10−13 1.06 × 10−13 1.31 × 10−13 7.60 × 10−4 1.51 × 101 9.53 × 101 1.67 × 102

F12 2.50 × 104 4.39 × 103 5.55 × 103 2.55 × 103 8.74 × 104 4.13 × 106 5.75 × 106 7.14 × 106 8.45 × 106 1.71 × 105 9.83 × 103 7.41 × 103 1.18 × 104 2.03 × 106 4.62 × 106 6.16 × 106 7.49 × 106 8.77 × 106

F13 5.69 × 102 5.35 × 102 5.91 × 102 5.15 × 102 4.69 × 102 4.85 × 102 1.08 × 105 5.63 × 108 1.67 × 1010 5.31 × 102 5.36 × 102 5.46 × 102 4.93 × 102 4.50 × 102 4.80 × 102 3.72 × 105 1.46 × 109 2.23 × 1010

F14 7.79 × 107 6.96 × 107 7.62 × 107 5.17 × 107 7.69 × 107 5.73 × 109 3.85 × 1010 6.50 × 1010 8.96 × 1010 1.14 × 108 7.11 × 107 7.20 × 107 6.01 × 107 1.43 × 108 1.68 × 1010 4.63 × 1010 7.22 × 1010 9.64 × 1010

F15 1.04 × 104 1.05 × 104 1.05 × 104 1.04 × 104 1.03 × 104 1.06 × 104 1.10 × 104 1.16 × 104 1.22 × 104 1.04 × 104 1.03 × 104 1.04 × 104 1.03 × 104 1.03 × 104 1.06 × 104 1.11 × 104 1.17 × 104 1.23 × 104

F16 2.15 × 10−13 5.86 × 10−2 9.78 × 10−2 1.55 × 10−13 2.01 × 10−13 2.36 × 10−6 1.02 × 102 2.92 × 102 3.52 × 102 2.39 × 10−13 1.61 × 10−13 1.53 × 10−13 1.60 × 10−13 2.44 × 10−13 7.14 × 10−3 1.52 × 102 3.07 × 102 3.57 × 102

F17 1.53 × 106 5.71 × 104 5.65 × 104 6.57 × 104 4.44 × 106 8.75 × 106 1.28 × 107 1.65 × 107 1.98 × 107 4.81 × 106 1.72 × 105 1.03 × 105 7.07 × 105 6.20 × 106 1.02 × 107 1.37 × 107 1.72 × 107 2.06 × 107

F18 1.56 × 103 1.65 × 103 1.56 × 103 1.31 × 103 1.13 × 103 1.26 × 103 1.57 × 109 5.42 × 1010 1.76 × 1011 1.31 × 103 1.31 × 103 1.33 × 103 1.25 × 103 1.12 × 103 3.88 × 103 4.92 × 109 6.87 × 1010 1.94 × 1011

F19 1.33 × 107 8.92 × 106 8.14 × 106 1.02 × 107 1.43 × 107 1.88 × 107 2.25 × 107 2.75 × 107 3.21 × 107 1.45 × 107 1.09 × 107 1.02 × 107 1.21 × 107 1.53 × 107 1.94 × 107 2.47 × 107 2.87 × 107 3.36 × 107

F20 1.12 × 103 1.32 × 103 1.40 × 103 1.08 × 103 9.79 × 102 1.00 × 103 1.88 × 109 5.74 × 1010 1.82 × 1011 9.89 × 102 1.15 × 103 1.10 × 103 9.85 × 102 9.82 × 102 1.72 × 103 5.69 × 109 7.40 × 1010 2.03 × 1011

Rank 3.80 3.48 4.03 2.03 2.88 5.00 6.90 7.95 8.95 3.90 2.90 2.50 2.05 3.95 5.70 7.00 8.00 9.00
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Table 1. Cont.

F
NP = 500 NP = 600

φ = 0.1 φ = 0.2 φ = 0.3 φ = 0.4 φ = 0.5 φ = 0.6 φ = 0.7 φ = 0.8 φ = 0.9 φ = 0.1 φ = 0.2 φ = 0.3 φ = 0.4 φ = 0.5 φ = 0.6 φ = 0.7 φ = 0.8 φ = 0.9
F1 8.02 × 10−22 0.00 × 100 0.00 × 100 0.00 × 100 6.91 × 10−21 4.51 × 100 8.52 × 106 4.72 × 108 3.65 × 109 2.72 × 10−19 2.86 × 10−26 0.00 × 100 5.33 × 10−26 9.43 × 10−16 1.90 × 102 1.57 × 107 6.02 × 108 4.18 × 109

F2 8.73 × 103 6.81 × 102 7.34 × 102 5.74 × 102 1.01 × 104 1.06 × 104 1.11 × 104 1.16 × 104 1.23 × 104 9.87 × 103 6.03 × 102 6.59 × 102 4.15 × 103 1.02 × 104 1.06 × 104 1.11 × 104 1.17 × 104 1.23 × 104

F3 3.92 × 10−14 2.96 × 10−14 2.90 × 10−14 3.12 × 10−14 8.55 × 10−14 1.24 × 10−2 9.15 × 100 1.58 × 101 1.80 × 101 8.00 × 10−13 2.97 × 10−14 2.90 × 10−14 3.16 × 10−14 6.07 × 10−11 1.06 × 10−1 1.02 × 101 1.61 × 101 1.82 × 101

F4 3.35 × 1011 3.11 × 1011 2.86 × 1011 2.49 × 1011 2.16 × 1011 3.21 × 1011 6.31 × 1011 1.05 × 1013 1.22 × 1014 4.16 × 1011 3.83 × 1011 3.30 × 1011 2.84 × 1011 2.67 × 1011 3.79 × 1011 7.59 × 1011 1.73 × 1013 1.39 × 1014

F5 2.80 × 108 2.76 × 108 2.78 × 108 2.77 × 108 2.77 × 108 2.90 × 108 2.95 × 108 3.06 × 108 3.20 × 108 2.80 × 108 2.79 × 108 2.76 × 108 2.79 × 108 2.84 × 108 2.87 × 108 2.99 × 108 3.03 × 108 3.18 × 108

F6 4.00 × 10−9 4.00 × 10−9 4.00 × 10−9 4.00 × 10−9 4.00 × 10−9 1.69 × 10−2 9.72 × 100 1.66 × 101 1.88 × 101 4.09 × 10−9 3.88 × 10−9 3.88 × 10−9 4.00 × 10−9 6.07 × 10−9 1.45 × 10−1 1.08 × 101 1.68 × 101 1.89 × 101

F7 2.61 × 101 1.21 × 100 7.81 × 10−1 4.75 × 10−1 3.43 × 101 3.08 × 104 4.80 × 105 3.01 × 107 2.65 × 109 2.63 × 102 1.79 × 101 1.21 × 101 8.88 × 100 3.52 × 102 7.34 × 104 6.46 × 105 1.15 × 108 3.95 × 109

F8 2.74 × 107 1.73 × 107 1.16 × 107 9.50 × 106 2.05 × 107 3.79 × 107 4.47 × 107 4.63 × 107 4.68 × 107 3.08 × 107 2.23 × 107 1.74 × 107 1.59 × 107 2.52 × 107 3.96 × 107 4.50 × 107 4.64 × 107 4.69 × 107

F9 3.94 × 107 2.71 × 107 2.62 × 107 2.33 × 107 4.11 × 107 4.17 × 109 2.23 × 1010 4.01 × 1010 5.87 × 1010 4.84 × 107 3.01 × 107 2.85 × 107 2.62 × 107 5.78 × 107 6.49 × 109 2.49 × 1010 4.26 × 1010 6.14 × 1010

F10 1.00 × 104 1.35 × 103 7.94 × 102 9.73 × 103 1.02 × 104 1.06 × 104 1.11 × 104 1.17 × 104 1.23 × 104 1.02 × 104 9.45 × 103 6.43 × 103 9.99 × 103 1.03 × 104 1.06 × 104 1.11 × 104 1.17 × 104 1.24 × 104

F11 1.67 × 10−13 1.11 × 10−13 1.04 × 10−13 1.10 × 10−13 5.51 × 10−13 2.59 × 10−2 1.94 × 101 1.08 × 102 1.72 × 102 6.69 × 10−12 1.12 × 10−13 1.05 × 10−13 1.13 × 10−13 4.00 × 10−10 1.90 × 10−1 2.66 × 101 1.17 × 102 1.75 × 102

F12 1.54 × 106 2.34 × 104 1.47 × 104 4.12 × 104 3.02 × 106 4.87 × 106 6.37 × 106 7.75 × 106 9.01 × 106 2.65 × 106 4.99 × 104 2.82 × 104 1.18 × 105 3.37 × 106 5.07 × 106 6.50 × 106 7.83 × 106 9.11 × 106

F13 5.27 × 102 4.92 × 102 4.67 × 102 4.65 × 102 4.69 × 102 4.80 × 102 1.08 × 106 2.45 × 109 2.62 × 1010 4.82 × 102 5.44 × 102 5.20 × 102 4.56 × 102 4.42 × 102 5.63 × 102 3.15 × 106 3.37 × 109 2.90 × 1010

F14 1.66 × 108 8.14 × 107 7.67 × 107 7.21 × 107 3.28 × 108 2.36 × 1010 5.14 × 1010 7.78 × 1010 1.30 × 1011 2.61 × 108 9.02 × 107 8.54 × 107 8.71 × 107 8.67 × 108 2.77 × 1010 5.44 × 1010 7.81 × 1010 1.03 × 1011

F15 1.03 × 104 1.03 × 104 1.03 × 104 1.03 × 104 1.03 × 104 1.07 × 104 1.11 × 104 1.17 × 104 1.24 × 104 1.03 × 104 1.03 × 104 1.03 × 104 1.03 × 104 1.03 × 104 1.07 × 104 1.12 × 104 1.17 × 104 1.24 × 104

F16 2.83 × 10−13 1.65 × 10−13 1.55 × 10−13 1.66 × 10−13 1.34 × 10−12 2.74 × 10−1 1.83 × 102 3.16 × 102 3.61 × 102 1.54 × 10−11 1.74 × 10−13 1.58 × 10−13 1.80 × 10−13 1.18 × 10−9 2.41 × 100 2.05 × 102 3.22 × 102 3.63 × 102

F17 5.98 × 106 7.91 × 105 2.80 × 105 3.07 × 106 7.05 × 106 1.07 × 107 1.43 × 107 1.76 × 107 2.10 × 107 6.68 × 106 2.56 × 106 1.14 × 106 4.24 × 106 7.51 × 106 1.11 × 107 1.44 × 107 1.81 × 107 2.12 × 107

F18 1.18 × 103 1.26 × 103 1.18 × 103 1.13 × 103 1.00 × 103 1.10 × 105 8.30 × 109 7.98 × 1010 2.08 × 1011 1.08 × 103 1.22 × 103 1.22 × 103 1.05 × 103 9.59 × 102 1.41 × 106 1.12 × 1010 8.67 × 1010 2.19 × 1011

F19 1.55 × 107 1.23 × 107 1.15 × 107 1.31 × 107 1.64 × 107 2.02 × 107 2.50 × 107 2.92 × 107 3.32 × 107 1.62 × 107 1.31 × 107 1.23 × 107 1.40 × 107 1.72 × 107 2.06 × 107 2.48 × 107 2.97 × 107 3.49 × 107

F20 9.94 × 102 1.02 × 103 1.06 × 103 9.70 × 102 9.78 × 102 1.10 × 10 9.17 × 109 8.52 × 1010 2.20 × 1011 9.91 × 102 9.85 × 102 9.94 × 102 9.77 × 102 9.86 × 102 1.53 × 106 1.28 × 1010 9.33 × 1010 2.30 × 1011

Rank 4.25 2.75 2.00 2.00 4.15 5.85 7.00 8.00 9.00 4.10 2.65 1.85 2.30 4.20 5.90 7.00 8.00 9.00
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From this table, we obtain the following findings. (1) From the perspective of the
Friedman test, when NP is fixed, the setting of parameter φ is neither too small nor too
large, and the optimal setting is usually within [0.3, 0.6]. Specifically, when NP is 100 and
200, the optimal φ is 0.6 and 0.5 respectively. When NP is within [300, 500], the optimal φ is
consistently 0.4. When NP is 600, the optimal φ is 0.3. (2) More specifically, we find that
when NP is small, such as 100, the optimal φ is usually large. This is because a small NP
could not afford enough diversity for DGCELPSO to explore the solution space. Therefore,
to improve the diversity, φ should be large to enhance the influence of the second guiding
exemplar in Equation (4), which is in charge of preventing the updated particle from being
greedily attracted by the first guiding exemplar. On the contrary, when NP is large, such
as 600, a small φ is preferred. This is because a large NP offers too high diversity for
DGCELPSO to slow down its convergence. Consequently, to let particles fully exploit the
found promising areas, φ should be small to decrease the influence of the second guiding
exemplar in Equation (4). (3) Taking comprehensive comparisons among all settings of NP
along with the associated optimal settings of φ, we find that DGCELSO with NP = 300 and
φ = 0.4 achieves the best overall performance.

Based on the above observation, NP = 300 and φ = 0.4 are adopted for DGCELSO in
the experiments related to 1000-D optimization problems.

4.2. Comparisons with State-of-the-Art Methods

To comprehensively verify the effectiveness of the devised DGCELSO, this section con-
ducts extensive comparison experiments to compare DGCELSO with several state-of-the-art
large-scale algorithms. Specifically, nine popular and latest large-scale methods are selected,
namely TPLSO [24], SPLSO (The source code can be downloaded from https://gitee.com/
mmmyq/SPLSO, accessed on 1 January 2022) [30], LLSO (The source code can be down-
loaded from https://gitee.com/mmmyq/LLSO, accessed on 1 January 2022) [25], CSO (The
source code can be downloaded from http://www.soft-computing.de/CSO_Matlab_New.zip,
accessed on 1 January 2022) [26], SLPSO (The source code can be downloaded from http://
www.soft-computing.de/SL_PSO_Matlab.zip, accessed on 1 January 2022) [61], DECC-GDG
(The source code can be downloaded from https://ww2.mathworks.cn/matlabcentral/mlc-
downloads/downloads/submissions/45783/versions/1/download/zip/CC-GDG-CMAES.
zip, accessed on 1 January 2022) [50], DECC-DG2 (The source code can be downloaded
from https://bitbucket.org/mno/differential-grouping2/src/master/, accessed on 1 January
2022) [35], DECC-RDG (The source code can be downloaded from https://www.researchgate.
net/profile/Yuan-Sun-18/publications, accessed on 1 January 2022) [37], and DECC-RDG2
(The source code can be downloaded from https://www.researchgate.net/profile/Yuan-Sun-
18/publications, accessed on 1 January 2022) [52]. The former five large-scale optimizers are
state-of-the-art holistic large-scale PSO variants, while the latter four algorithms are state-
of-the-art cooperative coevolutionary evolutionary algorithms. Compared with these nine
different state-of-the-art large-scale optimizers, the effectiveness of DGCELSO is expected to
be demonstrated.

Tables 2 and 4 display the comparison results between DGCELSO and the nine com-
pared algorithms on the 1000-D CEC’2010 and the 1000-D CEC’2013 large-scale benchmark
sets, respectively. In these two tables, the symbols, “+”, “−”, and “=” above the p-values
obtained from the Wilcoxon rank test denote that the proposed DGCELSO is significantly
superior to, significantly inferior to, and equivalent to the associated compared algorithms
on the related functions, respectively. “w/t/l” in the second to last rows of the two tables
count the numbers of functions where DGCELSO performs significantly better, equiva-
lently, and significantly worse than the associated compared methods. Actually, they are
the numbers of “+”, “=” and “−”, respectively. In the last rows of the two tables, the
averaged ranks of all algorithms obtained from the Friedman test are presented as well.

https://gitee.com/mmmyq/SPLSO
https://gitee.com/mmmyq/SPLSO
https://gitee.com/mmmyq/LLSO
http://www.soft-computing.de/CSO_Matlab_New.zip
http://www.soft-computing.de/SL_PSO_Matlab.zip
http://www.soft-computing.de/SL_PSO_Matlab.zip
https://ww2.mathworks.cn/matlabcentral/mlc-downloads/downloads/submissions/45783/versions/1/download/zip/CC-GDG-CMAES.zip
https://ww2.mathworks.cn/matlabcentral/mlc-downloads/downloads/submissions/45783/versions/1/download/zip/CC-GDG-CMAES.zip
https://ww2.mathworks.cn/matlabcentral/mlc-downloads/downloads/submissions/45783/versions/1/download/zip/CC-GDG-CMAES.zip
https://bitbucket.org/mno/differential-grouping2/src/master/
https://www.researchgate.net/profile/Yuan-Sun-18/publications
https://www.researchgate.net/profile/Yuan-Sun-18/publications
https://www.researchgate.net/profile/Yuan-Sun-18/publications
https://www.researchgate.net/profile/Yuan-Sun-18/publications
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Table 2. Fitness comparison between DECELSO and the compared algorithms on the 1000-D CEC’2010 problems with 3 × 106 fitness evaluations.

F Quality DGCELSO TPLSO SPLSO LLSO CSO SLPSO DECC-GDG DECC-DG2 DECC-RDG DECC-RDG2

F1

Median 0.00 × 100 1.98 × 10−18 7.70 × 10−20 2.97 × 10−22 4.64 × 10−12 7.65 × 10−18 6.53 × 100 1.95 × 10−1 2.60 × 10−3 1.05 × 10−3

Mean 0.00 × 100 1.93 × 10−18 7.73 × 10−20 3.13 × 10−22 4.75 × 10−12 7.73 × 10−18 6.54 × 100 7.34 × 10−1 6.42 × 100 8.08 × 10−3

Std 0.00 × 100 3.04 × 10−19 6.95 × 10−21 6.93 × 10−23 7.77 × 10−13 8.84 × 10−19 9.35 × 10−1 1.61 × 100 3.41 × 101 3.28 × 10−2

p-value - 4.32 × 10−8+ 4.32 × 10−8+ 4.32 × 10−8+ 4.32 × 10−8+ 4.32 × 10−8+ 4.32 × 10−8+ 4.32 × 10−8+ 4.32 × 10−8+ 4.32 × 10−8+

F2

Median 8.85 × 102 1.13 × 103 4.45 × 102 9.71 × 102 7.52 × 103 1.94 × 103 1.40 × 103 3.00 × 103 2.98 × 103 2.99 × 103

Mean 8.88 × 102 1.11 × 103 4.45 × 102 9.78 × 102 7.48 × 103 1.93 × 103 1.40 × 103 3.00 × 103 2.98 × 103 3.00 × 103

Std 4.13 × 101 8.28 × 101 1.63 × 101 5.17 × 101 2.60 × 102 8.05 × 101 2.67 × 101 1.34 × 102 1.16 × 102 1.35 × 102

p-value - 4.32 × 10−8+ 4.32 × 10−8− 4.32 × 10−8+ 4.32 × 10−8+ 4.32 × 10−8+ 4.32 × 10−8+ 4.32 × 10−8+ 4.32 × 10−8+ 4.32 × 10−8+

F3

Median 3.24 × 10−14 1.44 × 100 2.56 × 10−13 2.89 × 10−14 2.56 × 10−9 1.88 × 100 1.12 × 101 1.08 × 101 1.12 × 101 1.11 × 101

Mean 3.18 × 10−14 1.45 × 100 2.52 × 10−13 2.76 × 10−14 2.57 × 10−9 1.84 × 100 1.11 × 101 1.09 × 101 1.11 × 101 1.10 × 101

Std 1.32 × 10−15 1.34 × 10−1 1.86 × 10−14 2.16 × 10−15 1.82 × 10−10 2.62 × 10−1 5.69 × 10−1 6.40 × 10−1 6.46 × 10−1 6.88 × 10−1

p-value - 4.32 × 10−8+ 4.32 × 10−8+ 4.32 × 10−8− 4.32 × 10−8+ 4.32 × 10−8+ 4.32 × 10−8+ 4.32 × 10−8+ 4.32 × 10−8+ 4.32 × 10−8+

F4

Median 1.58 × 1011 2.77 × 1011 4.36 × 1011 4.48 × 1011 6.92 × 1011 2.68 × 1011 1.37 × 1014 1.44 × 1012 1.39 × 1012 1.37 × 1012

Mean 1.60 × 1011 2.89 × 1011 4.30 × 1011 4.54 × 1011 6.87 × 1011 2.83 × 1011 1.38 × 1014 1.69 × 1012 1.49 × 1012 1.44 × 1012

Std 3.72 × 1010 9.22 × 1010 8.17 × 1010 1.29 × 1011 1.76 × 1011 8.77 × 1010 2.68 × 1013 6.16 × 1011 6.33 × 1011 5.35 × 1011

p-value - 1.00 × 100= 3.49 × 10−3+ 4.32 × 10−8+ 1.02 × 10−3+ 3.19 × 10−7+ 4.32 × 10−8+ 4.32 × 10−8+ 4.32 × 10−8+ 3.19 × 10−7+

F5

Median 2.82 × 108 1.63 × 107 5.97 × 106 1.09 × 107 2.00 × 106 2.89 × 107 3.84 × 108 1.72 × 108 1.75 × 108 1.72 × 108

Mean 2.80 × 108 1.59 × 107 6.30 × 106 1.16 × 107 2.46 × 106 3.04 × 107 3.82 × 108 1.75 × 108 1.71 × 108 1.73 × 108

Std 9.11 × 106 4.51 × 106 1.73 × 106 2.93 × 106 1.33 × 106 8.42 × 106 1.54 × 107 1.84 × 107 1.84 × 107 1.50 × 107

p-value - 4.32 × 10−8− 4.32 × 10−8− 4.32 × 10−8− 4.32 × 10−8− 4.32 × 10−8− 4.32 × 10−8+ 4.32 × 10−8− 4.32 × 10−8− 4.32 × 10−8−

F6

Median 4.00 × 10−9 2.08 × 100 1.00 × 10−8 4.00 × 10−9 8.18 × 10−7 2.14 × 101 3.51 × 105 8.81 × 100 1.07 × 101 1.06 × 101

Mean 4.00 × 10−9 2.20 × 100 9.44 × 10−9 4.00 × 10−9 8.16 × 10−7 1.95 × 101 3.58 × 105 8.90 × 100 1.05 × 101 1.05 × 101

Std 3.73 × 10−15 3.74 × 10−1 1.18 × 10−9 8.27 × 10−25 2.57 × 10−8 4.13 × 100 4.27 × 104 6.50 × 10−1 7.02 × 10−1 6.84 × 10−1

p-value - 4.32 × 10−8+ 4.32 × 10−8+ 4.32 × 10−8− 4.32 × 10−8+ 4.32 × 10−8+ 4.32 × 10−8+ 4.32 × 10−8+ 4.32 × 10−8+ 4.32 × 10−8+

F7

Median 1.89 × 10−5 9.21 × 102 4.51 × 102 6.58 × 100 2.13 × 104 6.26 × 104 2.98 × 1010 1.80 × 103 4.86 × 101 5.18 × 101

Mean 2.15 × 10−5 5.86 × 103 4.76 × 102 2.31 × 101 2.13 × 104 6.49 × 104 3.10 × 1010 1.98 × 103 6.40 × 101 5.87 × 101

Std 1.55 × 10−5 1.03 × 104 1.29 × 102 7.45 × 101 4.53 × 103 3.81 × 104 4.19 × 109 9.49 × 102 4.67 × 101 3.71 × 101

p-value - 2.07 × 10−6+ 4.32 × 10−8+ 4.32 × 10−8+ 4.32 × 10−8+ 4.32 × 10−8+ 4.32 × 10−8+ 4.32 × 10−8+ 4.32 × 10−8+ 4.32 × 10−8+
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Table 2. Cont.

F Quality DGCELSO TPLSO SPLSO LLSO CSO SLPSO DECC-GDG DECC-DG2 DECC-RDG DECC-RDG2

F8

Median 4.28 × 103 4.78 × 105 3.11 × 107 2.33 × 107 3.86 × 107 7.51 × 106 6.78 × 108 6.05 × 102 6.57 × 10−1 3.68 × 10−1

Mean 4.36 × 103 4.98 × 105 3.11 × 107 2.33 × 107 3.87 × 107 7.57 × 106 8.05 × 108 2.71 × 105 6.65 × 105 7.43 × 10−1

Std 4.17 × 102 1.43 × 105 9.43 × 104 2.96 × 105 8.47 × 104 2.44 × 106 4.70 × 108 9.94 × 105 1.49 × 106 1.24 × 100

p-value - 4.32 × 10−8+ 4.32 × 10−8+ 4.32 × 10−8+ 4.32 × 10−8+ 4.32 × 10−8+ 4.32 × 10−8+ 4.32 × 10−8+ 4.32 × 10−8+ 4.32 × 10−8+

F9

Median 1.76 × 107 4.25 × 107 4.57 × 107 4.64 × 107 6.65 × 107 3.31 × 107 7.45 × 108 2.15 × 108 1.76 × 108 1.77 × 108

Mean 1.77 × 107 4.32 × 107 4.59 × 107 4.48 × 107 6.68 × 107 3.35 × 107 7.43 × 108 2.18 × 108 1.73 × 108 1.77 × 108

Std 1.69 × 106 4.10 × 106 2.99 × 106 4.16 × 106 4.38 × 106 3.63 × 106 3.71 × 107 1.73 × 107 1.22 × 107 1.66 × 107

p-value - 4.32 × 10−8+ 1.00 × 100= 4.32 × 10−8+ 4.32 × 10−8+ 4.32 × 10−8+ 4.32 × 10−8+ 4.32 × 10−8+ 4.32 × 10−8+ 4.32 × 10−8+

F10

Median 9.18 × 102 9.67 × 102 7.99 × 103 8.87 × 102 9.58 × 103 2.59 × 103 4.16 × 103 6.73 × 103 6.32 × 103 6.27 × 103

Mean 9.23 × 102 9.84 × 102 7.99 × 103 8.88 × 102 9.58 × 103 2.79 × 103 4.15 × 103 6.72 × 103 6.32 × 103 6.27 × 103

Std 3.82 × 101 8.52 × 101 1.25 × 102 3.50 × 101 6.49 × 101 1.28 × 103 5.70 × 101 9.30 × 101 1.12 × 102 1.09 × 102

p-value - 1.06 × 10−2+ 4.32 × 10−8+ 4.32 × 10−8− 4.32 × 10−8+ 4.32 × 10−8+ 4.32 × 10−8+ 4.32 × 10−8+ 4.32 × 10−8+ 4.32 × 10−8+

F11

Median 1.11 × 10−13 3.48 × 100 3.02 × 10−12 2.90 × 100 3.98 × 10−8 2.37 × 101 5.58 × 100 5.39 × 100 4.76 × 100 4.86 × 100

Mean 1.10 × 10−13 3.50 × 100 3.05 × 10−12 5.51 × 100 3.98 × 10−8 2.42 × 101 5.53 × 100 5.59 × 100 4.75 × 100 4.86 × 100

Std 2.36 × 10−15 1.30 × 100 2.84 × 10−13 5.43 × 100 3.19 × 10−9 3.03 × 100 5.49 × 10−1 6.12 × 10−1 4.79 × 10−1 3.88 × 10−1

p-value - 4.32 × 10−8+ 4.32 × 10−8+ 4.32 × 10−8+ 4.32 × 10−8+ 4.32 × 10−8+ 4.32 × 10−8+ 4.32 × 10−8+ 4.32 × 10−8+ 4.32 × 10−8+

F12

Median 2.55 × 103 1.23 × 104 9.39 × 104 1.24 × 104 4.25 × 105 1.30 × 104 2.87 × 105 3.99 × 104 2.22 × 104 2.21 × 104

Mean 2.55 × 103 1.23 × 104 9.53 × 104 1.23 × 104 4.37 × 105 1.54 × 104 2.87 × 105 3.94 × 104 2.21 × 104 2.19 × 104

Std 2.13 × 102 1.30 × 103 6.64 × 103 1.32 × 103 6.49 × 104 7.06 × 103 1.10 × 104 2.17 × 103 1.28 × 103 1.45 × 103

p-value - 4.32 × 10−8+ 4.32 × 10−8+ 4.32 × 10−8+ 4.32 × 10−8+ 3.19 × 10−7+ 4.32 × 10−8+ 4.32 × 10−8+ 4.32 × 10−8+ 4.32 × 10−8+

F13

Median 4.64 × 102 7.29 × 102 4.50 × 102 7.82 × 102 4.68 × 102 8.87 × 102 1.39 × 103 1.65 × 103 8.25 × 102 8.17 × 102

Mean 5.15 × 102 7.54 × 102 5.48 × 102 7.91 × 102 5.53 × 102 9.81 × 102 1.42 × 103 1.77 × 103 8.24 × 102 8.40 × 102

Std 1.49 × 102 1.07 × 102 1.66 × 102 2.37 × 102 1.75 × 102 3.86 × 102 3.40 × 102 5.06 × 102 1.35 × 102 1.98 × 102

p-value - 5.90 × 10−5+ 3.49 × 10−3+ 4.32 × 10−8+ 2.73 × 10−1= 2.85 × 10−2+ 3.49 × 10−3+ 5.90 × 10−5+ 1.18 × 10−5+ 2.07 × 10−6+

F14

Median 5.10 × 107 1.29 × 108 1.61 × 108 1.23 × 108 2.46 × 108 8.61 × 107 8.59 × 108 8.71 × 108 7.19 × 108 7.18 × 108

Mean 5.17 × 107 1.32 × 108 1.60 × 108 1.22 × 108 2.46 × 108 8.55 × 107 8.64 × 108 8.60 × 108 7.23 × 108 7.25 × 108

Std 2.76 × 106 9.33 × 106 8.42 × 106 6.41 × 106 1.29 × 107 7.57 × 106 3.30 × 107 4.17 × 107 3.65 × 107 3.44 × 107

p-value - 4.32 × 10−8+ 2.07 × 10−6+ 4.32 × 10−8+ 4.32 × 10−8+ 4.32 × 10−8+ 4.32 × 10−8+ 4.32 × 10−8+ 4.32 × 10−8+ 4.32 × 10−8+
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Table 2. Cont.

F Quality DGCELSO TPLSO SPLSO LLSO CSO SLPSO DECC-GDG DECC-DG2 DECC-RDG DECC-RDG2

F15

Median 1.04 × 104 1.04 × 104 9.92 × 103 8.30 × 102 1.01 × 104 1.12 × 104 6.75 × 103 6.73 × 103 6.55 × 103 6.56 × 103

Mean 1.04 × 104 8.88 × 103 9.91 × 103 8.97 × 102 1.01 × 104 1.12 × 104 6.76 × 103 6.73 × 103 6.55 × 103 6.55 × 103

Std 6.65 × 101 3.41 × 103 6.31 × 101 3.47 × 102 6.48 × 101 1.19 × 102 8.82 × 101 7.27 × 101 8.86 × 101 8.39 × 101

p-value - 1.44 × 10−1= 4.32 × 10−8− 4.32 × 10−8− 1.06 × 10−2− 4.32 × 10−8+ 4.32 × 10−8− 4.32 × 10−8− 4.32 × 10−8− 4.32 × 10−8−

F16

Median 1.55 × 10−13 1.78 × 101 4.66 × 10−12 4.40 × 100 5.64 × 10−8 2.12 × 101 3.98 × 10−4 3.89 × 10−4 1.92 × 10−5 1.88 × 10−5

Mean 1.55 × 10−13 1.89 × 101 4.68 × 10−12 4.33 × 100 5.68 × 10−8 2.36 × 101 3.97 × 10−4 3.90 × 10−4 1.93 × 10−5 1.89 × 10−5

Std 2.66 × 10−15 7.46 × 100 4.41 × 10−13 2.50 × 100 6.21 × 10−9 1.11 × 101 1.44 × 10−5 1.33 × 10−5 8.87 × 10−7 8.30 × 10−7

p-value - 4.32 × 10−8+ 4.32 × 10−8+ 4.32 × 10−8+ 4.32 × 10−8+ 4.32 × 10−8+ 4.32 × 10−8+ 4.32 × 10−8+ 4.32 × 10−8+ 4.32 × 10−8+

F17

Median 6.70 × 104 9.65 × 104 6.90 × 105 9.17 × 104 2.19 × 106 8.64 × 104 2.64 × 105 2.64 × 105 1.99 × 105 1.97 × 105

Mean 6.57 × 104 9.83 × 104 6.84 × 105 9.12 × 104 2.21 × 106 8.74 × 104 2.65 × 105 2.63 × 105 1.98 × 105 1.98 × 105

Std 7.55 × 103 9.90 × 103 3.57 × 104 5.43 × 103 2.07 × 105 1.39 × 104 7.79 × 103 7.33 × 103 8.75 × 103 9.45 × 103

p-value - 4.32 × 10−8+ 7.15 × 10−2+ 4.32 × 10−8+ 4.32 × 10−8+ 4.32 × 10−8+ 4.32 × 10−8+ 4.32 × 10−8+ 4.32 × 10−8+ 4.32 × 10−8+

F18

Median 1.25 × 103 2.29 × 103 1.25 × 103 2.49 × 103 1.38 × 103 2.95 × 103 1.15 × 103 1.14 × 103 1.08 × 103 1.11 × 103

Mean 1.31 × 103 2.36 × 103 1.35 × 103 2.51 × 103 1.64 × 103 2.92 × 103 1.16 × 103 1.13 × 103 1.07 × 103 1.10 × 103

Std 2.94 × 102 4.19 × 102 3.81 × 102 7.42 × 102 8.13 × 102 8.08 × 102 1.31 × 102 1.29 × 102 1.08 × 102 1.02 × 102

p-value - 5.90 × 10−5+ 3.49 × 10−3+ 2.61 × 10−4+ 2.73 × 10−1= 2.85 × 10−2+ 3.19 × 10−7− 3.19 × 10−7− 3.19 × 10−7− 4.32 × 10−8−

F19

Median 1.02 × 107 3.94 × 106 8.19 × 106 1.85 × 106 9.78 × 106 5.20 × 106 2.11 × 106 2.09 × 106 1.96 × 106 1.93 × 106

Mean 1.02 × 107 3.89 × 106 8.20 × 106 1.82 × 106 9.86 × 106 5.23 × 106 2.12 × 106 2.10 × 106 1.95 × 106 1.92 × 106

Std 7.69 × 105 2.64 × 105 4.61 × 105 9.22 × 104 5.07 × 105 9.15 × 105 8.77 × 104 9.92 × 104 7.80 × 104 1.05 × 105

p-value - 4.32 × 10−8− 4.32 × 10−8− 4.32 × 10−8− 4.32 × 10−8− 4.32 × 10−8− 4.32 × 10−8− 4.32 × 10−8− 4.32 × 10−8− 4.32 × 10−8−

F20

Median 1.06 × 103 2.04 × 103 9.79 × 102 1.88 × 103 9.87 × 102 1.73 × 103 5.43 × 103 5.33 × 103 4.32 × 103 4.25 × 103

Mean 1.08 × 103 2.08 × 103 1.06 × 103 1.92 × 103 1.07 × 103 1.73 × 103 5.45 × 103 5.46 × 103 4.28 × 103 4.34 × 103

Std 7.30 × 101 2.00 × 102 1.75 × 102 3.00 × 102 1.70 × 102 1.53 × 102 3.32 × 102 3.37 × 102 2.29 × 102 3.20 × 102

p-value - 4.32 × 10−8+ 5.90 × 10−5− 4.32 × 10−8+ 5.90 × 10−5− 1.18 × 10−5+ 4.32 × 10−8+ 4.32 × 10−8+ 4.32 × 10−8+ 4.32 × 10−8+

w/t/l 16/2/2 14/1/5 15/0/5 15/2/3 18/0/2 17/0/3 16/0/4 16/0/4 16/0/4

Rank 2.75 4.80 4.65 3.70 6.25 6.05 8.20 7.10 5.85 5.65
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Table 3. Fitness comparison between DECELSO and the compared algorithms on the 1000-D CEC’2013 problems with 3 × 106 fitness evaluations.

F Quality DGCELSO TPLSO SPLSO LLSO CSO SLPSO DECC-GDG DECC-DG2 DECC-RDG DECC-RDG2

F1

Median 0.00 × 100 3.21 × 10−18 1.17 × 10−19 4.02 × 10−22 7.92 × 10−12 1.03 × 10−17 7.06 × 100 3.46 × 100 2.04 × 10−2 2.96 × 10−2

Mean 0.00 × 100 3.81 × 10−18 1.18 × 10−19 4.28 × 10−22 7.88 × 10−12 1.65 × 10−17 7.43 × 100 6.31 × 100 3.51 × 10−2 1.08 × 10−1

Std 0.00 × 100 1.57 × 10−18 1.04 × 10−20 1.29 × 10−22 1.19 × 10−12 3.25 × 10−17 9.38 × 10−1 7.78 × 100 3.88 × 10−2 2.08 × 10−1

p-value - 4.32 × 10−8+ 4.32 × 10−8+ 9.63 × 10−7+ 4.32 × 10−8+ 4.32 × 10−8+ 4.32 × 10−8+ 4.32 × 10−8+ 4.32 × 10−8+ 4.32 × 10−8+

F2

Median 8.61 × 102 1.30 × 103 9.64 × 102 1.14 × 103 8.58 × 103 2.09 × 103 1.43 × 103 7.81 × 103 7.81 × 103 7.69 × 103

Mean 8.77 × 102 1.34 × 103 1.06 × 103 1.14 × 103 8.58 × 103 2.10 × 103 1.43 × 103 7.88 × 103 7.74 × 103 7.74 × 103

Std 4.28 × 101 1.75 × 102 4.38 × 102 5.00 × 101 1.76 × 102 1.61 × 102 2.43 × 101 4.07 × 102 3.47 × 102 3.56 × 102

p-value - 4.32 × 10−8+ 4.32 × 10−8+ 4.32 × 10−8+ 4.32 × 10−8+ 4.32 × 10−8+ 4.32 × 10−8+ 4.32 × 10−8+ 4.32 × 10−8+ 4.32 × 10−8+

F3

Median 2.16 × 101 2.22 × 101 2.16 × 101 2.16 × 101 2.16 × 101 2.16 × 101 2.15 × 101 2.15 × 101 2.14 × 101 2.15 × 101

Mean 2.16 × 101 2.31 × 101 2.16 × 101 2.16 × 101 2.16 × 101 2.16 × 101 2.15 × 101 2.15 × 101 2.14 × 101 2.15 × 101

Std 6.26 × 10−3 1.72 × 100 7.11 × 10−15 7.11 × 10−15 7.11 × 10−15 2.37 × 10−1 3.00 × 10−2 4.23 × 10−2 4.82 × 10−2 4.90 × 10−2

p-value - 3.49 × 10−3+ 2.61 × 10−4− 2.61 × 10−4− 2.07 × 10−6− 7.15 × 10−1= 4.65 × 10−1= 4.65 × 10−1= 7.15 × 10−1= 7.15 × 10−1=

F4

Median 2.55 × 109 4.23 × 109 9.14 × 109 6.40 × 109 1.22 × 1010 4.28 × 109 4.15 × 1011 8.12 × 1010 7.45 × 1010 6.10 × 1010

Mean 2.52 × 109 4.27 × 109 9.41 × 109 6.55 × 109 1.35 × 1010 4.33 × 109 4.20 × 1011 7.79 × 1010 7.16 × 1010 6.78 × 1010

Std 6.55 × 108 1.03 × 109 1.86 × 109 1.40 × 109 3.12 × 109 9.91 × 108 7.75 × 1010 2.19 × 1010 1.92 × 1010 2.32 × 1010

p-value - 1.44 × 10−1= 1.02 × 10−3+ 1.06 × 10−2+ 4.32 × 10−8+ 4.32 × 10−8+ 4.32 × 10−8+ 4.32 × 10−8+ 4.32 × 10−8+ 4.32 × 10−8+

F5

Median 7.83 × 105 6.80 × 105 6.43 × 105 6.51 × 105 5.90 × 105 8.89 × 105 8.62 × 106 6.10 × 106 5.81 × 106 5.72 × 106

Mean 7.91 × 105 6.79 × 105 6.30 × 105 6.56 × 105 5.97 × 105 8.90 × 105 8.66 × 106 6.06 × 106 5.72 × 106 5.67 × 106

Std 1.03 × 105 1.10 × 105 1.00 × 105 1.01 × 105 1.03 × 105 1.31 × 105 2.80 × 105 2.40 × 105 4.24 × 105 3.61 × 105

p-value - 1.06 × 10−2− 1.18 × 10−5− 3.49 × 10−3− 2.61 × 10−4− 2.85 × 10−2+ 4.32 × 10−8+ 4.32 × 10−8+ 4.32 × 10−8+ 4.32 × 10−8+

F6

Median 1.06 × 106 1.17 × 106 1.06 × 106 1.06 × 106 1.06 × 106 1.06 × 106 1.06 × 106 1.06 × 106 1.06 × 106 1.06 × 106

Mean 1.06 × 106 1.22 × 106 1.06 × 106 1.06 × 106 1.06 × 106 1.06 × 106 1.06 × 106 1.06 × 106 1.06 × 106 1.06 × 106

Std 1.27 × 103 1.61 × 105 0.00 × 100 0.00 × 100 0.00 × 100 0.00 × 100 3.00 × 103 0.00 × 100 0.00 × 100 0.00 × 100

p-value - 5.90 × 10−5+ 4.65 × 10−1= 1.18 × 10−5− 2.73 × 10−1= 2.61 × 10−4− 4.65 × 10−1= 1.44 × 10−1= 2.73 × 10−1= 2.85 × 10−2−

F7

Median 7.93 × 104 1.22 × 106 5.42 × 106 1.70 × 106 5.45 × 106 1.47 × 106 7.45 × 108 7.36 × 107 2.84 × 108 8.36 × 107
Mean 9.71 × 104 1.24 × 106 5.50 × 106 1.87 × 106 5.81 × 106 1.58 × 106 7.67 × 108 7.79 × 107 3.65 × 108 8.25 × 107

Std 5.54 × 104 5.05 × 105 2.23 × 106 1.08 × 106 3.04 × 106 7.53 × 105 1.32 × 108 2.73 × 107 2.63 × 108 2.06 × 107
p-value - 1.18 × 10−5+ 1.18 × 10−5+ 4.32 × 10−8+ 2.61 × 10−4+ 3.19 × 10−7+ 4.32 × 10−8+ 4.32 × 10−8+ 4.32 × 10−8+ 4.32 × 10−8+

F8

Median 5.58 × 1013 7.07 × 1013 1.56 × 1014 1.37 × 1014 2.43 × 1014 9.65 × 1013 1.70 × 1016 9.35 × 1015 6.96 × 1015 5.83 × 1015

Mean 6.15 × 1013 7.28 × 1013 1.55 × 1014 1.36 × 1014 2.46 × 1014 1.09 × 1014 1.65 × 1016 9.32 × 1015 6.95 × 1015 6.38 × 1015

Std 2.08 × 1013 4.02 × 1013 2.92 × 1013 3.39 × 1013 8.71 × 1013 5.44 × 1013 4.49 × 1015 2.71 × 1015 1.64 × 1015 1.99 × 1015

p-value - 5.90 × 10−5+ 1.44 × 10−1= 2.85 × 10−2− 1.18 × 10−5− 3.49 × 10−3− 4.32 × 10−8− 4.32 × 10−8− 4.32 × 10−8− 4.32 × 10−8−
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Table 4. Fitness comparison between DECELSO and the compared algorithms on the 1000-D CEC’2013 problems with 3 × 106 fitness evaluations.

F Quality DGCELSO TPLSO SPLSO LLSO CSO SLPSO DECC-GDG DECC-DG2 DECC-RDG DECC-RDG2

F9

Median 4.67 × 107 4.52 × 107 7.23 × 107 1.11 × 108 5.94 × 107 8.05 × 107 5.62 × 108 5.55 × 108 5.40 × 108 5.32 × 108

Mean 4.47 × 107 4.28 × 107 8.08 × 107 1.29 × 108 6.08 × 107 7.99 × 107 5.61 × 108 5.59 × 108 5.38 × 108 5.31 × 108

Std 1.37 × 107 7.49 × 106 2.21 × 107 8.85 × 107 1.29 × 107 1.18 × 107 3.24 × 107 2.93 × 107 3.03 × 107 2.33 × 107

p-value - 4.65 × 10−1= 3.19 × 10−7+ 4.32 × 10−8+ 2.61 × 10−4+ 3.19 × 10−7+ 4.32 × 10−8+ 4.32 × 10−8+ 4.32 × 10−8+ 4.32 × 10−8+

F10

Median 9.40 × 107 9.44 × 107 9.40 × 107 9.41 × 107 9.41 × 107 9.37 × 107 9.46 × 107 9.46 × 107 9.46 × 107 9.45 × 107

Mean 9.40 × 107 9.52 × 107 9.39 × 107 9.41 × 107 9.40 × 107 9.27 × 107 9.46 × 107 9.46 × 107 9.46 × 107 9.45 × 107

Std 2.95 × 105 1.70 × 106 2.18 × 105 2.23 × 105 2.14 × 105 1.99 × 106 2.57 × 105 2.51 × 105 1.98 × 105 2.78 × 105

p-value - 1.02 × 10−3+ 6.79 × 10−2= 1.18 × 10−5+ 2.07 × 10−6+ 1.02 × 10−3− 3.19 × 10−7+ 3.19 × 10−7+ 4.32 × 10−8+ 2.07 × 10−6+

F11

Median 6.44 × 107 1.88 × 108 9.22 × 1011 9.23 × 1011 9.26 × 1011 9.38 × 1011 6.80 × 108 1.99 × 1010 5.75 × 108 1.33 × 1010

Mean 7.14 × 107 1.83 × 108 9.27 × 1011 9.28 × 1011 9.29 × 1011 9.34 × 1011 6.84 × 108 2.52 × 1010 5.68 × 108 1.49 × 1010

Std 2.45 × 107 5.62 × 107 9.35 × 109 9.68 × 109 9.63 × 109 8.96 × 109 1.09 × 108 1.38 × 1010 9.23 × 107 7.57 × 109

p-value - 3.49 × 10−3+ 4.32 × 10−8+ 4.32 × 10−8+ 4.32 × 10−8+ 4.32 × 10−8+ 2.61 × 10−4+ 4.32 × 10−8+ 3.49 × 10−3+ 4.32 × 10−8+

F12

Median 1.12 × 103 2.19 × 103 1.03 × 103 1.80 × 103 1.04 × 103 1.76 × 103 5.54 × 103 5.42 × 103 4.28 × 103 4.25 × 103

Mean 1.14 × 103 2.13 × 103 1.05 × 103 1.82 × 103 1.08 × 103 1.77 × 103 5.51 × 103 5.59 × 103 4.34 × 103 4.30 × 103

Std 9.96 × 101 2.72 × 102 5.45 × 101 1.52 × 102 7.45 × 101 1.69 × 102 3.67 × 102 7.64 × 102 3.24 × 102 2.48 × 102

p-value - 4.32 × 10−8+ 2.85 × 10−2− 4.32 × 10−8+ 1.00 × 100= 4.32 × 10−8+ 4.32 × 10−8+ 4.32 × 10−8+ 4.32 × 10−8+ 4.32 × 10−8+

F13

Median 4.89 × 107 2.01 × 108 1.20 × 109 2.98 × 108 7.08 × 108 4.01 × 108 1.56 × 109 1.43 × 109 2.87 × 109 7.08 × 108

Mean 6.40 × 107 2.21 × 108 1.20 × 109 3.42 × 108 7.48 × 108 5.20 × 108 1.50 × 109 1.47 × 109 2.98 × 109 7.17 × 108

Std 5.35 × 107 1.24 × 108 4.91 × 108 1.42 × 108 2.85 × 108 4.85 × 108 3.35 × 108 3.46 × 108 7.23 × 108 1.57 × 108

p-value - 3.19 × 10−7+ 1.00 × 100= 4.32 × 10−8+ 1.02 × 10−3+ 4.32 × 10−8+ 1.44 × 10−1= 2.73 × 10−1= 4.32 × 10−8+ 3.49 × 10−3+

F14

Median 1.77 × 107 5.86 × 107 5.19 × 109 8.06 × 107 2.90 × 109 1.51 × 108 4.45 × 109 4.54 × 109 2.23 × 109 2.50 × 109

Mean 1.78 × 107 6.05 × 107 8.31 × 109 1.59 × 108 3.67 × 109 2.51 × 108 5.28 × 109 4.58 × 109 2.78 × 109 3.33 × 109

Std 2.62 × 106 1.34 × 107 6.56 × 109 2.27 × 108 3.32 × 109 2.25 × 108 3.84 × 109 1.83 × 109 1.85 × 109 2.09 × 109

p-value - 4.32 × 10−8+ 4.32 × 10−8+ 4.32 × 10−8+ 2.07 × 10−6+ 3.19 × 10−7+ 2.85 × 10−2+ 6.79 × 10−2= 1.00 × 100= 6.79 × 10−2=

F15

Median 3.53 × 107 1.29 × 107 4.13 × 107 4.58 × 106 7.60 × 107 5.99 × 107 8.60 × 106 8.82 × 106 7.75 × 106 8.04 × 106

Mean 3.54 × 107 1.26 × 107 4.13 × 107 4.59 × 106 7.61 × 107 6.03 × 107 8.98 × 106 8.95 × 106 7.96 × 106 8.07 × 106

Std 7.60 × 106 1.36 × 106 3.05 × 106 3.22 × 105 6.14 × 106 6.54 × 106 8.90 × 105 9.38 × 105 9.30 × 105 9.78 × 105

p-value - 4.32 × 10−8− 4.32 × 10−8+ 4.32 × 10−8+ 1.18 × 10−5+ 4.65 × 10−1= 4.32 × 10−8− 4.32 × 10−8− 4.32 × 10−8− 4.32 × 10−8−

w/t/l 11/2/2 8/4/3 12/0/3 11/2/2 11/2/2 11/3/1 10/4/1 11/3/1 11/2/2

Rank 2.73 4.47 4.87 4.13 5.80 5.00 8.13 7.40 6.47 6.00
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In Table 2, the comparison results on the CEC’2010 set are summarized as follows. (1)
From the perspective of the Friedman test, as shown in the last row, it is found that the
proposed DGCELSO has the lowest rank value, which is much smaller than those of the
compared algorithms. This means that DGCELSO achieves the best overall performance
and shows great superiority to the compared algorithms. (2) With respect to the Wilcoxon
rank-sum test, as shown in the second last row, it is observed that DGCELSO performs
significantly better than the compared algorithms on at least 14 problems. In particular,
competed with the four cooperative coevolutionary evolutionary algorithms, DGCELSO
presents significant superiority to them on at least 16 problems and only shows inferiority
in at most four problems. In comparison with the five holistic large-scale PSO variants,
DGCELSO is significantly superior to SLPSO on 18 problems, achieves much better per-
formance than TPLSO on 16 problems, outperforms both LLSO and CSO on 15 problems,
and beats SPLSO down on 14 problems. The superiority of DGCELSO to the five holistic
large-scale PSOs demonstrates the effectiveness of the proposed DGCEL strategy.

In Table 4, we summarize the comparison results on the CEC’2013 set as follows.
(1) From the perspective of the Friedman test, as shown in the last row, it is found that
the rank value of the proposed DGCELSO is still the lowest among the ten algorithms,
and such a rank is still much smaller than those of the nine compared algorithms. This
demonstrates that DGCELSO still achieves the best overall performance on the complicated
CEC’2013 benchmark set and shows great dominance to the compared algorithms. (2) With
respect to the Wilcoxon rank-sum test, as shown in the second to last row, it is observed
that except for SPLSO, DGCELSO shows significantly better performance than the other
eight compared algorithms on at least 10 problems and shows inferiority on at most three
problems. Competed with SPLSO, DGCELSO beats it on eight problems and is defeated
on only three problems. The superiority of DGCELSO to the compared algorithms on
the CEC’2013 benchmark set demonstrates that it is promising for complicated large-scale
optimization problems.

The above experiments demonstrated the effectiveness of the proposed DGCELSO.
To further demonstrate its efficiency in solving large-scale optimization problems, we
conduct experiments on the two large-scale benchmark sets to investigate the convergence
speed of the proposed DGCELSO in comparison with the nine compared methods. In this
experiment, the maximum number of fitness evaluations is set as 5 × 106. Figures 3 and 4
show the convergence comparison results on the CEC’2010 and the CEC’2013 benchmark
sets, respectively.

In Figure 3, on the CEC’2010 benchmark set, the following findings can be obtained. (1)
At first glance, it is found that the proposed DGCELSO obviously obtains faster convergence
along with better solutions than all the nine compared algorithms on nine problems (F1, F4,
F7, F9, F11, F12, F14, F16, and F17). On F3, F13, F18, and F20, DGCELSO achieves very similar
performance with some compared algorithms in terms of the solution quality but obtains
much faster convergence than the associated compared algorithms. (2) More specifically,
we find that DGCELSO obviously shows much better performance in both convergence
speed and solution quality than the five holistic large-scale PSO variants, namely TPLSO,
SPLSO, LLSO, CSO, and SLPSO on 17, 16, 15, 16, and 17, respectively. In the competition
with the four cooperative coevolutionary evolutionary algorithms, namely DECC-DG,
DECC-GD2, DECC-RDG, and DECC-RDG2, DGCELSO shows clear superiority in both
convergence speed and solution quality on 17, 17, 17, and 15 problems, respectively.

From Figure 4, similar observations on the CEC’2013 benchmark set can be attained.
(1) At first glance, it is found that the proposed DGCELSO obtains faster convergence along
with better solutions than all the nine compared algorithms on six problems (F1, F4, F7, F11,
F13, and F14). On F8, F9, and F12, DGCELSO shows superiority in both convergence speed
and solution quality to eight compared algorithms and is inferior to only one compared
algorithm. (2) More specifically, we find that DGCELSO performs better with faster conver-
gence speed and higher solution quality than TPLSO, SPLSO, LLSO, CSO, and SLPSO on
11, 11, 9, 12, and 10 problems, respectively. In competition with DECC-DG, DECC-GD2,
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DECC-RDG, and DECC-RDG2, DGCELSO presents great dominance to them on 11, 9, 11,
and 12 problems, respectively.

Figure 3. Convergence behavior comparison between DGCELSO and the compared algorithms on
each 1000-D CEC’2010 benchmark problem.
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Figure 4. Convergence behavior comparison between DGCELSO and the compared algorithms on
each 1000-D CEC’2013 benchmark problem.

To sum up, compared with these state-of-the-art large-scale algorithms, DGCELSO
performs much better in both convergence speed and solution quality. The superiority of
DGCELSO mainly benefits from the proposed DGCEL strategy, which could implicitly
assemble useful information embedded in elite particles to guide the evolution of the
swarm. In particular, the superiority of DGCELSO to the five holistic large-scale PSOs,
which also adopt elite particles in the current swarm to direct the evolution of the swarm,
demonstrates that the assembly of evolutionary information in elites is effective. Such
assembly not only improves the learning diversity of particles due to the random selection
of guiding exemplars from the elites but also promotes the learning effectiveness of particles
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because each updated particle could learn from multiple different elites with the help of
the dimension group-based learning. As a result, DGCELSO could compromise search
intensification and diversification well to explore and exploit the large-scale solution
appropriately to locate satisfactory solutions.

4.3. Deep Investigation on DGCELSO

In this section, we conduct extensive experiments on the 1000-D CEC’2010 benchmark
set to verify the effectiveness of the main components in the proposed DGCELSO.

4.3.1. Effectiveness of the Proposed DGCEL

First, we conduct experiments to investigate the effectiveness of the proposed DGCEL
strategy. To this end, we first incorporate the segment-based predominance learning
strategy (SPL) in SPLSO, which is the most similar work to the proposed DGCELSO, to
replace the DGCEL strategy, leading to a new variant of DGCELSO, which we denote as
“DGCELSO-SPL”. In addition, we also develop two extreme cases of DGCELSO, where the
number of dimension groups (NDG) is set as 1 and 1000, respectively. The former, which
we denote as “DGCELSO-1”, con all dimensions as a group, and thus can be considered a
DGCELSO without the dimension group-based comprehensive learning, while the latter,
which we denote as “DGCELSO-1000”, considers each dimension as a group. This can be
considered a DGCELSO by introducing the comprehensive learning strategy in CLPSO [46]
to replace the dimension group-based comprehensive learning in DGCELSO. Then, we
conduct experiments on the CEC’2010 benchmark set to compare the above four versions
of DGCELSO. Table 5 shows the comparison results among the four versions of DGCELSO.
In this table, the best results are highlighted in bold.

From Table 5, the following observations can be attained. (1) From the perspective of
the Friedman test, it is found that the rank value of DGCELSO is the smallest among the
four versions of DGCELSO. This demonstrates that DGCELSO achieves the best overall
performance. (2) Comparing DGCELSO with DGCELSO-SPL, DGCELSO shows great
superiority. This demonstrates that the proposed DGCEL strategy is much better than SPL.
It should be mentioned that, like DGCEL, SPL also lets each particle learn from multiple
elites in the swarm, based on the dimension group. The differences between DGCEL and
SPL lie in two aspects. On the one hand, SPL lets particles learn from relatively better
elites which are determined by the competition between randomly paired two particles,
while DGCEL lets particles learn from absolutely better elites which are the top tp∗NP
best particles in the swarm. On the other hand, the second exemplar in the velocity
update in SPL is the mean position of the whole swarm, which is shared by all updated
particles, while the second exemplar in DGCEL is also randomly selected from the elite
particles. With the observed superiority of DGCEL to SPL, it is demonstrated that the
exemplar selection in DGCEL is better than that in SPL. (3) Competed with DGCELSO-1
and DGCELSO-1000, DGCELSO presents great superiority. This superiority demonstrates
the effectiveness of the proposed dimension group-based comprehensive learning strategy.
Instead of learning from only two exemplars in DGCELSO-1, which consider all dimensions
as a group, and learning from multiple exemplars dimension by dimension in DGCELSO-
1000, which considers each dimension as a group, DGCELSO lets each updated particle
learn from multiple exemplars based on dimension group. In this way, the potentially
useful information embedded in different exemplars is more likely to be assembled in
DGCELSO than in DGCELSO-1 and DGCELSO-1000.

Based on the above observations, it is found that the proposed DGCEL strategy is
effective and plays a crucial role in helping DGCELSO achieve promising performance.

4.3.2. Effectiveness of the Proposed Dynamic Adjustment Schemes for Parameters

In this subsection, we conduct experiments to verify the effectiveness of the proposed
dynamic adjustment schemes for the two control parameters, namely the elite ratio tp and
the number of dimension groups NDG.
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Table 5. Comparison results among different versions of DGCELSO on the 1000-D CEC’2010 problems.

F DGCELSO DGCELSO-1 DGCELSO-1000 DGCELSO-SPL

F1 0.00 × 100 3.85 × 10−26 0.00 × 100 1.81 × 103

F2 8.88 × 102 1.98 × 103 8.70 × 102 1.54 × 103

F3 3.18 × 10−14 1.08 × 100 3.16 × 10−14 1.97 × 10−2

F4 1.60 × 1011 2.15 × 1011 1.56 × 1011 9.44 × 1011

F5 2.80 × 108 6.93 × 107 2.79 × 108 1.07 × 107

F6 4.00 × 10−9 1.96 × 101 4.00 × 10−9 3.74 × 10−1

F7 2.15 × 10−5 4.01 × 103 2.17 × 10−5 6.15 × 106

F8 4.36 × 103 6.84 × 105 4.26 × 103 3.27 × 107

F9 1.77 × 107 3.28 × 107 1.77 × 107 1.05 × 108

F10 9.23 × 102 2.02 × 103 9.34 × 102 3.63 × 103

F11 1.10 × 10−13 2.08 × 101 1.10 × 10−13 6.66 × 10−1

F12 2.55 × 103 4.60 × 103 2.63 × 103 1.99 × 105

F13 5.15 × 102 7.69 × 102 4.87 × 102 1.42 × 103

F14 5.17 × 107 9.78 × 107 5.13 × 107 3.42 × 108

F15 1.04 × 104 2.04 × 103 1.05 × 104 1.00 × 104

F16 1.55 × 10−13 2.92 × 101 2.93 × 10−2 5.72 × 10−1

F17 6.57 × 104 4.30 × 104 7.12 × 104 7.10 × 105

F18 1.31 × 103 2.30 × 103 1.33 × 103 2.38 × 104

F19 1.02 × 107 1.33 × 106 1.06 × 107 6.52 × 106

F20 1.08 × 103 1.98 × 103 1.08 × 103 2.11 × 104

Rank 1.80 2.90 1.90 3.40

First, we conduct experiments to investigate the effectiveness of the proposed dynamic
scheme for tp. To this end, we first set tp as different fixed values from 0.1 to 0.9. Then, we
compare the DGCELSO with the dynamic scheme with these DGCELSOs with different
fixed tp values. Table 6 shows the comparison results between the DGCELSO with the
dynamic scheme and the ones with different values of tp on the CEC’2010 benchmark set.
In this table, the best results are highlighted in bold.

From Table 6, the following findings can be obtained. (1) From the perspective of
the Friedman test, it is found that DGCELSO with the dynamic tp ranks first among all
versions of DGCELSO with different settings of tp. This demonstrates that DGCELSO with
the dynamic tp achieves the best overall performance. (2) More specifically, we find that
DGCELSO with the dynamic strategy obtains the best results on 4 problems and its results
on the other problems are very close to the best ones obtained by the DGCELSO with the
associated optimal settings of tp. These two observations demonstrate that the dynamic
strategy for tp is helpful in achieving good performance for DGCELSO.

Then, we conduct experiments to verify the dynamic scheme for the number of
dimension groups (NDG). To this end, we first set NDG as different fixed values from 20 to
100. Subsequently, we conduct experiments on the CEC’2010 set to compare the DGCELSO
with the dynamic scheme for NDG and the ones with different fixed values of NDG. Table 7
shows the comparison results among the above versions of DGCELSO. In this table, the
best results are highlighted in bold.
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Table 6. Comparison results between DGCELSO with the dynamic strategy for tp and the ones with different fixed settings of tp on the 1000-D CEC’2010 problems.

F tp = 0.1 tp = 0.2 tp = 0.3 tp = 0.4 tp = 0.5 tp = 0.6 tp = 0.7 tp = 0.8 tp = 0.9 Dynamic

F1 9.55 × 10−3 0.00 × 100 0.00 × 100 0.00 × 100 0.00 × 100 0.00 × 100 0.00 × 100 0.00 × 100 3.31 × 10−26 0.00 × 100

F2 2.33 × 103 1.38 × 103 1.05 × 103 8.21 × 102 6.71 × 102 1.03 × 103 9.26 × 103 9.83 × 103 1.00 × 104 8.88 × 102

F3 1.41 × 100 3.30 × 10−14 3.17 × 10−14 3.14 × 10−14 2.98 × 10−14 2.96 × 10−14 2.99 × 10−14 2.93 × 10−14 2.98 × 10−14 3.18 × 10−14

F4 6.60 × 1011 1.64 × 1011 1.80 × 1011 1.89 × 1011 2.01 × 1011 2.24 × 1011 2.28 × 1011 2.52 × 1011 2.53 × 1011 1.60 × 1011

F5 5.90 × 107 2.64 × 108 2.75 × 108 2.76 × 108 2.83 × 108 2.79 × 108 2.81 × 108 2.82 × 108 2.83 × 108 2.80 × 108

F6 1.99 × 101 2.00 × 101 1.98 × 101 4.00 × 10−9 4.00 × 10−9 4.00 × 10−9 4.00 × 10−9 3.88 × 10−9 4.00 × 10−9 4.00 × 10−9

F7 1.15 × 106 9.66 × 10−8 5.36 × 10−5 8.46 × 10−3 3.32 × 10−1 2.98 × 100 1.56 × 101 8.23 × 101 3.67 × 102 2.15 × 10−5

F8 4.15 × 107 1.10 × 103 7.82 × 103 1.19 × 105 2.07 × 106 6.99 × 106 1.07 × 107 1.36 × 107 1.57 × 107 4.36 × 103

F9 1.21 × 108 1.93 × 107 1.85 × 107 1.78 × 107 2.05 × 107 2.03 × 107 2.21 × 107 2.17 × 107 2.34 × 107 1.77 × 107

F10 2.44 × 103 1.53 × 103 1.06 × 103 2.19 × 103 9.48 × 103 9.80 × 103 1.01 × 104 1.02 × 104 1.02 × 104 9.23 × 102

F11 2.86 × 101 2.04 × 101 1.05 × 101 1.11 × 10−13 1.09 × 10−13 1.11 × 10−13 1.11 × 10−13 1.13 × 10−13 1.15 × 10−13 1.10 × 10−13

F12 1.68 × 105 1.12 × 103 2.48 × 103 7.33 × 103 2.81 × 104 1.16 × 105 5.74 × 105 1.53 × 106 2.08 × 106 2.55 × 103

F13 1.68 × 103 4.27 × 102 5.13 × 102 4.12 × 102 6.18 × 102 4.30 × 102 4.50 × 102 4.88 × 102 5.19 × 102 5.15 × 102

F14 3.74 × 108 5.88 × 107 5.39 × 107 5.68 × 107 5.82 × 107 6.54 × 107 6.97 × 107 8.12 × 107 8.92 × 107 5.17 × 107

F15 2.66 × 103 1.08 × 104 1.05 × 104 1.04 × 104 1.04 × 104 1.04 × 104 1.04 × 104 1.04 × 104 1.04 × 104 1.04 × 104

F16 7.57 × 101 5.55 × 100 1.62 × 10−13 1.64 × 10−13 1.68 × 10−13 1.76 × 10−13 1.79 × 10−13 1.87 × 10−13 1.94 × 10−13 1.55 × 10−13

F17 5.02 × 105 2.01 × 104 5.70 × 104 1.86 × 106 3.51 × 106 4.29 × 106 4.92 × 106 5.16 × 106 5.46 × 106 6.57 × 104

F18 4.17 × 103 1.45 × 103 1.35 × 103 1.45 × 103 1.09 × 103 1.43 × 103 1.16 × 103 1.12 × 103 1.16 × 103 1.31 × 103

F19 2.18 × 106 6.26 × 106 1.05 × 107 1.20 × 107 1.32 × 107 1.39 × 107 1.42 × 107 1.50 × 107 1.53 × 107 1.02 × 107

F20 3.09 × 103 1.30 × 103 1.19 × 103 1.10 × 103 1.06 × 103 1.03 × 103 1.02 × 103 9.94 × 102 9.86 × 102 1.08 × 103

Rank 7.75 4.98 4.53 4.23 4.85 5.35 5.9 6.28 7.73 3.43



Mathematics 2022, 10, 1072 28 of 32

Table 7. Comparison results between DGCELSO with the dynamic strategy for NDG and the ones with different fixed settings of NDG on the 1000-D CEC’2010 problems.

F NDG = 20 NDG = 30 NDG = 40 NDG = 50 NDG = 60 NDG = 70 NDG = 80 NDG = 90 NDG = 100 Dynamic

F1 0.00 × 100 0.00 × 100 0.00 × 100 0.00 × 100 0.00 × 100 0.00 × 100 0.00 × 100 0.00 × 100 0.00 × 100 0.00 × 100

F2 8.46 × 102 8.56 × 102 8.49 × 102 8.41 × 102 8.53 × 102 8.48 × 102 8.52 × 102 8.51 × 102 8.44 × 102 8.88 × 102

F3 3.18 × 10−14 3.18 × 10−14 3.19 × 10−14 3.22 × 10−14 3.21 × 10−14 3.24 × 10−14 3.19 × 10−14 3.21 × 10−14 3.19 × 10−14 3.18 × 10−14

F4 1.69 × 1011 1.69 × 1011 1.68 × 1011 1.65 × 1011 1.54 × 1011 1.56 × 1011 1.65 × 1011 1.58 × 1011 1.65 × 1011 1.60 × 1011

F5 2.78 × 108 2.79 × 108 2.80 × 108 2.78 × 108 2.78 × 108 2.78 × 108 2.79 × 108 2.78 × 108 2.79 × 108 2.80 × 108

F6 4.00 × 10−9 4.00 × 10−9 4.00 × 10−9 4.00 × 10−9 4.00 × 10−9 4.00 × 10−9 4.00 × 10−9 4.00 × 10−9 3.88 × 10−9 4.00 × 10−9

F7 2.36 × 10−5 3.22 × 10−5 2.64 × 10−5 2.58 × 10−5 2.18 × 10−5 1.92 × 10−5 2.22 × 10−5 2.00 × 10−5 2.93 × 10−5 2.15 × 10−5

F8 5.49 × 103 5.20 × 103 5.15 × 103 5.12 × 103 5.14 × 103 4.98 × 103 5.07 × 103 5.01 × 103 5.07 × 103 4.36 × 103

F9 1.80 × 107 1.78 × 107 1.73 × 107 1.81 × 107 1.74 × 107 1.76 × 107 1.78 × 107 1.74 × 107 1.82 × 107 1.77 × 107

F10 8.97 × 102 8.94 × 102 8.94 × 102 8.94 × 102 8.92 × 102 8.92 × 102 9.02 × 102 9.14 × 102 8.89 × 102 9.23 × 102

F11 1.11 × 10−13 1.11 × 10−13 1.11 × 10−13 1.11 × 10−13 1.11 × 10−13 1.10 × 10−13 1.10 × 10−13 1.11 × 10−13 1.11 × 10−13 1.10 × 10−13

F12 3.13 × 103 3.13 × 103 3.24 × 103 3.18 × 103 3.24 × 103 3.21 × 103 3.11 × 103 3.14 × 103 3.28 × 103 2.55 × 103

F13 4.48 × 102 5.03 × 102 5.13 × 102 4.83 × 102 5.30 × 102 5.09 × 102 4.51 × 102 4.64 × 102 4.82 × 102 5.15 × 102

F14 5.26 × 107 5.26 × 107 5.24 × 107 5.16 × 107 5.16 × 107 5.07 × 107 5.23 × 107 5.18 × 107 5.24 × 107 5.17 × 107

F15 1.04 × 104 1.04 × 104 1.04 × 104 1.04 × 104 1.04 × 104 1.04 × 104 1.04 × 104 1.04 × 104 1.04 × 104 1.04 × 104

F16 1.59 × 10−13 1.57 × 10−13 1.58 × 10−13 1.58 × 10−13 3.85 × 10−2 1.58 × 10−13 2.93 × 10−2 1.59 × 10−13 1.59 × 10−13 1.55 × 10−13

F17 1.19 × 105 1.20 × 105 1.19 × 105 1.20 × 105 1.28 × 105 1.22 × 105 1.28 × 105 1.34 × 105 1.35 × 105 6.57 × 104

F18 1.19 × 103 1.21 × 103 1.28 × 103 1.31 × 103 1.24 × 103 1.18 × 103 1.31 × 103 1.31 × 103 1.28 × 103 1.31 × 103

F19 1.10 × 107 1.09 × 107 1.12 × 107 1.10 × 107 1.12 × 107 1.13 × 107 1.12 × 107 1.12 × 107 1.11 × 107 1.02 × 107

F20 1.12 × 103 1.11 × 103 1.09 × 103 1.11 × 103 1.08 × 103 1.11 × 103 1.09 × 103 1.08 × 103 1.10 × 103 1.08 × 103

Rank 6.05 6.05 6.18 5.33 5.78 4.70 5.50 5.18 6.00 4.25



Mathematics 2022, 10, 1072 29 of 32

From Table 7, we can obtain the following findings. (1) From the perspective of the
Friedman test, it is found that the rank value of the DGCELSO with the dynamic scheme
for NDG is the smallest among all versions of DGCELSO with different settings of NDG.
This demonstrates that DGCELSO with the dynamic strategy achieves the best overall
performance. (2) More specifically, we find that DGCELSO with the dynamic strategy
obtains the best results on nine problems, while DGCELSO with fixed NDG obtains the best
results on at most four problems. In particular, on the other 11 problems where DGCELSO
with the dynamic strategy does not achieve the best results, its optimization results are
very close to the best ones obtained by DGCELSO with the associated optimal NDG. These
two observations verify the effectiveness of the dynamic strategy for NDG.

To sum up, the above comparative experiments demonstrated the effectiveness and
efficiency of DGCELSO in solving large-scale optimization problems. In particular, the
deep investigation experiments have validated that it is the proposed DGCEL strategy
along with the two dynamic strategies that play a crucial role in helping DGCELSO achieve
promising performance.

5. Conclusions

This paper proposed a dimension group-based comprehensive elite learning swarm
optimizer (DGCELSO) to effectively solve large-scale optimization problems. Specifically,
this optimizer first partitions the swarm into two exclusive sets, namely the elite set and the
non-elite set. Then, the non-elite particles are updated by learning from the elite ones with
the elite particles directly entering the next generation. During the update of each non-elite
particle, the dimensions are separated into several dimension groups. Subsequently, for
each dimension group, two elites are randomly selected from the elite set and then act
as the guiding exemplars to direct the update of the dimension group. In this way, each
non-elite particle could comprehensively learn from multiple elites. Moreover, not only are
the guiding exemplars for different non-elite particles different, but the guiding exemplars
for different dimension groups of the same non-elite particle are also likely to be different.
As a result, not only could the learning diversity of particles be improved, but the learning
efficiency of particles could also be promoted. To further aid the optimizer to explore and
exploit the solution space properly, we designed two dynamic adjustment strategies for the
associated control parameters in the proposed DGCELSO.

Experiments conducted on the 1000-D CEC’2010 and CEC’2013 large-scale benchmark
sets verified the effectiveness of the proposed DGCELSO by comparing it with nine state-
of-the-art large-scale methods. Experimental results demonstrate that DGCELSO achieves
highly competitive or even much better performance than the compared methods in terms
of both the solution quality and the convergence speed.
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