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Abstract: Particle swarm optimization (PSO) has exhibited well-known feasibility in problem opti-
mization. However, its optimization performance still encounters challenges when confronted with
complicated optimization problems with many local areas. In PSO, the interaction among particles
and utilization of the communication information play crucial roles in improving the learning ef-
fectiveness and learning diversity of particles. To promote the communication effectiveness among
particles, this paper proposes a stochastic triad topology to allow each particle to communicate with
two random ones in the swarm via their personal best positions. Then, unlike existing studies that
employ the personal best positions of the updated particle and the neighboring best position of
the topology to direct its update, this paper adopts the best one and the mean position of the three
personal best positions in the associated triad topology as the two guiding exemplars to direct the
update of each particle. To further promote the interaction diversity among particles, an archive is
maintained to store the obsolete personal best positions of particles and is then used to interact with
particles in the triad topology. To enhance the chance of escaping from local regions, a random restart
strategy is probabilistically triggered to introduce initialized solutions to the archive. To alleviate
sensitivity to parameters, dynamic adjustment strategies are designed to dynamically adjust the
associated parameter settings during the evolution. Integrating the above mechanism, a stochas-
tic triad topology-based PSO (STTPSO) is developed to effectively search complex solution space.
With the above techniques, the learning diversity and learning effectiveness of particles are largely
promoted and thus the developed STTPSO is expected to explore and exploit the solution space
appropriately to find high-quality solutions. Extensive experiments conducted on the commonly
used CEC 2017 benchmark problem set with different dimension sizes substantiate that the proposed
STTPSO achieves highly competitive or even much better performance than state-of-the-art and
representative PSO variants.

Keywords: particle swarm optimization; stochastic triad topology; guiding exemplar; multimodal
problems; global optimization

MSC: 68-04; 65-04

1. Introduction

Particle swarm optimization (PSO) has witnessed tremendous success in solving opti-
mization problems, especially non-differentiable ones [1–5], since its advent in 1995 [6,7].
Specifically, it maintains a swarm of particles, each of which represents a feasible solu-
tion, to iteratively search the solution space to find the global optima. Due to its good
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interpretability and great convenience of implementation [8–10], PSO has been widely
applied to solve various real-world problems in daily life and industrial engineering, such
as supply chain network design [11], control of pollutant spreading on social networks [12],
and industrial power load forecasting [13].

In the classical PSO [6,7], a fully connected topology with all particles is utilized to
select guiding exemplars for particles to update, leading to the global best position (usually
denoted as gbest) discovered by the whole swarm being shared by all particles. As a
result, the learning diversity of particles is limited and thus the swarm falls into local
areas when dealing with multimodal problems. To alleviate this limitation, researchers
have paid extensive attention to designing novel learning strategies [14–19] to improve the
optimization effectiveness of PSO.

In essence, the key to the learning strategies in PSO lies in the selection of guiding
exemplars to direct the update of particles [17,20]. Broadly speaking, existing exemplar se-
lection mechanisms can be classified into two categories, namely topology-based exemplar
selection methods [15,16,21–23], and exemplar construction approaches [17–19,24,25].

Topology-based exemplar selection methods have been widely utilized in the research
of PSO. In most cases, these methods aim to determine a less greedy exemplar to replace the
social exemplar, namely gbest, in the classical PSO [6,7]. Based on different topologies, an
abundance of remarkable PSO variants have been developed [26–28], such as ring topology
structure [26], pyramid topology structure [27], Von Neumann topology structure [29],
random topology [22], etc. Different topologies usually preserve different characteristics
and merits. Therefore, a natural idea is to hybridize them to ensemble the merits of different
topologies to improve the optimization performance of PSO. Along this line, many PSO
variants [28,30–33] have been developed based on different methods of hybridization. In
addition, to alleviate the shortcoming of static topologies where each particle can only
interact with fixed peers, some researchers further proposed dynamic topologies [34–36] to
dynamically change the topologies (the topology type or the topology size) based on the
evolution state of the swarm.

Although topology-based PSO variants have shown to be highly promising in solving
optimization performance, the guiding exemplars selected by different topologies to direct
the update of particles are all the historical promising positions found by particles. There-
fore, the learning effectiveness of particles is limited by the historical positions [14,18,37].
Once all the historical positions converge to local areas, it is difficult for the swarm to jump
out of the local basin. To alleviate this issue, researchers have attempted to develop novel
PSOs from another perspective, namely constructing new guiding exemplars for particles
to learn from [14,38].

Different from topology-based exemplar selection methods, exemplar construction
methods generally build new guiding exemplars for particles by combining dimensions
of historical positions. In general, it is highly possible that the built exemplars are not
visited by particles. The most representative PSO variant in this direction is the comprehen-
sive learning PSO (CLPSO) [17], which constructs a new guiding exemplar dimension by
dimension from the personal best positions of all particles. Inspired from this method of con-
structing new exemplars, researchers have developed many other construction approaches,
such as orthogonal learning PSO (OLPSO) [37], and genetic learning PSO (GLPSO) [18].

Although most existing PSO variants have shown very promising performances in sim-
ple optimization problems, such as unimodal problems and simple multimodal problems,
their performance is confronted with great challenges or even deteriorates dramatically
when dealing with complicated optimization problems, such as multimodal problems with
many wide and flat local areas [39,40], and composition problems with many interacting
variables. However, in the era of big data and Internet of Things (IoT) [41], optimization
problems become increasingly complicated, which are ubiquitous in every field in daily life
and industrial engineering [11,13]. As a consequence, the optimization ability of PSO to
solve complicated optimization problems warrants urgent and careful research, rendering
ongoing research into PSO an important frontier in evolutionary community [42,43].



Mathematics 2022, 10, 1032 3 of 39

To improve the optimization effectiveness of PSO in solving complicated problems,
this paper proposes a stochastic triad topology-based PSO (STTPSO). Specifically, during
the evolution, for each particle, two personal best positions are first randomly selected from
those of the rest particles. Then, the personal best position of the particle to be updated and
the two random best positions form a triad topology. Based on this topology, the best one in
the topology and the mean position of the topology are employed as the guiding exemplars
to direct the update of the particle. In this way, each particle likely preserves different
guiding exemplars and thus the learning diversity of particles can be largely improved,
which is beneficial for the swarm to escape from local areas.

Overall, the main components of the proposed STTPSO are summarized as follows:

(1) A stochastic triad topology is employed to connect the personal best position of
each particle and two different personal best positions randomly selected from those
of the rest particles to select guiding exemplars for particles to update. Different
from existing studies [22,37], which only utilize the topologies to determine the best
position to replace the social exemplar, namely gbest, in the classical PSO (with
another guiding exemplar as the personal best position of the particle), the proposed
STTPSO utilizes the stochastic triad topology to select the best one and computes
the mean position of the triad best positions as the two guiding exemplars to direct
the update of each particle. Since the topology is stochastic, it is likely that different
particles preserve different guiding exemplars. As a result, the learning diversity of
particles can be largely promoted, and thus the probability of the swarm escaping
from local areas can be promoted.

(2) An archive is maintained to store the obsolete personal best positions and then is
combined with the personal best positions of all particles in the current generation
to form the triad topologies for particles. In this way, valuable historical information
can be utilized to direct the update of particles, which is helpful for improving swarm
diversity.

(3) A random restart strategy is designed by randomly initializing a solution with a small
probability. However, instead of employing this restart strategy on the swarm, we
utilize it on the archive. That is to say, a randomly initialized solution is inserted into
the archive with a small probability. In this way, the swarm diversity can be promoted
without significant sacrifice of convergence speed.

(4) A dynamic strategy for the acceleration coefficients is devised to alleviate the sensitiv-
ity of STTPSO. Instead of utilizing fixed values for the two acceleration coefficients,
this paper randomly samples the two acceleration coefficients based on the Gaussian
distribution with the mean value set as the classical setting of the two coefficients and
a small deviation. With this dynamic strategy, different particles can have different
settings, and thus the learning diversity can be further promoted.

The above four components collaborate cohesively to help STTPSO explore and exploit
the solution appropriately to locate the optima of optimization problems. In order to verify
the effectiveness of the proposed STTPSO, extensive experiments are conducted on the
widely used CEC 2017 benchmark problem set [44] with three different dimension sizes by
comparing STTPSO with several state-of-the-art and popular PSO variants. In addition,
deep investigations on the devised STTPSO are also conducted to observe the influence of
each component in STTPSO.

The rest of this paper is organized as follows. Closely related studies are reviewed
briefly in Section 2. In Section 3, the proposed STTPSO is elucidated in detail. Then,
extensive comparison experiments and analysis of the associated results are conducted and
discussed in Section 4. Finally, the conclusion of this paper is provided in Section 5.

2. Related Works
2.1. Basic PSO

PSO is a heuristic search algorithm and was first proposed in 1995 by Kennedy and
Eberhart [6,7]. Specifically, PSO maintains a population of particles to search the solution
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space, and each particle is represented by a position vector xi and a velocity vector vi, where
the position vector represents a feasible solution to the problem, while the velocity vector
represents the moving direction of the particle. Moreover, each particle memorizes its own
historical best position pbesti, and the global best position gbest of the whole population
is also memorized during the evolution. Then, each particle is updated by cognitively
learning from its own experience, namely its personal best position pbesti, and socially
learning from the experience of the whole swarm, namely the global best position gbest.
Specifically, each particle is updated as follows:

vi = wvi + c1r1(pbesti − xi) + c2r2(gbest− xi) (1)

xi = xi + vi (2)

where w is the inertia weight, c1 and c2 are called acceleration coefficients, and r1 and r2 are
two real random numbers uniformly sampled within [0, 1].

In Equation (1), the first part in the right hand is the “inertia part”, which controls
the memory of the velocity of each particle in the last generation. The second part is the
“self-cognition” part, where each particle learns from its own experience. The third part is
the social part, where each particle learns from the experience of the whole swarm.

As for the inertia weight w, in the literature [17,18,37,45], a linear decay method is
widely utilized in PSO variants, which is presented below:

w = 0.9− 0.5× f es
FEmax

(3)

In the literature [10,17,18,37,45–47], it is widely recognized that the learning strategy in
Equation (1) plays the most important role in helping PSO achieve satisfactory performance.
As a result, researchers have been devoted to designing novel effective learning strategies
for PSO to improve its optimization ability.

2.2. Advanced Learning Strategies for PSO

To improve the optimization performance of PSO, many researchers have designed
an ocean of effective learning strategies to improve the learning diversity and the learning
effectiveness of particles [18,48–51]. As far as we are concerned, existing learning strate-
gies for PSO could be classified into two main categories as shown in Table 1, namely
topology-based learning strategies [22,26,52], and exemplar construction-based learning
strategies [14,17,37,38,53].

Topology-based learning strategies [21,22,26,54,55], mainly utilize a specific topology
to interact with particles to select guiding exemplars to update particles. In fact, the classical
PSO [6,7] introduced above is a topology-based learning PSO, where the topology is the
full topology connecting all particles. Such a full topology usually leads to an excessively
greedy guiding exemplar (namely the global best position gbest), which likely attracts
particles into local areas. To alleviate this issue, many researchers have developed many
kinds of local topologies to select less greedy guiding exemplars to direct the update of
particles. For instance, in [26], the ring topology was utilized to organize particles into a
ring, and then each particle interacts with its two neighbors to select one guiding exemplar
to replace gbest in Equation (1). In [27], the pyramid topology with a three-dimensional
wire-frame triangle was used to select the guiding exemplars for particles. In [29,55], the
star topology was employed for particles to interact with others. In this topology, the central
node shares information with other particles, and other particles also share information
with the central node. Therefore, the communication is a two-way information exchange.
In [29], the Von Neumann topology which is a two-dimensional lattice, was adopted to
select guiding exemplars. Specifically, this topology connects the top, bottom, left and right
neighbors of each point to form a neighborhood topology of size five. Such a topology can
be regarded as a “two-dimensional” ring topology derived from a one-dimensional line
into a two-dimensional plane.
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Table 1. The rough classification of existing PSO variants.

Category Methods Characteristics

Topology-based
Methods

Static Topology

Full Topology PSO [6,7]

Each particle can only communicate with
fixed peers.

The learning diversity of particles is
limited.

Ring Topology MRTPSO [26],
GGL-PSOD [56]

Pyramid Topology PMKPSO [27]

Star Topology PSO-Star [29,55]

Von Neumann
Topology

PSO-Von-
Neumann [29]

Hybrid Topology XPSO [23]

Dynamic
Topology

Dynamic Topology
DNSPSO [28],
DMSPSO [15],

SPSO [22]
Each particle communicates with

dynamic peers.
The learning diversity of particles is high.Dynamic Size

Topology RPSO [16]

Exemplar
construction-

based
Methods

Random Construction

CLPSO_LS [14],
CLPSO [17],

HCLPSO [25],
TCSPSO [19]

Randomly recombine dimensions of
personal best positions.

The exemplar construction efficiency is
low, but it consumes no fitness

evaluations in exemplar construction.

Operator-based Construction MPSOEG [24],
GLPSO [18]

Recombine dimensions of personal best
positions based evolutionary operators in

other EAs.
The exemplar construction efficiency is

high, but it consumes many fitness
evaluations in exemplar construction

Orthogonal Recombination OLPSO [37]

Recombine dimensions of personal best
positions based on orthogonal

experimental design.
The exemplar construction efficiency is

high, but it consumes a lot of fitness
evaluation in exemplar construction

All topologies mentioned above are static topologies. In these topologies, each particle
interacts with fixed peers during the evolution, and thus they bear limitations in improving
the learning effectiveness of particles. To compensate for this shortcoming, researchers have
attempted to develop dynamic topologies to select guiding exemplars for particles. Along
this line, Liang and Suganthan [15] designed a random topology, which connects each
particle with several randomly selected particles. Their experimental results demonstrated
that the randomly constructed topological structure exhibits the best performance when
its size is equal to three. In [22], each particle interacts with k particles randomly selected
from the swarm. As for the setting of k, it is set between one and the population size. In
particular, it can be the same for all particles and can also be different for different particles.
In [16], the authors proposed adaptive adjustment of the size of the topology based on the
evolution state. Specifically, in the early stage, a small size is maintained to preserve high
search diversity, so that particles focus on exploring the solution space. Whereas, at the late
stage, a large topology size is maintained to guarantee the convergence, so that particles
focus on exploiting the solution space. In [23], the authors combined the global topology
and the local topology to select guiding exemplars for particles, so that a good balance
between exploration and exploitation could be maintained.

The aforementioned topology-based learning strategies mainly select guiding exem-
plars for particles based on existing personal best positions found by all particles. To
further promote the learning effectiveness of particles, some researchers have attempted to
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construct novel exemplars, which might not be visited by particles, for particles, leading to
exemplar construction-based learning strategies [14,17,19,24,37,38].

Different from topology-based learning strategies, exemplar construction-based learn-
ing strategies construct new exemplars that are not visited by particles based on the
personal best positions of all particles. In this direction, the most representative algorithm
is the comprehensive learning PSO (CLPSO) [17]. Specifically, this algorithm uses the
binary tournament selection mechanism to select a learning object for each dimension
of the current particle. From a macro perspective, CLPSO constructs a new position for
each particle dimension by dimension that does not exist in the current population. Since
CLPSO randomly recombines dimensions of different personal best positions, it ignores
the correlation between variables and thus cannot effectively integrate useful evolutionary
information together. To further improve the optimization performance of CLPSO, a hetero-
geneous CLPSO (HCLPSO) was proposed in [25]. This algorithm divides the population
into two sub-populations, with one sub-population used for exploration, which is updated
by the original CL strategy, and another sub-population used for exploitation, which is
guided by the global best position.

Although the above introduced CLPSO variants have achieved good performance
in solving multimodal problems, the construction of promising exemplars for particle
is inefficient since the recombination of dimensions is totally random. To improve the
exemplar construction effectiveness and efficiency, in [37], Zhan et al. proposed an orthog-
onal learning PSO (OLPSO) by using the orthogonal experimental design to seek useful
dimension combinations of the historical positions found by particles. Specifically, OLPSO
adopts an orthogonal matrix to evaluate the effectiveness of the dimension combinations
and then combines the most useful dimension combinations to construct promising exem-
plars. Though the exemplar construction efficiency is improved, it consumes many fitness
evaluations in the exemplar construction stage. To reduce fitness evaluation consumption
in the exemplar construction, in [18], Gong et al. employed the genetic operators such as
crossover, mutation, and selection, to construct guiding exemplars for particles, leading
to a genetic learning PSO (GLPSO). With these operators, GLPSO is expected to generate
diversified and high-quality exemplars for particles. To further improve its optimization ef-
fectiveness, in [56], a global GLPSO with a ring topology (GGL-PSOD) was devised, where
the ring topology is adopted to generate diversified exemplars based on neighbor particles.
Though the constructed exemplars are promising, GLPSO and its variants still consume
many fitness evaluations in the exemplar construction. To further construct diversified but
promising guiding exemplars for particles, in [19], terminal crossover and steering-based
PSO with distribution (TCSPSO) was proposed by devising a new crossover mechanism
to construct exemplars. Meanwhile, a global disturbance was designed to improve the
population diversity to escape from local areas. In [24], a modified particle swarm opti-
mization with effective guides (MPSOEG) was devised by generating two types of guiding
exemplars with an optimal guide creation (OGC) module. In particular, a global exemplar
is constructed by the OCG module to guide the swarm towards promising regions, whereas
a local exemplar is constructed for each particle to escape from local areas.

Except for the abovementioned learning strategies, some researchers have even at-
tempted utilizing multiple learning strategies to direct the evolution of the swarm in PSO.
For instance, in [20], the concept of evolutionary game theory was introduced, and four
classical learning strategies were taken as game strategies in the game theory. Then, the
swarm adaptively selects the most suitable learning strategy based on the current evolution
state. In [28], a dynamic-neighborhood-based switching PSO (DNSPSO) algorithm was
proposed by adjusting the personal best position and the global best position based on a
distance-based dynamic neighborhood and hybridizing the differential evolution algorithm
to alleviate premature convergence.

Although many of the original limitations and shortcomings of PSO have been greatly
improved since its introduction, its optimization performance in solving complex opti-
mization problems with many interacting variables and a wide saddle-point region still
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encounters great challenges. Therefore, methods to improve the optimization performance
of PSO in solving widely emerging complicated problems remains an open issue and
deserves careful attention, which results in the research of PSO remaining a highly popular
and frontier topic in the evolutionary computation community. To improve the learning
effectiveness of particles in complicated environments, this paper proposes a stochastic
triad topology-based PSO (STTPSO), which will be elucidated in the following section.

3. Stochastic Triad Topology-Based Particle Swarm Optimization

The most crucial aspect of PSO is the interaction among particles to select guiding
exemplars to direct the update of particles [22,26,27,29]. Most existing topology-based
PSO variants [21,22,55] only adopt the topologies to select one exemplar to replace the
social exemplar (namely gbest) in the classical PSO (shown in Equation (1)). Such utiliza-
tion of topologies is limited since it only changes one exemplar in Equation (1), which
results in limited improvement in the learning effectiveness and learning diversity of
particles. To alleviate this predicament, this paper proposes a stochastic triad topology-
based PSO (STTPSO), which utilizes a stochastic triad topology for each particle to select
two novel guiding exemplars to replace the two ones in the classical PSO to promote the
learning effectiveness and learning diversity of particles.

3.1. Stochastic Triad Topology

During the evolution, given that PS particles are maintained in the swarm, then for
each particle xi (0≤ i≤ PS), a stochastic triad topology is employed to connect the personal
best position (pbesti) of this particle and two different personal best positions, which are
randomly selected from those of other particles. Given that the two randomly selected
personal best positions are pbestr1 and pbestr2, respectively, this paper utilizes the best one
among the triad pbests, (pbesti, pbestr1, and pbestr2) and the mean position of these triad
pbests as the two guiding exemplars to replace the two ones in Equation (1) to update each
particle. Specifically, the velocity of each particle is updated as follows:

vi = wvi + c1r1(tpbesti − xi) + c2r2(tmeani − xi) (4)

where tpbesti is the best one among the triad pbests, which is determined as follows:

tpbesti = argmin{ f (pbestr1), f (pbestr2), f (pbesti)} (5)

tmeani represents the mean position of the triad pbests, which is calculated as follows:

tmeani =
1
3
(pbestr1 + pbestr2 + pbesti) (6)

Upon deep observation of Equation (4), we discover the following findings: (1) The
first guiding exemplar (tpbesti) is likely different for different particles. This is because the
triad topology of each particle is constructed by randomly selecting two different personal
best positions (pbestr1 and pbestr2) from those of other particles along with the personal best
position (pbesti) of this particle. Due to such randomness, the diversity of the first exemplar
could be largely promoted. (2) The second guiding exemplar (tmeani) is also likely different
due to the random construction of the triad topology. Therefore, the diversity of the second
exemplar is also promoted to a large extent. Along with high diversity of the first exemplar,
we can see that the learning diversity of particles is high, which is of great benefit for particles
to search the solution space dispersedly and thus is helpful for the swarm to escape from
local areas. (3) The first exemplar is expectedly better than the personal best position of the
particle to be updated. As a result, the learning effectiveness and efficiency of particles is
expected to be promoted, which is beneficial for the swarm to rapidly converge to promising
areas. (4) As for the second exemplar, it can be considered as a kind of distribution estimation
of the triad pbests. Utilizing it as one guiding exemplar is also expected to direct the updated
particle to promising areas fast. (5) However, compared with the first exemplar, the quality
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of the second exemplar is uncertain. In particular, we can consider that the first exemplar
is responsible for convergence, while the second is in charge of swarm diversity. Therefore,
in Equation (4), a promising balance between fast convergence and high diversity is implicitly
maintained in the update of particles.

As for the triad topology structure, to guarantee the learning effectiveness of particles,
instead of frequently changing the topology structure, we first keep the structure fixed for
each particle. That is to say, the indexes (pbestr1 and pbestr2) of the randomly selected two
personal best positions for each particle are not changed. Then, we observe the change of
the personal best position of each particle. For particle xi (0 ≤ i ≤ PS), if its personal best
position pbesti keeps unchanged for continuous stopmax times, this indicates that the learning
effectiveness of this particle under the triad structure degrades. In this situation, to improve
the learning effectiveness of this particle, we randomly reselect two different personal best
positions from those of other particles to rebuild the triad topology structure. In this way, the
learning effectiveness and learning diversity of particles can be largely promoted.

In Section 4.3, investigative experiments are conducted to verify the effectiveness of
the adaption strategy for the triad topology structure of each particle. Experimental results
show that stopmax = 30 helps STTPSO achieve the best overall performance, and thus in this
paper, we set stopmax = 30 for STTPSO.

Remark

In essence, the proposed stochastic triad topology belongs to a kind of random topol-
ogy. In the literature, many studies [21,22,52,57] have adopted random topologies to select
guiding exemplars for particles to learn from. Compared with these existing studies, this
paper distinguishes itself from them in the following ways:

(1) Unlike existing studies that use the random topologies to determine only one guiding
exemplar to replace the social exemplar (gbest) in the classical PSO [6,7], the proposed
STTPSO utilizes the stochastic triad topology for each particle to select the best one
among the triad personal best positions and computes the mean position of these
pbests as the two guiding exemplars to direct the update of this particle. In this way,
due to the randomness of the triad topology, not only the diversity of the first exemplar
is promoted largely, but also the diversity of the second exemplar is promoted to
a large extent. Therefore, the learning diversity of particles is improved, which is
beneficial for enhancing the chance of escaping from local areas for the swarm.

(2) Unlike existing studies that change the random topology structure every generation,
this paper adaptively changes the triad topology structure based on the evolution
state of each particle. In particular, we record stagnation times of each particle (xi),
which is actually the number of continuous generations where the personal best
position (pbesti) of the particle remains unchanged. When such a number exceeds
a predefined threshold stopmax, the triad topology structure is reconstructed by ran-
domly reselecting two different personal best positions from those of other particles.
In this way, the triad topology structure of each particle is changed asynchronously,
which guarantees the learning effectiveness of particles.

3.2. Dynamic Acceleration Coefficients

As for the parameters in Equation (4), with respect to the inertia weight w, we directly
adopt the widely used dynamic strategy as shown in Equation (3) to dynamically adjust w
during the evolution.

As for the acceleration coefficients c1 and c2, in the classical PSO, a large body of
research has recommended to set them as c1 = c2 = 1.49618 [18]. Such a setting makes all
particles share the same setting, which, as far as we are concerned, is not beneficial for
improving the learning diversity of particles. Therefore, to alleviate this issue and to further
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enhance the learning diversity of particles, we first randomly samples two values v1 and v2
from the Gaussian distribution Gaussian (1.49618, 0.1) as follows:{

v1 = Gaussian(1.49618, 0.1)
v2 = Gaussian(1.49618, 0.1)

(7)

Then, we set c1 and c2 based on the sampled two values as follows:{
c1 = max(v1, v2)
c2 = min(v1, v2)

(8)

First, the Gaussian distribution Gaussian (1.49618, 0.1) with the mean value set as the
classical setting of c1 and c2 and the standard deviation set as a small value allows the
sampled two values to be close to the classical setting but with a small difference. In this
way, the diversity of the settings of c1 and c2 is slightly increased, resulting in a slight
improvement in the learning diversity of particles.

Second, between the two sampled values, the larger one is set to c1, while the smaller
one is set to c2. This is because, as aforementioned in Equation (4), the first guiding exemplar
(the best one among the triad pbests) is expectedly better than the second guiding exemplar
(the mean position of the triad pbests), and thus we can consider that the first exemplar is
responsible for the convergence, while the second exemplar takes charge of the diversity.
Since the second exemplar is the mean position of the triad pbests, which is expectedly
different from the first exemplar, we set c1 with the larger sampled value and c2 with the
smaller value to guarantee that the updated particle learns more from the first exemplar,
so that it can approach promising areas fast without serious loss of diversity by learning
slightly less from the second exemplar.

Lastly, experiments conducted in Section 4.3 will demonstrate the effectiveness of the
proposed dynamic acceleration coefficient strategy.

3.3. Historical Information Utilization

In PSO, the obsolete historical information may also contain useful evolutionary
information. As a consequence, many studies [2,58] have maintained an additional archive
to store historical information to evolve the swarm. Inspired from this, this paper also
maintains an archive of size PS/2 to store the obsolete personal best positions of particles.

Specifically, during the evolution, once a particle discovers a better position, its old
personal best position is first inserted into the archive and then is replaced by the new
better position. Once the archive is full, namely when its size exceeds PS/2, an obsolete
personal best position is inserted into the archive by randomly replacing a solution in the
archive.

During the update of particles, the archive along with the personal best positions of
all particles are used to construct the triad topology structure of each particle. In particular,
when the stagnation times of the personal best position of one particle exceeds stopmax,
two different personal best positions are randomly selected from the archive and those of
the other particles to rebuild the triad topology structure of this particle. In this way, the
historical evolutionary information is employed to evolve the swarm.

Due to the utilization of historical information, the number of candidates used to
build the triad topology of each particle is increased and thus the learning diversity of
particles can be improved largely, which is beneficial for the swarm to escape from local
areas. Experiments conducted in Section 4.3 will demonstrate the effectiveness of this
additional archive.

3.4. Random Restart Strategy

To further enhance the chance of escaping from local areas for the swarm, this paper
further proposes a random restart strategy to introduce initial solutions. Specifically, given
a small restart probability pm, during the evolution, in each generation, when a uniformly
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sampled value within [0, 1] is smaller than pm, a feasible solution is randomly initialized
within the range of variables. Then, instead of inserting this solution into the current
swarm as noted in existing studies [59–63], this paper inserts this initialized solution into
the archive. If the archive is full, it randomly replaces a solution in the archive.

In particular, such a restart strategy with the initialized solution inserted in the archive
could not seriously break the convergence of the swarm but could improve the learning
diversity of particles effectively. Most existing studies [60–63] only replace one particle
in the current swarm with the initialized solution. Such a strategy usually leads to a
very small improvement in the learning diversity and learning effectiveness of particles.
This is because the personal best positions of all particles remain unchanged, leading to
the learning effectiveness of most particles not improving. However, in our strategy, the
randomly initialized solution is inserted into the archive, which is then used to build the
triad topology structure of each particle. Therefore, we can see that once the initialized
solution is selected to build the triad structure of one particle, at least the second exemplar
(namely the mean position of the triad positions in the topology) is changed. Consequently,
the learning diversity of particles can be effectively improved, which is beneficial for the
swarm to escape from local areas. Experiments conducted in Section 4.3 will demonstrate
the effectiveness of this restart strategy.

3.5. Overall Procedure

Integrating the above components together, the overall procedure of the developed
STTPSO is shown in Algorithm 1. Specifically, as shown in Lines 1 to 4, the triad topology
is constructed for each of PS particles after they are randomly initialized and evaluated.
Moreover, the stagnation time of each particle is initialized as 0. Then, the algorithm goes
into the main iteration (Lines 5~27). First, for each particle xi, the inertia weight w is
computed (Line 7) and then the acceleration coefficients c1 and c2 are set based on Gaussian
distribution (Lines 8–11). Subsequently, the particle is updated, and then the personal
best position (pbesti) of this particle is updated with its stagnation time stopi updated as
well (Lines 12–19). Once the stagnation time of particle xi reaches the allowed maximum
stagnation time stopmax, two different personal best positions are randomly selected from
those of all particles and the archive to rebuild the triad topology structure (Lines 20~22).
After all particles are updated, the random restart strategy is conditionally triggered to
randomly insert an initialized solution into the archive (Lines 24~26). The above main
iteration proceeds until the maximum number of fitness evaluations is exhausted and at
the end of the program, the global best position is obtained as the final output.

From Algorithm 1, it can be observed that during each iteration, O(PS) is needed to
compute the parameters such as w, c1 and c2. Following this, O(PS) is needed to obtain the
best one among the triad pbests and O(PS × D) to calculate the mean position of the triad
pbests for all particles. Then, O(PS × D) is used to update particles. During the update
of the archive, O(PS × D) is needed in each generation. Overall, the time complexity of
STTPSO is O(PS × D), which is the same as the classical PSO. Therefore, we can see that
STTPSO remains as efficient as the classical PSO.
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Algorithm 1: The pseudocode of STTPSO

Input: swarm size PS, maximum fitness evaluations FEmax, maximum stagnation times stopmax,
restart probability pm;

1: Initialize PS particles randomly and calculate their fitness;
2: Set fes = PS, and set the archive empty;
3: Randomly select two different personal best positions (pbestr1 and pbestr2) from the

personal best positions of
other particles and the archive for each particle to form the associated triad topology;
4: Set the stagnation time stopi = 0 (1 ≤ i ≤ PS) for each particle;
5: While (fes ≤ FEmax) do
6: For i = 1:PS do
7: Compute w according to Equation (3);
8: Randomly sample c1 and c2 from Gaussian(1.49618,0.1);
9: If c1 < c2 then
10: Swap c1 and c2;
11: End If
12: Update xi and vi according to Equations (2) and (4);
13: Calculate the fitness of the updated xi: f (xi) and fes + = 1;
14: If f (xi) < f (pbesti) then
15: Put pbesti in the archive and set stopi = 0;
16: pbesti = xi;
17: Else
18: stopi += 1;
19: End If
20: If stopi >= stopmax then

Reselect two different personal best positions (pbestr1 and pbestr2) from those of
other particles and

21: the archive for xi to form the associated triad topology;
22: End If
23: End For
24: If rand(0, 1) < pm then
25: Randomly initialize a solution and store it into the archive;
26: End If
27: End While
28: Obtain the global best solution gbest and its fitness f (gbest);

Output: f (gbest) and gbest

4. Experiments

This section mainly verifies the effectiveness of the proposed STTPSO by extensive
experiments conducted on the widely used CEC 2017 benchmark function set [44]. Specifi-
cally, this benchmark set contains 29 optimization problems with four categories, namely
unimodal functions, simple multimodal functions, hybrid functions, and composition
functions. Compared with the former two categories of optimization problems, the latter
two kinds of optimization problems are more difficult to optimize.

4.1. Experimental Setup

Firstly, in order to verify the effectiveness of STTPSO effectively, we select seven
most advanced PSO variants as the compared methods, namely DNSPSO [28], XPSO [23],
DPLPSO [45], TCSPSO [19], GLPSO [18], HCLPSO [25] and CLPSO [17]. DNSPSO, XPSO
and DPLPSO are state-of-the-art topology-based PSO variants, while TCSPSO, GLPSO,
HCLPSO and CLPSO are state-of-the-art exemplar construction based PSO variants.

Secondly, in order to verify the optimization performance of STTPSO in a comprehen-
sive way, we conduct comparative experiments on the CEC 2017 benchmark set with three
dimension sizes, namely 30-D, 50-D and 100-D respectively. For the sake of fairness, the
maximum number of function evaluation times is set as 10,000 × D for all algorithms.
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Thirdly, for fair comparisons, except for the population size, we adopt the parameter
settings for all key parameters in the compared PSO variants as recommended in the
associated papers. As for the population size, due to its sensitivity to optimization problems,
we fine-tune its settings for all compared PSO variants. After preliminary parameter fine-
tuning experiments, Table 2 lists the specific parameter settings of all algorithms.

Table 2. Parameter settings of the proposed STTPSO and the compared algorithms.

Algorithm D Parameter Settings

STTPSO
30 PS = 300 AS = PS/2; w = 0.9~0.4;

c~N(1.49618,0.1); pm = 0.01;
stopmax = 30

50 PS = 300

100 PS = 300

DNSPSO
30 PS = 50

w = 0.4~0.9; k = 5; F = 0.5; CR = 0.9;50 PS = 50

100 PS = 60

XPSO
30 PS = 100

η = 0.2; Stagmax = 5; p = 0.5; σ = 0.150 PS = 150

100 PS = 150

TCSPSO
30 PS = 50

w = 0.9~0.4; c1 = c2 = 250 PS = 50

100 PS = 50

GLPSO
30 PS = 40

w = 0.7298; c = 1.49618; pm = 0.1;
sg = 7

50 PS = 40

100 PS = 50

HCLPSO
30 PS = 160

w = 0.99~0.2; c1 = 2.5~0.5;
c2 = 0.5~2.5; c = 3~1.5

50 PS = 180

100 PS = 180

DPLPSO
30 PS = 40

c1 = c2 = 2; L = 5050 PS = 40

100 PS = 40

CLPSO
30 PS = 40

Pc = 0.05~0.550 PS = 40

100 PS = 40

Finally, in order to comprehensively evaluate the optimization performance of all algo-
rithms, we independently execute each algorithm 30 times and use the median, the mean
and the standard deviation to measure the optimization performance of each algorithm. To
distinguish the statistical significance with respect to the performance difference between
two algorithms, the Wilcoxon rank sum test at the significance level of 0.05 is conducted.
Furthermore, to obtain the overall performance of each algorithm on the whole benchmark
set, the Friedman test is conducted to obtain the overall ranks of all algorithms on the
whole benchmark set.

4.2. Comparison with State-of-the-Art PSO Variants

In this section, we conduct extensive comparative experiments on the CEC 2017
benchmark set with the three dimension sizes to compare STTPSO with the seven state-
of-art PSO variants. Tables 3–5, respectively, show the comparison results between the
proposed STTPSO and the seven PSO variants on the 30-D, the 50-D and the 100-D CEC 2017
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benchmark functions. In these tables, the symbols ‘+’, ‘−’ and ‘=‘ indicate that the proposed
STTPSO is significantly superior to, significantly inferior to and roughly equivalent to the
associated compared algorithm on the associated functions. As shown in the second to
last row of each table, ‘w/t/l’ count the number of functions where the proposed STTPSO
achieves significantly better performance, obtains roughly equivalent performance, and
exhibits significantly worse performance than the compared algorithms, respectively. In
fact, they are the numbers of ‘+’, ‘=‘ and ‘−’. In the last row of each table, the average rank
of each algorithm obtained by the Friedman test is displayed. Moreover, the statistical
comparison results between the proposed STTPSO and the seven state-of-the-art PSO
variants on the CEC 2017 benchmark set with different dimension sizes in terms of “w/t/l”
are summarized in Table 6.

As shown in Table 3, the comparison results on the 30-D CEC 2017 benchmark func-
tions are summarized below:

(1) According to the Friedman test results as shown in the last row, STTPSO achieves
the lowest rank among all eight algorithms and its rank value (1.86) is much smaller
than those (at least 2.55) of the seven compared algorithms. This demonstrates that
STTPSO achieves the best overall performance on the 30-D CEC 2017 benchmark
functions, and presents significant superiority over the seven compared algorithms.

(2) The second last row of Table 2 shows that STTPSO is significantly superior to the
compared algorithms on at least 21 problems except for XPSO, and only presents
inferior performance on, at most, five problems. Compared with XPSO, STTPSO
obtains significantly better performance on 18 problems, while only performing worse
than XPSO on three problems.

(3) In terms of the comparison results on different types of optimization problems,
STTPSO achieves highly competitive performance with all the compared algorithms
on the two unimodal problems. In particular, it shows significant dominance to
DNSPSO and DPLPSO both on the two problems. In terms of the six simple multi-
modal problems, except for DNSPSO, STTPSO shows significantly better performance
than the other six compared algorithms on all these problems. Compared with
DNSPSO, STTPSO presents significant superiority on five problems and shows in-
feriority on only one problem. Regarding the 10 hybrid problems, STTPSO shows
much better performance than DPLPSO on all 10 problems. Compared with DNSPSO,
TCSPSO, and HCLPSO, STTPSO obtains significantly better performance on seven,
six, and seven problems, respectively, and only shows inferiority to them on, at most,
two problems. In comparison with XPSO, GLPSO, and CLPSO, STTPSO achieves no
worse performance on at least seven problems and displays inferiority to them on, at
most, three problems. Concerning the 11 composition problems, STTPSO outperforms
the seven compared algorithms on at least nine problems, and only shows inferiority
on, at most, two problems. In particular, STTPSO significantly outperforms both
TCSPSO and GLPSO on all these problems and obtains much better performance
than both HCLPSO and DPLPSO on 10 problems with no inferiority to them on all
the 11 problems. Overall, it is demonstrated that STTPSO shows promise in solving
various kinds of problems and particularly obtains good performance on complicated
problems, such as multimodal problems, hybrid problems, and composition problems.
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Table 3. Comparison results between the proposed STTPSO and the 7 state-of-the-art and popular PSO variants on the 30-D CEC 2017 benchmark functions. The
highlighted p-values means that the proposed STTPSO is significantly better than the associated compared algorithms on the corresponding problems.

f Category Quality STTPSO DNSPSO XPSO TCSPSO GLPSO HCLPSO DPLPSO CLPSO

f 1

Unimodal
Functions

Median 1.19 × 103 1.95 × 105 2.26 × 103 3.20 × 103 2.30 × 103 5.49 × 103 2.64 × 109 1.52 × 102

Mean 2.10 × 103 2.11 × 105 4.05 × 103 3.66 × 103 3.06 × 103 8.65 × 103 2.87 × 109 3.88 × 102

Std 2.28 × 103 1.30 × 105 4.72 × 103 4.08 × 103 2.42 × 103 7.34 × 103 1.11 × 109 7.31 × 102

p-value - 1.83 × 10−6+ 2.17 × 10−1= 1.95 × 10−1= 5.85 × 10−2= 8.55 × 10−5+ 1.83 × 10−6+ 7.84 × 10−5−

f 3

Median 1.52 × 104 1.51 × 105 6.26 × 10−2 9.94 × 103 1.14 × 10−13 4.54 × 101 3.91 × 104 4.30 × 104

Mean 1.53 × 104 1.54 × 105 7.91 × 10−1 1.15 × 104 1.33 × 10−13 6.87 × 101 3.87 × 104 4.41 × 104

Std 4.39 × 103 3.37 × 104 2.00 × 100 3.68 × 103 5.36 × 10−14 8.17 × 101 8.36 × 103 1.00 × 104

p-value - 1.83 × 10−6+ 1.83 × 10−6− 2.51 × 10−4− 1.83 × 10−6− 1.83 × 10−6− 1.83 × 10−6+ 1.83 × 10−6+

f 1–3 w/t/l - 2/0/0 0/1/1 0/1/1 0/1/1 1/0/1 2/0/0 1/0/1

f 4

Simple
Multimodal
Functions

Median 8.47 × 101 2.54 × 101 1.24 × 102 1.30 × 102 1.47 × 102 8.56 × 101 7.62 × 102 9.09 × 101

Mean 8.48 × 101 2.56 × 101 1.20 × 102 1.32 × 102 1.48 × 102 8.73 × 101 7.99 × 102 9.12 × 101

Std 3.74 × 10−1 1.07 × 100 2.71 × 101 4.84 × 101 4.27 × 101 7.92 × 100 1.86 × 102 1.57 × 100

p-value - 1.83 × 10−6− 3.56 × 10−5+ 3.89 × 10−5+ 4.97 × 10−6+ 7.84 × 10−5+ 1.83 × 10−6+ 1.82 × 10−6+

f 5

Median 4.98 × 100 2.04 × 102 4.18 × 101 8.56 × 101 6.77 × 101 6.45 × 101 2.00 × 102 7.66 × 101

Mean 4.71 × 100 2.03 × 102 4.38 × 101 8.92 × 101 6.68 × 101 6.77 × 101 1.93 × 102 7.52 × 101

Std 1.96 × 100 1.25 × 101 1.58 × 101 2.54 × 101 1.96 × 101 1.67 × 101 3.28 × 101 6.69 × 100

p-value - 1.83 × 10−6+ 1.83 × 10−6+ 1.83 × 10−6+ 1.82 × 10−6+ 1.82 × 10−6+ 1.83 × 10−6+ 1.83 × 10−6+

f 6

Median 1.14 × 10−13 1.87 × 10−1 3.82 × 10−3 8.01 × 10−1 6.34 × 10−3 1.62 × 10−4 2.97 × 101 2.66 × 10−6

Mean 1.12 × 10−7 1.91 × 10−1 1.50 × 10−2 1.04 × 100 9.69 × 10−3 2.41 × 10−3 2.98 × 101 2.86 × 10−6

Std 2.91 × 10−7 5.92 × 10−2 3.82 × 10−2 1.15 × 100 8.77 × 10−3 5.85 × 10−3 5.82 × 100 1.90 × 10−6

p-value - 1.83 × 10−6+ 1.83 × 10−6+ 1.82 × 10−6+ 1.83 × 10−6+ 1.83 × 10−6+ 1.82 × 10−6+ 1.83 × 10−6+
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Table 3. Cont.

f Category Quality STTPSO DNSPSO XPSO TCSPSO GLPSO HCLPSO DPLPSO CLPSO

f 7

Median 3.44 × 101 2.36 × 102 7.94 × 101 1.45 × 102 9.75 × 101 1.06 × 102 2.90 × 102 9.23 × 101

Mean 3.46 × 101 2.33 × 102 8.17 × 101 1.42 × 102 9.86 × 101 1.01 × 102 2.88 × 102 9.05 × 101

Std 1.12 × 100 1.69 × 101 1.81 × 101 2.87 × 101 1.53 × 101 1.86 × 101 2.45 × 101 7.88 × 100

p-value - 1.83 × 10−6+ 1.83 × 10−6+ 1.83 × 10−6+ 1.83 × 10−6+ 1.83 × 10−6+ 1.83 × 10−6+ 1.83 × 10−6+

f 8

Median 3.98 × 100 2.01 × 102 3.83 × 101 9.55 × 101 5.97 × 101 5.66 × 101 1.94 × 102 8.09 × 101

Mean 4.15 × 100 2.02 × 102 3.98 × 101 9.33 × 101 6.08 × 101 6.35 × 101 1.90 × 102 8.18 × 101

Std 1.67 × 100 1.03 × 101 1.37 × 101 2.22 × 101 1.65 × 101 2.08 × 101 3.20 × 101 9.86 × 100

p-value - 1.82 × 10−6+ 1.82 × 10−6+ 1.83 × 10−6+ 1.83 × 10−6+ 1.83 × 10−6+ 1.82 × 10−6+ 1.83 × 10−6+

f 9

Median 5.69 × 10−14 1.50 × 100 1.45 × 100 3.01 × 102 5.98 × 101 4.90 × 101 1.27 × 103 6.58 × 102

Mean 5.69 × 10−14 2.09 × 100 2.73 × 100 3.85 × 102 7.13 × 101 8.90 × 101 1.50 × 103 6.76 × 102

Std 5.69 × 10−14 1.39 × 100 3.44 × 100 3.36 × 102 4.83 × 101 1.49 × 102 6.80 × 102 2.80 × 102

p-value - 1.83 × 10−6+ 1.82 × 10−6+ 1.83 × 10−6+ 1.83 × 10−6+ 1.83 × 10−6+ 1.82 × 10−6+ 1.83 × 10−6+

f 4–9 w/t/l - 5/0/1 6/0/0 6/0/0 6/0/0 6/0/0 6/0/0 6/0/0

f 10

Hybrid
Functions

Median 1.81 × 103 6.21 × 103 2.80 × 103 2.98 × 103 3.26 × 103 2.87 × 103 6.39 × 103 3.00 × 103

Mean 2.82 × 103 5.90 × 103 2.62 × 103 2.97 × 103 3.23 × 103 2.90 × 103 6.33 × 103 2.94 × 103

Std 1.82 × 103 1.01 × 103 6.13 × 102 4.22 × 102 8.64 × 102 5.17 × 102 4.47 × 102 2.77 × 102

p-value - 4.50 × 10−6+ 5.37 × 10−1= 7.89 × 10−1= 2.41 × 10−1= 8.69 × 10−1= 1.83 × 10−6+ 8.53 × 10−1=

f 11

Median 1.79 × 101 9.12 × 101 8.01 × 101 1.16 × 102 7.24 × 101 1.09 × 102 4.10 × 102 1.21 × 102

Mean 2.79 × 101 9.19 × 101 8.63 × 101 1.18 × 102 7.82 × 101 1.08 × 102 4.23 × 102 1.16 × 102

Std 2.33 × 101 8.54 × 100 4.60 × 101 4.27 × 101 3.83 × 101 4.49 × 101 1.19 × 102 1.72 × 101

p-value - 1.83 × 10−6+ 9.77 × 10−6+ 4.50 × 10−6+ 1.68 × 10−5+ 3.03 × 10−6+ 1.83 × 10−6+ 2.02 × 10−6+

f 12

Median 5.38 × 104 5.52 × 107 2.64 × 104 1.86 × 105 1.13 × 106 2.39 × 105 1.55 × 108 1.74 × 106

Mean 6.09 × 104 6.25 × 107 1.93 × 105 5.12 × 105 3.35 × 106 2.55 × 105 1.77 × 108 2.01 × 106

Std 3.97 × 104 2.90 × 107 5.57 × 105 6.68 × 105 4.39 × 106 1.70 × 105 9.46 × 107 1.11 × 106

p-value - 1.83 × 10−6+ 2.17 × 10−1= 1.36 × 10−5+ 1.72 × 10−5+ 8.88 × 10−6+ 1.83 × 10−6+ 1.83 × 10−6+
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Table 3. Cont.

f Category Quality STTPSO DNSPSO XPSO TCSPSO GLPSO HCLPSO DPLPSO CLPSO

f 13

Median 5.18 × 103 1.32 × 106 7.54 × 103 8.24 × 103 7.23 × 103 6.10 × 104 6.71 × 106 3.39 × 103

Mean 1.10 × 104 1.52 × 106 9.83 × 103 3.28 × 105 1.19 × 104 3.80 × 104 2.47 × 107 3.40 × 103

Std 1.11 × 104 7.16 × 105 1.02 × 104 1.14 × 106 1.45 × 104 2.64 × 104 7.42 × 107 1.42 × 103

p-value - 1.83 × 10−6+ 9.34 × 10−1= 4.59 × 10−1= 1.00 × 100= 2.26 × 10−5+ 1.83 × 10−6+ 1.14 × 10−2−

f 14

Median 3.89 × 103 1.90 × 102 3.75 × 103 3.49 × 104 1.66 × 103 1.43 × 104 1.20 × 105 4.42 × 104

Mean 6.63 × 103 1.93 × 102 5.36 × 103 5.20 × 104 3.38 × 104 1.55 × 104 1.66 × 105 4.93 × 104

Std 6.41 × 103 2.22 × 101 4.38 × 103 7.90 × 104 7.81 × 104 9.99 × 103 2.35 × 105 3.41 × 104

p-value - 1.83 × 10−6− 2.49 × 10−1= 5.93 × 10−4+ 9.51 × 10−1= 2.51 × 10−4+ 4.08 × 10−6+ 4.50 × 10−6+

f 15

Median 3.91 × 103 4.24 × 104 1.61 × 103 1.08 × 104 5.46 × 103 8.96 × 103 1.28 × 104 4.08 × 102

Mean 7.84 × 103 4.70 × 104 3.59 × 103 1.33 × 104 8.80 × 103 1.35 × 104 2.61 × 104 4.59 × 102

Std 8.32 × 103 2.04 × 104 4.74 × 103 1.04 × 104 8.48 × 103 1.22 × 104 3.16 × 104 2.45 × 102

p-value - 1.83 × 10−6+ 8.04 × 10−2= 3.41 × 10−2+ 7.89 × 10−1= 4.38 × 10−2+ 2.33 × 10−3+ 3.34 × 10−6−

f 16

Median 2.22 × 101 1.88 × 103 5.70 × 102 8.65 × 102 8.49 × 102 7.46 × 102 1.57 × 103 6.61 × 102

Mean 5.93 × 101 1.87 × 103 5.33 × 102 8.54 × 102 8.21 × 102 7.11 × 102 1.52 × 103 6.24 × 102

Std 6.79 × 101 1.61 × 102 1.96 × 102 2.56 × 102 2.22 × 102 2.08 × 102 2.55 × 102 1.64 × 102

p-value - 1.83 × 10−6+ 1.83 × 10−6+ 1.83 × 10−6+ 1.83 × 10−6+ 1.83 × 10−6+ 1.83 × 10−6+ 1.83 × 10−6+

f 17

Median 4.48 × 101 8.55 × 102 1.64 × 102 3.18 × 102 2.02 × 102 3.12 × 102 4.36 × 102 1.96 × 102

Mean 4.69 × 101 8.68 × 102 1.45 × 102 2.96 × 102 2.28 × 102 3.22 × 102 4.31 × 102 1.88 × 102

Std 1.01 × 101 1.21 × 102 8.08 × 101 1.44 × 102 1.38 × 102 1.54 × 102 1.50 × 102 6.59 × 101

p-value - 1.83 × 10−6+ 4.97 × 10−6+ 1.83 × 10−6+ 3.34 × 10−6+ 1.83 × 10−6+ 1.83 × 10−6+ 1.83 × 10−6+

f 18

Median 1.87 × 105 1.88 × 105 9.24 × 104 1.41 × 105 1.68 × 104 1.90 × 105 8.67 × 105 1.87 × 105

Mean 2.64 × 105 2.16 × 105 1.46 × 105 2.78 × 105 1.23 × 105 2.05 × 105 1.03 × 106 2.46 × 105

Std 2.51 × 105 8.08 × 104 1.27 × 105 2.93 × 105 4.87 × 105 1.47 × 105 8.56 × 105 1.55 × 105

p-value - 1.00 × 100= 5.58 × 10−2= 9.18 × 10−1= 1.20 × 10−4− 9.34 × 10−1= 6.60 × 10−5+ 9.18 × 10−1=
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Table 3. Cont.

f Category Quality STTPSO DNSPSO XPSO TCSPSO GLPSO HCLPSO DPLPSO CLPSO

f 19

Median 5.77 × 103 1.95 × 103 3.65 × 103 7.66 × 103 2.99 × 103 1.31 × 104 1.52 × 104 1.05 × 102

Mean 1.10 × 104 2.25 × 103 4.56 × 103 1.49 × 104 7.89 × 103 1.63 × 104 3.47 × 104 1.35 × 102

Std 1.32 × 104 1.04 × 103 4.83 × 103 1.58 × 104 1.05 × 104 1.76 × 104 7.74 × 104 8.36 × 101

p-value - 2.86 × 10−3− 3.78 × 10−2− 3.24 × 10−1= 3.34 × 10−1= 2.94 × 10−1= 1.80 × 10−2+ 1.83 × 10−6−
f 10–19 w/t/l - 7/1/2 3/6/1 6/4/0 4/5/1 7/3/0 10/0/0 5/2/3

f Category Quality STTPSO DNSPSO XPSO TCSPSO GLPSO HCLPSO DPLPSO CLPSO

f 20

Composition
Functions

Median 3.72 × 101 3.50 × 102 1.74 × 102 3.84 × 102 1.96 × 102 2.13 × 102 3.66 × 102 1.94 × 102

Mean 4.65 × 101 3.87 × 102 1.84 × 102 3.70 × 102 2.16 × 102 2.09 × 102 4.00 × 102 1.89 × 102

Std 3.35 × 101 1.20 × 102 6.75 × 101 1.39 × 102 1.01 × 102 1.04 × 102 1.28 × 102 6.57 × 101

p-value - 1.83 × 10−6+ 2.48 × 10−6+ 1.83 × 10−6+ 3.69 × 10−6+ 5.48 × 10−6+ 1.83 × 10−6+ 3.69 × 10−6+

f 21

Median 2.12 × 102 4.04 × 102 2.35 × 102 2.81 × 102 2.66 × 102 2.75 × 102 4.02 × 102 2.88 × 102

Mean 2.13 × 102 4.04 × 102 2.38 × 102 2.84 × 102 2.67 × 102 2.76 × 102 4.00 × 102 2.83 × 102

Std 3.76 × 100 9.54 × 100 1.05 × 101 2.25 × 101 2.07 × 101 1.25 × 101 2.25 × 101 2.53 × 101

p-value - 1.83 × 10−6+ 1.83 × 10−6+ 1.83 × 10−6+ 1.82 × 10−6+ 1.82 × 10−6+ 1.82 × 10−6+ 2.47 × 10−6+

f 22

Median 1.00 × 102 6.38 × 103 1.00 × 102 1.05 × 102 1.00 × 102 1.02 × 102 5.79 × 102 2.06 × 102

Mean 1.00 × 102 6.29 × 103 4.30 × 102 1.70 × 103 1.02 × 102 8.37 × 102 5.92 × 102 8.25 × 102

Std 0.00 × 100 7.48 × 102 9.91 × 102 1.75 × 103 3.08 × 100 1.49 × 103 1.44 × 102 1.18 × 103

p-value - 1.82 × 10−6+ 3.82 × 10−3+ 1.43 × 10−4+ 1.63 × 10−3+ 4.67 × 10−4+ 1.83 × 10−6+ 1.83 × 10−6+

f 23

Median 3.85 × 102 5.83 × 102 3.99 × 102 4.44 × 102 4.26 × 102 4.53 × 102 6.77 × 102 4.46 × 102

Mean 3.86 × 102 5.87 × 102 3.98 × 102 4.47 × 102 4.33 × 102 4.51 × 102 6.84 × 102 4.45 × 102

Std 7.70 × 100 3.62 × 101 1.15 × 101 2.85 × 101 3.02 × 101 2.02 × 101 4.57 × 101 1.09 × 101

p-value - 1.83 × 10−6+ 6.89 × 10−4+ 1.82 × 10−6+ 2.24 × 10−6+ 1.83 × 10−6+ 1.83 × 10−6+ 1.83 × 10−6+
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Table 3. Cont.

f Category Quality STTPSO DNSPSO XPSO TCSPSO GLPSO HCLPSO DPLPSO CLPSO

f 24

Median 4.60 × 102 6.68 × 102 4.70 × 102 5.37 × 102 4.88 × 102 5.35 × 102 7.32 × 102 5.60 × 102

Mean 4.61 × 102 6.82 × 102 4.73 × 102 5.38 × 102 4.99 × 102 5.39 × 102 7.37 × 102 5.60 × 102

Std 8.66 × 100 4.48 × 101 2.40 × 101 5.08 × 101 3.90 × 101 2.34 × 101 3.79 × 101 1.66 × 101

p-value - 1.83 × 10−6+ 1.28 × 10−2+ 2.24 × 10−6+ 2.06 × 10−5+ 1.83 × 10−6+ 1.82 × 10−6+ 1.83 × 10−6+

f 25

Median 3.87 × 102 3.79 × 102 3.91 × 102 4.14 × 102 4.09 × 102 3.89 × 102 6.00 × 102 3.89 × 102

Mean 3.87 × 102 3.78 × 102 3.92 × 102 4.12 × 102 4.04 × 102 3.89 × 102 6.18 × 102 3.89 × 102

Std 2.06 × 10−1 1.04 × 100 4.86 × 100 1.56 × 101 1.24 × 101 8.23 × 100 8.24 × 101 5.62 × 10−1

p-value - 1.77 × 10−6− 6.65 × 10−6+ 1.83 × 10−6+ 1.82 × 10−6+ 1.74 × 10−2+ 1.83 × 10−6+ 1.78 × 10−6+

f 26

Median 1.47 × 103 3.28 × 103 3.00 × 102 2.32 × 103 1.94 × 103 2.04 × 103 1.61 × 103 1.85 × 103

Mean 1.49 × 103 3.45 × 103 6.97 × 102 2.23 × 103 1.92 × 103 1.82 × 103 1.95 × 103 1.58 × 103

Std 1.09 × 102 4.89 × 102 6.06 × 102 6.97 × 102 4.77 × 102 6.36 × 102 1.02 × 103 4.70 × 102

p-value - 1.83 × 10−6+ 3.56 × 10−5− 1.97 × 10−4+ 1.67 × 10−4+ 1.52 × 10−2+ 1.92 × 10−1= 1.88 × 10−1=

f 27

Median 5.13 × 102 5.00 × 102 5.36 × 102 5.61 × 102 5.48 × 102 5.14 × 102 8.09 × 102 5.11 × 102

Mean 5.18 × 102 5.00 × 102 5.35 × 102 5.61 × 102 5.50 × 102 5.16 × 102 8.19 × 102 5.10 × 102

Std 1.40 × 101 0.00 × 100 1.10 × 101 1.95 × 101 1.28 × 101 1.59 × 101 5.73 × 101 4.56 × 100

p-value - 2.24 × 10−6− 9.31 × 10−5+ 2.87 × 10−6+ 2.48 × 10−6+ 8.05 × 10−1= 1.82 × 10−6+ 1.70 × 10−2−

f 28

Median 4.08 × 102 5.00 × 102 4.03 × 102 4.40 × 102 4.72 × 102 4.55 × 102 8.24 × 102 4.74 × 102

Mean 3.79 × 102 5.00 × 102 3.86 × 102 4.51 × 102 4.51 × 102 4.48 × 102 8.80 × 102 4.83 × 102

Std 5.79 × 101 0.00 × 100 6.85 × 101 5.21 × 101 7.00 × 101 3.48 × 101 1.61 × 102 2.88 × 101

p-value - 1.81 × 10−6+ 7.76 × 10−1= 3.73 × 10−4+ 1.72 × 10−3+ 1.54 × 10−4+ 1.83 × 10−6+ 2.02 × 10−6+

f 29

Median 4.84 × 102 1.66 × 103 5.66 × 102 8.62 × 102 7.74 × 102 6.92 × 102 1.34 × 103 6.58 × 102

Mean 5.11 × 102 1.56 × 103 5.88 × 102 9.05 × 102 8.17 × 102 6.98 × 102 1.34 × 103 6.46 × 102

Std 7.29 × 101 2.89 × 102 9.03 × 101 1.86 × 102 2.37 × 102 1.56 × 102 2.29 × 102 7.20 × 101

p-value - 1.83 × 10−6+ 2.95 × 10−4+ 1.83 × 10−6+ 1.72 × 10−5+ 1.30 × 10−5+ 1.83 × 10−6+ 7.33 × 10−6+
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Table 3. Cont.

f Category Quality STTPSO DNSPSO XPSO TCSPSO GLPSO HCLPSO DPLPSO CLPSO

f 30

Median 4.19 × 103 4.00 × 104 8.04 × 103 1.20 × 104 9.45 × 103 7.39 × 103 1.96 × 106 1.27 × 104

Mean 5.03 × 103 6.20 × 104 9.78 × 103 1.80 × 104 2.08 × 104 8.59 × 103 2.55 × 106 1.37 × 104

Std 2.02 × 103 5.12 × 104 6.72 × 103 1.77 × 104 2.96 × 104 4.52 × 103 1.97 × 106 3.99 × 103

p-value - 1.83 × 10−6+ 4.36 × 10−4+ 4.08 × 10−6+ 1.88 × 10−5+ 1.54 × 10−3+ 1.83 × 10−6+ 2.02 × 10−6+

f 20–30 w/t/l - 9/0/2 9/1/1 11/0/0 11/0/0 10/1/0 10/1/0 9/1/1

w/t/l - 23/1/5 18/8/3 23/5/1 21/6/2 24/4/1 28/1/0 21/3/5

rank 1.86 6.00 2.55 5.48 4.00 4.41 7.45 4.24

Table 4. Comparison results between the proposed STTPSO and the 7 state-of-the-art and popular PSO variants on the 50-D CEC 2017 benchmark functions. The
highlighted p-values means that the proposed STTPSO is significantly better than the associated compared algorithms on the corresponding problems.

f Category Quality STTPSO DNSPSO XPSO TCSPSO GLPSO HCLPSO DPLPSO CLPSO

f 1

Unimodal
Functions

Median 2.89 × 103 5.13 × 103 8.51 × 102 5.47 × 103 3.11 × 103 9.83 × 103 1.92 × 1010 2.06 × 103

Mean 4.33 × 103 8.53 × 103 3.66 × 103 2.84 × 106 2.76 × 106 7.15 × 107 1.84 × 1010 2.59 × 103

Std 4.38 × 103 1.13 × 104 5.11 × 103 1.52 × 107 1.37 × 107 2.72 × 108 4.36 × 109 1.88 × 103

p-value - 2.02 × 10−1= 4.97 × 10−1= 2.02 × 10−1= 7.69 × 10−2= 2.51 × 10−4+ 1.83 × 10−6+ 2.67 × 10−1=

f 3

Median 5.80 × 104 3.84 × 105 4.35 × 103 5.55 × 104 4.55E−13 4.71 × 103 1.23 × 105 1.31 × 105

Mean 5.85 × 104 3.82 × 105 4.72 × 103 5.83 × 104 3.92E−12 5.11 × 103 1.22 × 105 1.31 × 105

Std 8.60 × 103 6.15 × 104 1.64 × 103 9.39 × 103 1.49E−11 2.41 × 103 1.62 × 104 2.22 × 104

p-value - 1.83 × 10−6+ 1.83 × 10−6− 5.51 × 10−1= 1.83 × 10−6− 1.83 × 10−6− 1.83 × 10−6+ 1.83 × 10−6+

f 1–3 w/t/l - 1/1/0 0/1/1 0/2/0 0/1/1 1/0/1 2/0/0 1/1/0

f 4
Simple

Multimodal
Functions

Median 1.75 × 102 4.57 × 101 2.46 × 102 2.88 × 102 3.22 × 102 1.61 × 102 3.81 × 103 1.90 × 102

Mean 1.69 × 102 5.24 × 101 2.33 × 102 2.93 × 102 3.29 × 102 1.48 × 102 4.02 × 103 1.87 × 102

Std 3.35 × 101 2.36 × 101 5.15 × 101 9.09 × 101 8.97 × 101 5.23 × 101 1.06 × 103 2.00 × 101

p-value - 2.24 × 10−6− 5.08 × 10−5+ 6.65 × 10−6+ 2.02 × 10−6+ 9.99 × 10−2= 1.83 × 10−6+ 1.90 × 10−2+

f 5

Median 8.96 × 100 4.11 × 102 8.21 × 101 1.87 × 102 1.47 × 102 1.65 × 102 4.58 × 102 2.02 × 102

Mean 9.09 × 100 4.12 × 102 8.33 × 101 1.91 × 102 1.42 × 102 1.66 × 102 4.46 × 102 1.98 × 102

Std 2.70 × 100 1.88 × 101 1.50 × 101 3.82 × 101 3.83 × 101 3.23 × 101 4.64 × 101 1.55 × 101

p-value - 1.82 × 10−6+ 1.83 × 10−6+ 1.83 × 10−6+ 1.83 × 10−6+ 1.82 × 10−6+ 1.82 × 10−6+ 1.83 × 10−6+
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Table 4. Cont.

f Category Quality STTPSO DNSPSO XPSO TCSPSO GLPSO HCLPSO DPLPSO CLPSO

f 6

Median 1.22 × 10−6 1.02 × 10−1 5.59 × 10−2 3.01 × 100 1.19 × 10−2 1.85 × 10−3 5.28 × 101 1.23 × 10−8

Mean 4.48 × 10−6 1.16 × 10−1 1.53 × 10−1 3.93 × 100 2.00 × 10−2 2.65 × 10−3 5.18 × 101 2.45 × 10−3

Std 8.10 × 10−6 4.66 × 10−2 2.59 × 10−1 3.68 × 100 2.08 × 10−2 2.37 × 10−3 4.60 × 100 1.32 × 10−2

p-value - 1.83 × 10−6+ 1.83 × 10−6+ 1.83 × 10−6+ 1.83 × 10−6+ 1.83 × 10−6+ 1.83 × 10−6+ 3.56 × 10−5+

f 7

Median 6.27 × 101 4.70 × 102 1.51 × 102 3.18 × 102 2.27 × 102 1.94 × 102 7.71 × 102 2.11 × 102

Mean 6.33 × 101 4.70 × 102 1.53 × 102 3.35 × 102 2.36 × 102 2.02 × 102 7.70 × 102 2.10 × 102

Std 3.22 × 100 1.85 × 101 2.57 × 101 6.19 × 101 3.89 × 101 3.06 × 101 6.79 × 101 1.44 × 101

p-value - 1.83 × 10−6+ 1.83 × 10−6+ 1.83 × 10−6+ 1.83 × 10−6+ 1.83 × 10−6+ 1.83 × 10−6+ 1.83 × 10−6+

f 8

Median 8.96 × 100 3.99 × 102 8.81 × 101 1.97 × 102 1.36 × 102 1.56 × 102 4.60 × 102 1.96 × 102

Mean 9.35 × 100 4.00 × 102 9.29 × 101 2.09 × 102 1.41 × 102 1.56 × 102 4.45 × 102 1.97 × 102

Std 3.22 × 100 1.86 × 101 2.34 × 101 6.12 × 101 3.13 × 101 2.68 × 101 4.48 × 101 1.61 × 101

p-value - 1.82 × 10−6+ 1.83 × 10−6+ 1.82 × 10−6+ 1.82 × 10−6+ 1.83 × 10−6+ 1.82 × 10−6+ 1.82 × 10−6+

f 9

Median 4.99 × 10−1 1.72 × 101 1.55 × 101 2.85 × 103 4.51 × 102 1.25 × 103 1.08 × 104 3.95 × 103

Mean 8.56 × 10−1 3.56 × 101 4.97 × 101 3.34 × 103 5.98 × 102 1.26 × 103 1.10 × 104 4.22 × 103

Std 1.05 × 100 5.56 × 101 8.96 × 101 1.87 × 103 5.23 × 102 5.35 × 102 1.90 × 103 1.20 × 103

p-value - 3.34 × 10−6+ 1.83 × 10−6+ 1.83 × 10−6+ 1.83 × 10−6+ 1.83 × 10−6+ 1.83 × 10−6+ 1.83 × 10−6+

f 4−9 w/t/l - 5/0/1 6/0/0 6/0/0 6/0/0 5/1/0 6/0/0 6/0/0

f 10

Hybrid
Functions

Median 3.60 × 103 1.16 × 104 5.17 × 103 5.57 × 103 5.59 × 103 5.58 × 103 1.23 × 104 6.66 × 103

Mean 3.49 × 103 1.15 × 104 5.00 × 103 5.56 × 103 6.27 × 103 5.57 × 103 1.23 × 104 6.59 × 103

Std 5.89 × 102 1.43 × 103 8.85 × 102 6.71 × 102 1.85 × 103 6.10 × 102 5.33 × 102 4.43 × 102

p-value - 1.83 × 10−6+ 6.04 × 10−6+ 1.83 × 10−6+ 2.02 × 10−6+ 1.82 × 10−6+ 1.82 × 10−6+ 1.82 × 10−6+

f 11

Median 6.11 × 101 2.04 × 102 1.58 × 102 2.15 × 102 2.90 × 102 2.08 × 102 2.34 × 103 1.93 × 102

Mean 6.12 × 101 2.02 × 102 1.56 × 102 2.36 × 102 3.81 × 102 2.07 × 102 2.38 × 103 1.92 × 102

Std 1.18 × 101 2.05 × 101 3.37 × 101 9.86 × 101 3.27 × 102 6.30 × 101 5.66 × 102 4.10 × 101

p-value - 1.83 × 10−6+ 1.83 × 10−6+ 1.83 × 10−6+ 1.83 × 10−6+ 1.83 × 10−6+ 1.83 × 10−6+ 1.83 × 10−6+

f 12

Median 8.59 × 105 2.78 × 107 5.18 × 105 1.83 × 106 1.19 × 106 2.94 × 106 3.95 × 109 1.86 × 107

Mean 8.89 × 105 3.23 × 107 9.85 × 105 8.82 × 106 5.72 × 106 3.61 × 106 4.04 × 109 1.96 × 107

Std 5.26 × 105 1.68 × 107 1.13 × 106 2.40 × 107 1.24 × 107 2.48 × 106 1.72 × 109 9.49 × 106

p-value - 1.83 × 10−6+ 7.11 × 10−1= 2.97 × 10−5+ 1.52 × 10−2+ 2.24 × 10−6+ 1.83 × 10−6+ 1.83 × 10−6+
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Table 4. Cont.

f Category Quality STTPSO DNSPSO XPSO TCSPSO GLPSO HCLPSO DPLPSO CLPSO

f 13

Median 1.88 × 104 2.62 × 106 2.30 × 103 3.81 × 103 3.32 × 103 2.15 × 104 3.11 × 108 1.11 × 104

Mean 1.63 × 104 2.73 × 106 4.40 × 103 7.76 × 103 5.58 × 103 2.29 × 104 5.22 × 108 1.13 × 104

Std 1.12 × 104 1.72 × 106 4.74 × 103 9.15 × 103 6.22 × 103 1.32 × 104 7.74 × 108 3.04 × 103

p-value - 1.83 × 10−6+ 1.30 × 10−4− 1.44 × 10−2− 1.54 × 10−4− 9.99 × 10−2= 1.83 × 10−6+ 4.60 × 10−2−

f 14

Median 5.52 × 104 7.90 × 103 3.86 × 104 4.09 × 104 4.01 × 104 8.86 × 104 1.56 × 106 4.64 × 105

Mean 7.09 × 104 8.09 × 103 3.97 × 104 2.30 × 105 1.43 × 105 1.22 × 105 2.21 × 106 5.29 × 105

Std 5.64 × 104 3.51 × 103 2.64 × 104 5.29 × 105 2.20 × 105 1.15 × 105 2.01 × 106 2.65 × 105

p-value - 8.07 × 10−6− 1.36 × 10−2− 3.65 × 10−1= 7.42 × 10−1= 4.38 × 10−2+ 2.02 × 10−6+ 1.83 × 10−6+

f 15

Median 1.18 × 104 4.55 × 105 2.69 × 103 7.12 × 103 3.89 × 103 1.81 × 104 2.93 × 106 8.15 × 102

Mean 1.32 × 104 4.80 × 105 4.24 × 103 1.46 × 104 5.84 × 103 1.92 × 104 1.79 × 107 9.31 × 102

Std 9.68 × 103 1.58 × 105 4.08 × 103 2.54 × 104 6.28 × 103 1.01 × 104 2.92 × 107 4.49 × 102

p-value - 1.83 × 10−6+ 4.71 × 10−4− 2.76 × 10−1= 1.07 × 10−3− 6.41 × 10−2= 1.83 × 10−6+ 6.65 × 10−6−

f 16

Median 4.55 × 102 3.79 × 103 9.27 × 102 1.63 × 103 1.60 × 103 1.52 × 103 3.13 × 103 1.45 × 103

Mean 4.23 × 102 3.78 × 103 9.56 × 102 1.70 × 103 1.57 × 103 1.53 × 103 3.06 × 103 1.41 × 103

Std 1.90 × 102 2.33 × 102 3.27 × 102 4.35 × 102 4.06 × 102 3.57 × 102 5.41 × 102 2.00 × 102

p-value - 1.83 × 10−6+ 6.04 × 10−6+ 1.83 × 10−6+ 1.83 × 10−6+ 1.83 × 10−6+ 1.83 × 10−6+ 1.83 × 10−6+

f 17

Median 2.45 × 102 2.41 × 103 8.83 × 102 1.15 × 103 1.03 × 103 1.30 × 103 1.85 × 103 1.06 × 103

Mean 3.11 × 102 2.40 × 103 8.56 × 102 1.17 × 103 1.05 × 103 1.20 × 103 1.83 × 103 1.04 × 103

Std 1.43 × 102 2.00 × 102 2.56 × 102 2.97 × 102 2.23 × 102 3.24 × 102 2.86 × 102 1.94 × 102

p-value - 1.82 × 10−6+ 3.69 × 10−6+ 1.83 × 10−6+ 1.83 × 10−6+ 1.83 × 10−6+ 1.83 × 10−6+ 2.02 × 10−6+

f 18

Median 3.71 × 105 3.27 × 106 1.71 × 105 3.12 × 106 1.09 × 106 3.18 × 105 7.61 × 106 1.14 × 106

Mean 4.28 × 105 3.47 × 106 3.94 × 105 5.58 × 106 3.42 × 106 4.33 × 105 1.04 × 107 1.31 × 106

Std 2.34 × 105 1.61 × 106 4.88 × 105 5.71 × 106 5.02 × 106 3.40 × 105 9.88 × 106 7.63 × 105

p-value - 1.83 × 10−6+ 2.58 × 10−1= 4.50 × 10−6+ 1.90 × 10−3+ 6.81 × 10−1= 1.83 × 10−6+ 2.24 × 10−6+

f 19

Median 1.60 × 103 2.67 × 104 9.19 × 103 1.30 × 104 1.42 × 104 1.03 × 104 1.44 × 106 3.36 × 102

Mean 4.33 × 103 3.18 × 104 1.12 × 104 1.51 × 104 1.74 × 104 1.48 × 104 3.65 × 106 5.26 × 102

Std 6.31 × 103 1.73 × 104 8.07 × 103 1.38 × 104 1.07 × 104 1.36 × 104 8.78 × 106 5.03 × 102

p-value - 1.83 × 10−6+ 1.42 × 10−4+ 1.54 × 10−3+ 3.26 × 10−5+ 1.90 × 10−3+ 1.83 × 10−6+ 1.10 × 10−4−
f 10–19 w/t/l - 9/0/1 5/2/3 7/2/1 7/1/2 7/3/0 10/0/0 7/0/3
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Table 4. Cont.

f Category Quality STTPSO DNSPSO XPSO TCSPSO GLPSO HCLPSO DPLPSO CLPSO

f 20

Composition
Functions

Median 9.66 × 101 1.66 × 103 4.66 × 102 9.58 × 102 7.45 × 102 9.48 × 102 1.44 × 103 5.92 × 102

Mean 1.76 × 102 1.59 × 103 4.70 × 102 9.01 × 102 7.43 × 102 8.97 × 102 1.38 × 103 6.14 × 102

Std 1.38 × 102 3.96 × 102 2.19 × 102 2.96 × 102 2.66 × 102 2.33 × 102 2.58 × 102 1.30 × 102

p-value - 1.83 × 10−6+ 2.97 × 10−5+ 1.83 × 10−6+ 1.83 × 10−6+ 1.83 × 10−6+ 1.83 × 10−6+ 1.83 × 10−6+

f 21

Median 2.22 × 102 6.01 × 102 2.79 × 102 3.77 × 102 3.37 × 102 3.86 × 102 6.59 × 102 4.21 × 102

Mean 2.22 × 102 6.00 × 102 2.80 × 102 4.02 × 102 3.46 × 102 3.80 × 102 6.53 × 102 4.21 × 102

Std 3.65 × 100 2.02 × 101 1.96 × 101 6.26 × 101 4.16 × 101 2.91 × 101 3.35 × 101 1.52 × 101

p-value - 1.82 × 10−6+ 1.83 × 10−6+ 1.82 × 10−6+ 1.82 × 10−6+ 1.82 × 10−6+ 1.83 × 10−6+ 1.82 × 10−6+

f 22

Median 3.04 × 103 1.28 × 104 5.63 × 103 6.39 × 103 6.49 × 103 6.24 × 103 1.26 × 104 7.13 × 103

Mean 3.10 × 103 1.27 × 104 4.80 × 103 6.14 × 103 5.88 × 103 5.76 × 103 1.13 × 104 7.14 × 103

Std 1.34 × 103 9.78 × 102 2.20 × 103 1.52 × 103 3.61 × 103 1.63 × 103 3.48 × 103 2.75 × 102

p-value - 1.83 × 10−6+ 1.01 × 10−2+ 1.18 × 10−5+ 1.33 × 10−3+ 8.55 × 10−5+ 2.48 × 10−6+ 2.02 × 10−6+

f 23

Median 5.06 × 102 8.64 × 102 5.27 × 102 6.43 × 102 6.65 × 102 6.66 × 102 1.22 × 103 6.66 × 102

Mean 5.09 × 102 8.88 × 102 5.24 × 102 6.50 × 102 6.81 × 102 6.65 × 102 1.22 × 103 6.66 × 102

Std 1.71 × 101 6.87 × 101 3.11 × 101 5.85 × 101 8.50 × 101 3.99 × 101 6.75 × 101 1.90 × 101

p-value - 1.83 × 10−6+ 4.38 × 10−2+ 1.82 × 10−6+ 1.83 × 10−6+ 1.83 × 10−6+ 1.83 × 10−6+ 1.83 × 10−6+

f 24

Median 5.81 × 102 1.06 × 103 5.90 × 102 7.06 × 102 7.38 × 102 7.27 × 102 1.31 × 103 8.04 × 102

Mean 5.83 × 102 1.08 × 103 6.06 × 102 7.09 × 102 7.49 × 102 7.23 × 102 1.33 × 103 8.05 × 102

Std 1.63 × 101 1.26 × 102 5.78 × 101 7.38 × 101 9.38 × 101 3.46 × 101 9.27 × 101 2.65 × 101

p-value - 1.82 × 10−6+ 3.41 × 10−2+ 1.83 × 10−6+ 2.02 × 10−6+ 1.83 × 10−6+ 1.82 × 10−6+ 1.82 × 10−6+

f 25

Median 4.80 × 102 4.31 × 102 5.98 × 102 6.75 × 102 6.61 × 102 4.80 × 102 2.60 × 103 5.31 × 102

Mean 5.06 × 102 4.41 × 102 5.97 × 102 6.76 × 102 6.66 × 102 5.01 × 102 2.77 × 103 5.30 × 102

Std 3.55 × 101 2.14 × 101 2.43 × 101 6.58 × 101 7.00 × 101 3.54 × 101 6.68 × 102 6.29 × 100

p-value - 3.14 × 10−6− 1.83 × 10−6+ 1.82 × 10−6+ 2.02 × 10−6+ 2.33 × 10−1= 1.82 × 10−6+ 5.91 × 10−4+

f 26

Median 2.23 × 103 6.70 × 103 9.43 × 102 3.98 × 103 2.96 × 103 3.70 × 103 7.22 × 103 3.60 × 103

Mean 2.27 × 103 7.10 × 103 1.15 × 103 4.07 × 103 3.04 × 103 3.64 × 103 6.89 × 103 3.52 × 103

Std 1.23 × 102 1.63 × 103 8.75 × 102 1.02 × 103 6.50 × 102 3.13 × 102 2.09 × 103 3.37 × 102

p-value - 1.83 × 10−6+ 1.42 × 10−5− 1.18 × 10−5+ 6.87 × 10−6+ 1.83 × 10−6+ 1.83 × 10−6+ 2.02 × 10−6+

f 27

Median 7.00 × 102 5.00 × 102 7.19 × 102 9.01 × 102 8.35 × 102 6.54 × 102 1.98 × 103 6.35 × 102

Mean 6.94 × 102 5.00 × 102 7.35 × 102 9.06 × 102 8.39 × 102 6.89 × 102 1.99 × 103 6.33 × 102

Std 5.44 × 101 0.00 × 100 8.89 × 101 9.24 × 101 8.57 × 101 1.06 × 102 1.76 × 102 2.76 × 101

p-value - 1.82 × 10−6− 7.03 × 10−2= 1.83 × 10−6+ 7.69 × 10−6+ 7.50 × 10−1= 1.83 × 10−6+ 7.84 × 10−5−
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Table 4. Cont.

f Category Quality STTPSO DNSPSO XPSO TCSPSO GLPSO HCLPSO DPLPSO CLPSO

f 28

Median 5.08 × 102 5.00 × 102 5.38 × 102 6.68 × 102 7.00 × 102 4.92 × 102 2.91 × 103 1.71 × 103

Mean 9.06 × 102 5.00 × 102 5.47 × 102 6.77 × 102 6.97 × 102 4.92 × 102 3.04 × 103 1.79 × 103

Std 1.14 × 103 0.00 × 100 3.99 × 101 6.99 × 101 5.82 × 101 3.40 × 101 5.38 × 102 4.45 × 102

p-value - 6.21 × 10−2= 7.35 × 10−2= 1.52 × 10−2− 1.52 × 10−2− 9.56 × 10−2= 3.69 × 10−6+ 4.71 × 10−4+

f 29

Median 5.58 × 102 3.32 × 103 8.90 × 102 1.43 × 103 1.03 × 103 1.19 × 103 3.44 × 103 1.01 × 103

Mean 5.90 × 102 3.27 × 103 8.66 × 102 1.43 × 103 1.08 × 103 1.16 × 103 3.52 × 103 1.02 × 103

Std 1.75 × 102 2.69 × 102 1.87 × 102 2.49 × 102 2.75 × 102 3.49 × 102 5.07 × 102 1.49 × 102

p-value - 1.83 × 10−6+ 2.07 × 10−5+ 1.83 × 10−6+ 7.33 × 10−6+ 2.02 × 10−6+ 1.83 × 10−6+ 2.48 × 10−6+

f 30

Median 8.17 × 105 1.79 × 106 1.93 × 106 2.00 × 106 2.00 × 106 1.16 × 106 1.38 × 108 7.30 × 105

Mean 8.55 × 105 2.22 × 106 1.92 × 106 2.36 × 106 2.40 × 106 1.23 × 106 1.38 × 108 7.40 × 105

Std 1.54 × 105 1.12 × 106 3.32 × 105 8.05 × 105 1.44 × 106 4.15 × 105 5.12 × 107 7.50 × 104

p-value - 4.50 × 10−6+ 1.83 × 10−6+ 1.83 × 10−6+ 1.83 × 10−6+ 4.36 × 10−4+ 1.83 × 10−6+ 1.15 × 10−3−
f 20–30 w/t/l - 8/1/2 8/2/1 10/0/1 10/0/1 8/3/0 11/0/0 9/0/2

w/t/l - 23/2/4 19/5/5 23/4/2 23/2/4 21/7/1 29/0/0 23/1/5

rank 2.17 5.72 2.45 5.14 4.31 4.14 7.79 4.28

Table 5. Comparison results between the proposed STTPSO and the 7 state-of-the-art and popular PSO variants on the 100D CEC 2017 benchmark functions. The
highlighted p-values means that the proposed STTPSO is significantly better than the associated compared algorithms on the corresponding problems.

f Category Quality STTPSO DNSPSO XPSO TCSPSO GLPSO HCLPSO DPLPSO CLPSO

f 1

Unimodal
Functions

Median 2.53 × 103 3.31 × 103 3.50 × 103 2.62 × 103 6.15 × 103 1.37 × 104 1.10 × 1011 1.63 × 109

Mean 4.29 × 103 7.08 × 103 8.27 × 103 6.22 × 103 1.21 × 104 1.93 × 107 1.10 × 1011 1.78 × 109

Std 4.43 × 103 1.04 × 104 9.67 × 103 7.24 × 103 1.60 × 104 1.04 × 108 1.17 × 1010 1.48 × 109

p-value - 7.89 × 10−1= 2.41 × 10−1= 4.34 × 10−1= 5.15 × 10−3+ 7.20 × 10−5+ 1.83 × 10−6+ 4.08 × 10−6+

f 3

Median 2.22 × 105 1.07 × 106 7.04 × 104 2.55 × 105 7.98 × 101 8.06 × 104 3.82 × 105 5.10 × 105

Mean 2.23 × 105 1.04 × 106 6.94 × 104 2.53 × 105 3.93 × 103 8.23 × 104 3.73 × 105 5.12 × 105

Std 2.17 × 104 1.25 × 105 9.80 × 103 3.05 × 104 9.85 × 103 2.40 × 104 4.19 × 104 3.83 × 104

p-value - 1.83 × 10−6+ 1.83 × 10−6− 1.74 × 10−4+ 1.83 × 10−6− 1.82 × 10−6− 1.83 × 10−6+ 1.82 × 10−6+

f 1–3 w/t/l - 1/1/0 0/1/1 1/1/0 1/0/1 1/0/1 2/0/0 2/0/0
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Table 5. Cont.

f Category Quality STTPSO DNSPSO XPSO TCSPSO GLPSO HCLPSO DPLPSO CLPSO

f 4

Simple
Multimodal
Functions

Median 2.16 × 102 1.99 × 102 4.80 × 102 6.28 × 102 8.16 × 102 2.45 × 102 2.20 × 104 3.17 × 102

Mean 2.18 × 102 2.07 × 102 4.77 × 102 7.03 × 102 8.54 × 102 2.46 × 102 2.25 × 104 3.26 × 102

Std 1.89 × 101 5.44 × 101 5.85 × 101 1.82 × 102 1.91 × 102 2.61 × 101 3.31 × 103 4.30 × 101

p-value - 2.41 × 10−1= 1.83 × 10−6+ 1.83 × 10−6+ 1.83 × 10−6+ 4.36 × 10−4+ 1.83 × 10−6+ 1.83 × 10−6+

f 5

Median 3.08 × 101 1.02 × 103 2.29 × 102 5.36 × 102 3.76 × 102 4.78 × 102 1.20 × 103 7.46 × 102

Mean 2.96 × 101 1.03 × 103 2.28 × 102 5.55 × 102 3.85 × 102 4.96 × 102 1.20 × 103 7.46 × 102

Std 4.78 × 100 4.29 × 101 4.81 × 101 1.09 × 102 5.70 × 101 7.09 × 101 4.04 × 101 4.13 × 101

p-value - 1.82 × 10−6+ 1.83 × 10−6+ 1.83 × 10−6+ 1.83 × 10−6+ 1.83 × 10−6+ 1.82 × 10−6+ 1.83 × 10−6+

f 6

Median 1.13 × 10−3 2.42 × 10−1 3.95 × 100 1.85 × 101 4.94 × 10−2 9.66 × 10−3 7.63 × 101 1.07 × 10−2

Mean 1.90 × 10−3 2.82 × 10−1 4.43 × 100 1.78 × 101 5.62 × 10−2 1.54 × 10−2 7.59 × 101 2.65 × 10−2

Std 2.09 × 10−3 1.54 × 10−1 3.28 × 100 6.21 × 100 2.65 × 10−2 1.99 × 10−2 4.73 × 100 3.21 × 10−2

p-value - 1.83 × 10−6+ 1.83 × 10−6+ 1.83 × 10−6+ 1.83 × 10−6+ 1.07 × 10−5+ 1.83 × 10−6+ 5.09 × 10−4+

f 7

Median 1.80 × 102 1.14 × 103 4.41 × 102 1.22 × 103 7.93 × 102 6.74 × 102 2.78 × 103 7.07 × 102

Mean 1.80 × 102 1.13 × 103 4.48 × 102 1.23 × 103 7.99 × 102 6.80 × 102 2.77 × 103 7.02 × 102

Std 1.07 × 101 4.09 × 101 8.25 × 101 1.99 × 102 1.16 × 102 1.08 × 102 2.21 × 102 6.34 × 101

p-value - 1.83 × 10−6+ 1.83 × 10−6+ 1.83 × 10−6+ 1.82 × 10−6+ 1.83 × 10−6+ 1.83 × 10−6+ 1.83 × 10−6+

f 8

Median 2.89 × 101 1.02 × 103 2.14 × 102 5.29 × 102 4.02 × 102 5.48 × 102 1.26 × 103 7.41 × 102

Mean 2.98 × 101 1.02 × 103 2.15 × 102 5.54 × 102 4.08 × 102 5.46 × 102 1.26 × 103 7.48 × 102

Std 5.21 × 100 3.27 × 101 4.03 × 101 8.00 × 101 6.80 × 101 8.92 × 101 4.77 × 101 3.22 × 101

p-value - 1.82 × 10−6+ 1.83 × 10−6+ 1.83 × 10−6+ 1.83 × 10−6+ 1.83 × 10−6+ 1.83 × 10−6+ 1.83 × 10−6+

f 9

Median 2.53 × 101 8.78 × 102 4.97 × 102 1.38 × 104 8.82 × 103 7.70 × 103 5.07 × 104 2.24 × 104

Mean 2.81 × 101 2.10 × 103 5.37 × 102 1.40 × 104 8.58 × 103 8.23 × 103 5.10 × 104 2.32 × 104

Std 1.44 × 101 2.82 × 103 3.40 × 102 4.05 × 103 2.37 × 103 2.91 × 103 5.93 × 103 4.46 × 103

p-value - 1.83 × 10−6+ 1.83 × 10−6+ 1.83 × 10−6+ 1.83 × 10−6+ 1.83 × 10−6+ 1.83 × 10−6+ 1.83 × 10−6+

f 4–9 w/t/l - 5/1/0 6/0/0 6/0/0 6/0/0 6/0/0 6/0/0 6/0/0

f 10
Hybrid

Functions

Median 8.46 × 103 3.03 × 104 1.23 × 104 1.37 × 104 3.05 × 104 1.35 × 104 2.90 × 104 2.17 × 104

Mean 8.52 × 103 3.00 × 104 1.24 × 104 1.34 × 104 3.04 × 104 1.32 × 104 2.91 × 104 2.18 × 104

Std 8.64 × 102 7.81 × 102 1.41 × 103 1.08 × 103 3.27 × 102 1.10 × 103 8.24 × 102 4.97 × 102

p-value - 1.83 × 10−6+ 1.83 × 10−6+ 1.83 × 10−6+ 1.83 × 10−6+ 1.83 × 10−6+ 1.83 × 10−6+ 1.83 × 10−6+
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Table 5. Cont.

f Category Quality STTPSO DNSPSO XPSO TCSPSO GLPSO HCLPSO DPLPSO CLPSO

f 11

Median 5.25 × 102 2.87 × 104 1.16 × 103 2.74 × 103 1.41 × 104 8.15 × 102 7.75 × 104 1.34 × 103

Mean 5.22 × 102 2.90 × 104 1.20 × 103 3.42 × 103 1.61 × 104 7.93 × 102 7.82 × 104 1.34 × 103

Std 1.17 × 102 7.16 × 103 2.46 × 102 1.92 × 103 7.38 × 103 2.03 × 102 9.38 × 103 1.60 × 102

p-value - 1.83 × 10−6+ 1.83 × 10−6+ 1.83 × 10−6+ 1.83 × 10−6+ 3.89 × 10−5+ 1.83 × 10−6+ 1.83 × 10−6+

f 12

Median 7.69 × 105 1.49 × 107 1.15 × 107 5.19 × 107 5.53 × 107 1.55 × 107 3.01 × 1010 7.81 × 107

Mean 7.68 × 105 1.63 × 107 1.94 × 107 8.56 × 107 1.07 × 108 2.18 × 107 3.03 × 1010 8.97 × 107

Std 2.66 × 105 8.03 × 106 2.04 × 107 9.57 × 107 1.58 × 108 2.60 × 107 6.25 × 109 4.08 × 107

p-value - 1.83 × 10−6+ 1.43 × 10−5+ 1.83 × 10−6+ 1.83 × 10−6+ 1.83 × 10−6+ 1.83 × 10−6+ 1.83 × 10−6+

f 13

Median 1.40 × 103 4.13 × 103 3.05 × 103 4.13 × 103 3.44 × 103 1.18 × 104 2.58 × 109 3.82 × 104

Mean 4.47 × 103 9.58 × 103 4.62 × 103 6.81 × 103 1.87 × 104 1.86 × 104 2.78 × 109 4.13 × 104

Std 5.03 × 103 1.16 × 104 4.04 × 103 5.71 × 103 7.41 × 104 1.27 × 104 1.14 × 109 1.59 × 104

p-value - 8.78 × 10−2= 4.72 × 10−1= 1.50 × 10−1= 3.55 × 10−1= 2.26 × 10−5+ 1.83 × 10−6+ 1.83 × 10−6+

f 14

Median 1.92 × 105 2.02 × 106 2.23 × 105 9.21 × 105 8.66 × 105 4.17 × 105 1.20 × 107 4.85 × 106

Mean 2.04 × 105 2.19 × 106 4.45 × 105 1.48 × 106 1.30 × 106 8.45 × 105 1.39 × 107 5.01 × 106

Std 7.61 × 104 8.82 × 105 6.26 × 105 1.37 × 106 1.34 × 106 1.08 × 106 7.91 × 106 1.20 × 106

p-value - 1.83 × 10−6+ 8.78 × 10−2= 7.33 × 10−6+ 1.67 × 10−4+ 1.30 × 10−5+ 1.83 × 10−6+ 1.83 × 10−6+

f 15

Median 1.10 × 103 4.68 × 104 1.43 × 103 2.33 × 103 2.57 × 103 2.77 × 104 3.46 × 108 4.82 × 103

Mean 3.87 × 103 1.16 × 105 2.18 × 103 4.88 × 103 3.92 × 103 1.85 × 104 3.92 × 108 5.32 × 103

Std 5.76 × 103 1.61 × 105 1.96 × 103 5.47 × 103 4.10 × 103 1.10 × 104 2.20 × 108 2.70 × 103

p-value - 1.83 × 10−6+ 5.65 × 10−1= 3.76 × 10−1= 6.51 × 10−1= 7.20 × 10−5+ 1.83 × 10−6+ 2.77 × 10−2+

f 16

Median 1.57 × 103 8.87 × 103 2.91 × 103 3.71 × 103 3.98 × 103 4.01 × 103 9.81 × 103 4.02 × 103

Mean 1.58 × 103 8.88 × 103 2.84 × 103 3.82 × 103 4.06 × 103 4.16 × 103 9.62 × 103 4.07 × 103

Std 4.82 × 102 3.59 × 102 4.77 × 102 6.74 × 102 8.46 × 102 6.93 × 102 5.78 × 102 3.37 × 102

p-value - 1.83 × 10−6+ 4.08 × 10−6+ 1.83 × 10−6+ 2.02 × 10−6+ 1.83 × 10−6+ 1.83 × 10−6+ 1.83 × 10−6+

f 17

Median 1.16 × 103 5.97 × 103 2.52 × 103 3.23 × 103 2.77 × 103 3.72 × 103 6.77 × 103 3.23 × 103

Mean 1.22 × 103 5.95 × 103 2.43 × 103 3.07 × 103 2.80 × 103 3.81 × 103 7.04 × 103 3.21 × 103

Std 3.81 × 102 3.03 × 102 4.78 × 102 5.17 × 102 5.82 × 102 6.74 × 102 1.41 × 103 2.81 × 102

p-value - 1.83 × 10−6+ 2.48 × 10−6+ 1.83 × 10−6+ 1.83 × 10−6+ 1.83 × 10−6+ 1.83 × 10−6+ 1.83 × 10−6+



Mathematics 2022, 10, 1032 26 of 39

Table 5. Cont.

f Category Quality STTPSO DNSPSO XPSO TCSPSO GLPSO HCLPSO DPLPSO CLPSO

f 18

Median 3.35 × 105 3.02 × 107 3.87 × 105 2.76 × 106 3.39 × 105 1.17 × 106 2.20 × 107 7.77 × 106

Mean 3.70 × 105 3.11 × 107 4.91 × 105 3.38 × 106 5.25 × 105 1.63 × 106 2.45 × 107 7.50 × 106

Std 1.72 × 105 1.18 × 107 3.58 × 105 2.09 × 106 4.73 × 105 1.25 × 106 1.25 × 107 2.41 × 106

p-value - 1.83 × 10−6+ 1.62 × 10−1= 1.83 × 10−6+ 4.97 × 10−1= 2.74 × 10−6+ 1.83 × 10−6+ 1.83 × 10−6+

f 19

Median 5.57 × 103 4.75 × 103 3.13 × 103 2.30 × 103 4.20 × 109 1.28 × 104 6.56 × 108 1.79 × 103

Mean 7.46 × 103 7.38 × 103 4.46 × 103 4.86 × 103 4.12 × 109 1.93 × 104 6.13 × 108 1.97 × 103

Std 7.38 × 103 6.43 × 103 5.99 × 103 6.41 × 103 7.32 × 108 1.52 × 104 2.78 × 108 7.13 × 102

p-value - 9.67 × 10−1= 1.33 × 10−1= 8.04 × 10−2= 1.83 × 10−6+ 3.06 × 10−3+ 1.83 × 10−6+ 2.18 × 10−3−
f 10–19 w/t/l - 8/2/0 5/5/0 7/3/0 7/3/0 10/0/0 10/0/0 9/0/1

f Category Quality STTPSO DNSPSO XPSO TCSPSO GLPSO HCLPSO DPLPSO CLPSO

f 20

Composition
Functions

Median 7.56 × 102 5.57 × 103 2.10 × 103 2.88 × 103 5.26 × 103 2.86 × 103 4.69 × 103 2.29 × 103

Mean 7.88 × 102 5.20 × 103 2.16 × 103 2.83 × 103 5.23 × 103 2.76 × 103 4.69 × 103 2.34 × 103

Std 2.72 × 102 9.09 × 102 3.96 × 102 4.93 × 102 1.93 × 102 3.59 × 102 4.05 × 102 2.09 × 102

p-value - 1.83 × 10−6+ 1.83 × 10−6+ 1.83 × 10−6+ 1.83 × 10−6+ 1.83 × 10−6+ 1.83 × 10−6+ 1.83 × 10−6+

f 21

Median 2.98 × 102 1.22 × 103 4.64 × 102 7.91 × 102 6.06 × 102 8.46 × 102 1.60 × 103 9.66 × 102

Mean 2.96 × 102 1.22 × 103 4.66 × 102 7.87 × 102 6.26 × 102 8.42 × 102 1.60 × 103 9.62 × 102

Std 9.91 × 100 3.32 × 101 5.19 × 101 8.43 × 101 7.42 × 101 6.64 × 101 8.73 × 101 3.02 × 101

p-value - 1.83 × 10−6+ 1.83 × 10−6+ 1.83 × 10−6+ 1.82 × 10−6+ 1.83 × 10−6+ 1.82 × 10−6+ 1.83 × 10−6+

f 22

Median 8.16 × 103 3.08 × 104 1.36 × 104 1.46 × 104 1.80 × 104 1.41 × 104 3.08 × 104 2.25 × 104

Mean 8.11 × 103 3.02 × 104 1.22 × 104 1.46 × 104 1.81 × 104 1.42 × 104 3.07 × 104 2.23 × 104

Std 1.17 × 103 1.39 × 103 4.91 × 103 1.35 × 103 3.93 × 103 1.27 × 103 1.24 × 103 6.52 × 102

p-value - 1.83 × 10−6+ 7.05 × 10−3+ 1.83 × 10−6+ 1.83 × 10−6+ 1.83 × 10−6+ 1.83 × 10−6+ 1.83 × 10−6+

f 23

Median 7.10 × 102 1.84 × 103 8.13 × 102 1.04 × 103 1.11 × 103 8.83 × 102 2.82 × 103 9.01 × 102

Mean 7.18 × 102 1.89 × 103 8.09 × 102 1.07 × 103 1.12 × 103 8.89 × 102 2.85 × 103 9.01 × 102

Std 2.95 × 101 2.76 × 102 4.95 × 101 1.09 × 102 1.66 × 102 4.44 × 101 2.15 × 102 2.66 × 101

p-value - 1.83 × 10−6+ 2.48 × 10−6+ 1.83 × 10−6+ 1.83 × 10−6+ 1.83 × 10−6+ 1.83 × 10−6+ 1.83 × 10−6+

f 24

Median 1.14 × 103 3.00 × 103 1.20 × 103 1.52 × 103 1.68 × 103 1.50 × 103 4.68 × 103 1.50 × 103

Mean 1.14 × 103 3.14 × 103 1.25 × 103 1.55 × 103 1.64 × 103 1.51 × 103 4.69 × 103 1.49 × 103

Std 5.71 × 101 6.83 × 102 1.17 × 102 1.46 × 102 2.19 × 102 6.83 × 101 4.23 × 102 2.50 × 101

p-value - 1.83 × 10−6+ 1.67 × 10−4+ 1.83 × 10−6+ 1.83 × 10−6+ 1.82 × 10−6+ 1.83 × 10−6+ 1.82 × 10−6+
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Table 5. Cont.

f Category Quality STTPSO DNSPSO XPSO TCSPSO GLPSO HCLPSO DPLPSO CLPSO

f 25

Median 8.21 × 102 7.62 × 102 1.09 × 103 1.29 × 103 1.38 × 103 7.63 × 102 1.10 × 104 9.02 × 102

Mean 7.97 × 102 7.67 × 102 1.10 × 103 1.35 × 103 1.37 × 103 7.80 × 102 1.10 × 104 9.08 × 102

Std 5.15 × 101 5.19 × 101 7.56 × 101 2.93 × 102 2.10 × 102 6.35 × 101 1.35 × 103 4.80 × 101

p-value - 3.00 × 10−2− 1.83 × 10−6+ 1.83 × 10−6+ 1.83 × 10−6+ 1.68 × 10−1= 1.82 × 10−6+ 1.83 × 10−6+

f 26

Median 6.53 × 103 2.88 × 104 5.34 × 103 1.06 × 104 8.54 × 103 1.13 × 104 2.89 × 104 1.09 × 104

Mean 6.55 × 103 2.92 × 104 3.90 × 103 1.14 × 104 8.61 × 103 1.12 × 104 2.85 × 104 1.10 × 104

Std 4.55 × 102 5.67 × 103 2.58 × 103 2.40 × 103 1.57 × 103 5.79 × 102 2.39 × 103 3.16 × 102

p-value - 1.83 × 10−6+ 4.97 × 10−6− 1.83 × 10−6+ 4.08 × 10−6+ 1.83 × 10−6+ 1.83 × 10−6+ 1.83 × 10−6+

f 27

Median 7.39 × 102 5.00 × 102 8.54 × 102 1.12 × 103 1.02 × 103 8.05 × 102 4.00 × 103 7.58 × 102

Mean 7.53 × 102 5.00 × 102 8.75 × 102 1.12 × 103 1.01 × 103 8.17 × 102 4.05 × 103 7.59 × 102

Std 4.28 × 101 0.00 × 100 7.68 × 101 1.75 × 102 8.73 × 101 8.19 × 101 4.27 × 102 2.21 × 101

p-value - 1.83 × 10−6− 3.34 × 10−6+ 1.83 × 10−6+ 1.82 × 10−6+ 1.15 × 10−3+ 1.83 × 10−6+ 3.99 × 10−1=

f 28

Median 5.85 × 102 5.00 × 102 8.26 × 102 1.33 × 103 1.27 × 103 5.85 × 102 1.43 × 104 1.28 × 104

Mean 4.99 × 103 5.00 × 102 8.26 × 102 1.37 × 103 1.32 × 103 1.12 × 103 1.41 × 104 1.28 × 104

Std 5.82 × 103 0.00 × 100 4.81 × 101 3.31 × 102 1.61 × 102 2.21 × 103 1.54 × 103 5.96 × 101

p-value - 1.82 × 10−6− 3.88 × 10−1= 3.88 × 10−1= 3.88 × 10−1= 2.33 × 10−1= 3.34 × 10−6+ 1.13 × 10−5+

f 29

Median 1.76 × 103 6.76 × 103 3.08 × 103 3.91 × 103 3.53 × 103 3.95 × 103 1.03 × 104 3.30 × 103

Mean 1.82 × 103 6.79 × 103 3.10 × 103 3.91 × 103 3.71 × 103 3.94 × 103 1.05 × 104 3.30 × 103

Std 3.67 × 102 3.36 × 102 5.11 × 102 5.41 × 102 7.04 × 102 6.27 × 102 1.15 × 103 2.71 × 102

p-value - 1.83 × 10−6+ 1.83 × 10−6+ 1.83 × 10−6+ 1.83 × 10−6+ 1.82 × 10−6+ 1.83 × 10−6+ 1.82 × 10−6+

f 30

Median 4.41 × 103 7.97 × 102 2.59 × 104 1.04 × 105 2.24 × 105 1.13 × 104 2.38 × 109 5.76 × 104

Mean 4.74 × 103 8.61 × 102 3.28 × 104 1.46 × 105 6.40 × 105 1.50 × 104 2.49 × 109 7.32 × 104

Std 1.39 × 103 2.29 × 102 2.36 × 104 1.34 × 105 1.01 × 106 1.62 × 104 7.38 × 108 5.20 × 104

p-value - 1.83 × 10−6− 1.83 × 10−6+ 1.83 × 10−6+ 1.83 × 10−6+ 1.07 × 10−5+ 1.83 × 10−6+ 1.83 × 10−6+

f 20–30 w/t/l - 7/0/4 9/1/1 10/1/0 10/1/0 9/2/0 11/0/0 10/1/0

w/t/l - 21/4/4 20/7/2 24/5/0 24/4/1 26/2/1 29/0/0 27/1/1

rank 1.52 5.31 2.72 4.83 4.83 4.00 7.72 5.07
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Table 6. Statistical comparison results between the proposed STTPSO and the 7 state-of-the-art and popular PSO variants on the CEC 2017 benchmark set with
different dimensions in terms of “w/t/l”.

Category D DNSPSO XPSO TCSPSO GLPSO HCLPSO DPLPSO CLPSO

Unimodal
Functions

30 2/0/0 0/1/1 0/1/1 0/1/1 1/0/1 2/0/0 1/0/1
50 1/1/0 0/1/1 0/2/0 0/1/1 1/0/1 2/0/0 1/1/0

100 1/1/0 0/1/1 1/1/0 1/0/1 1/0/1 2/0/0 2/0/0

Simple
Multimodal
Functions

30 5/0/1 6/0/0 6/0/0 6/0/0 6/0/0 6/0/0 6/0/0
50 5/0/1 6/0/0 6/0/0 6/0/0 5/1/0 6/0/0 6/0/0

100 5/1/0 6/0/0 6/0/0 6/0/0 6/0/0 6/0/0 6/0/0

Hybrid Functions
30 7/1/2 3/6/1 6/4/0 4/5/1 7/3/0 10/0/0 5/2/3
50 9/0/1 5/2/3 7/2/1 7/1/2 7/3/0 10/0/0 7/0/3

100 8/2/0 5/5/0 7/3/0 7/3/0 10/0/0 10/0/0 9/0/1

Composition
Functions

30 9/0/2 9/1/1 11/0/0 11/0/0 10/1/0 10/1/0 9/1/1
50 8/1/2 8/2/1 10/0/1 10/0/1 8/3/0 11/0/0 9/0/2

100 7/0/4 9/1/1 10/1/0 10/1/0 9/2/0 11/0/0 10/1/0

Whole Set
30 23/1/5 18/8/3 23/5/1 21/6/2 24/4/1 28/1/0 21/3/5
50 23/2/4 19/5/5 23/4/2 23/2/4 21/7/1 29/0/0 23/1/5

100 21/4/4 20/7/2 24/5/0 24/4/1 26/2/1 29/0/0 27/1/1
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As shown in Table 4, the comparison results on the 50-D CEC 2017 benchmark prob-
lems are summarized below:

(1) According to the Friedman test results shown in the last row, STTPSO achieves the
lowest rank. This indicates that STTPSO still achieves the best overall performance
on the whole 50-D CEC 2017 benchmark set. In particular, except for XPSO, its
rank value (2.17) is much smaller than those (at least 4.14) of the other six compared
algorithms. This demonstrates that STTPSO displays significantly better overall
performance than the six compared algorithms.

(2) From the perspective of the Wilcoxon rank sum test, as shown in the second to last
row, STTPSO achieves significantly better performance than the seven compared algo-
rithms on at least 19 problems and shows inferiority to them on, at most, five problems.
In particular, compared with DNSPSO, TCSPSO, GLPSO, and CLPSO, STTPSO signif-
icantly dominates them all on 23 problems. In comparison with DPLPSO, STTPSO
presents significant superiority on all the 29 problems.

(3) In terms of different types of optimization problems, STTPSO achieves highly compet-
itive performance with the seven compared state-of-the-art PSO variants regarding
the two unimodal problems. Particularly, STTPSO defeats DPLPSO concerning these
two problems. On the six simple multimodal problems, STTPSO performs much
better than the seven compared algorithms on at least five problems. In particular,
STTPSO presents significant dominance to XPSO, TCSPSO, GLPSO, DPLPSO, and
CLPSO on all the six problems. Regarding the 10 hybrid problems, except for XPSO,
STTPSO is significantly superior to the seven compared algorithms on at least seven
problems, and shows inferiority on, at most, three problems. In particular, STTPSO
significantly outperforms DPLPSO on all the 10 problems and obtains significantly
better performance than DNSPSO on nine problems. Concerning the 11 composition
problems, STTPSO displays significantly better performance than the seven state-of-
the-art PSO variants on at least eight problems, and performs worse than them on, at
most, two problems. Particularly, STTPSO shows significant dominance to DPLPSO
on all the 11 problems and obtains much better performance than both TCSPSO and
GLPSO on 10 problems. Overall, it is still demonstrated that STTPSO is a promising
approach for problem optimization and displays its sound optimization ability in
solving complicated optimization problems, such as multimodal problems, hybrid
problems, and composition problems.

As shown in Table 5, the comparison results on the 100-D CEC 2017 benchmark set are
summarized below:

(1) According to the Friedman test results, STTPSO achieves the lowest rank among all
algorithms. This verifies that STTPSO still obtains the best overall performance on the
100-D CEC 2017 benchmark set. In particular, its rank value (1.52) is much smaller than
those (at least 2.72) of the seven compared algorithms. This further demonstrates that
STTPSO displays significant dominance to the seven compared algorithms. Together
with the observations on the 30-D and 50-D CEC 2017 benchmark set, we can see
that STTPSO consistently performs the best on the CEC 2017 benchmark set with
different dimension sizes among all eight algorithms, and consistently presents its
significant superiority to the seven compared algorithms on the benchmark set with
the three dimension sizes. Therefore, it is demonstrated that STTPSO preserves a
good scalability to solve optimization problems.

(2) Regarding the Wilcoxon rank sum test, from the second to last row, it is observed
that STTPSO achieves significantly better performance than the seven compared
algorithms on at least 20 problems and shows inferiority to them on, at most, four
problems. In particular, STTPSO outperforms DPLPSO significantly on all the 29
problems, and obtains much better performance than TCSPSO, GLPSO, HCLPSO,
and CLPSO on 24, 24, 26, and 27 problems, respectively.

(3) With respect to the optimization performance on different types of optimization prob-
lems, STTPSO obtains highly competitive or even much better performance than the
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seven compared algorithms on the two unimodal problems. Particularly, STTPSO
shows significant dominance to DPLPSO and CLPSO on the two problems. As for the
six simple multimodal problems, except for DNSPSO, STTPSO exhibits significant
superiority to the other six compared algorithms on all these six problems. Competed
with DNSPSO, STTPSO also shows much better performance on five problems. In
terms of the 10 hybrid problems, except for XPSO, STTPSO is significantly superior to
the other six compared algorithms on at least seven problems. Compared with XPSO,
STTPSO illustrates significantly better performance on five problems and does not
show inferiority on any of the problems. In particular, it is discovered that STTPSO is
significantly better than HCLPSO and DPLPSO on all the 10 problems. Regarding the
11 composition problems, except for DNSPSO, STTPSO achieves much better perfor-
mance than the other six compared algorithms on at least nine problems. Compared
with DNSPSO, it still performs much better on seven problems. Particularly, STTPSO
shows significant superiority to DPLPSO on all the 11 problems, and obtains much
better performance than TCSPSO, GLPSO, and CLPSO on 10 problems and shows
no inferiority to the three compared methods on these kinds of problems. Overall,
it is demonstrated that STTPSO is still effective at solving optimization problems,
especially complicated problems, such as multimodal problems, hybrid problems,
and composition problems.

To summarize, as shown in Table 6, on the CEC 2017 benchmark set with different
dimension sizes, we find that the proposed STTPSO not only shows highly competitive
performance against the compared state-of-the-art PSO variants on simple optimization
problems, such as unimodal problems, but also achieves much better performance on
complicated optimization problems, such as multimodal problems, hybrid problems and
composition problems. In particular, we find that the superiority of STTPSO to the com-
pared state-of-the-art methods is far more conspicuous regarding complicated problems,
such as hybrid problems and composition problems. On the other hand, it can be con-
cluded that STTPSO preserves a good scalability to solve optimization problems, since
it consistently achieves the best overall performance on the CEC 2017 set with the three
dimension sizes. Moreover, it is found that as the dimensionality increases, the superiority
of STTPSO to certain compared algorithms become much more evident.

The above extensive experiments have demonstrated the effectiveness of STTPSO
in solving optimization problems. To further demonstrate its efficiency in tackling opti-
mization problems, we conduct experiments on the 50D CEC 2017 benchmark set to form
convergence comparisons between STTPSO and the seven compared algorithms. Figure 1
presents the comparison results on the 16 50D CEC 2017 problems of different categories.

From Figure 1, the following observations can be obtained. (1) At a first glance,
STTPSO obtains much better performance in terms of both convergence speed and solution
quality on 12 problems (f 5, f 7, f 9, f 11, f 12, f 16, f 17, f 20, f 21, f 23, f 24, and f 29). (2) On f 19 and
f 26, STTPSO shows clear dominance to six compared methods regarding both convergence
speed and solution quality, and only presents inferiority to only one of the compared meth-
ods. (3) On f 1 and f 14, STTPSO displays conspicuously faster convergence speed and higher
solution quality than five compared methods, and only presents slight inferiority to two
compared methods. (4) Overall, it is demonstrated that STTPSO could solve optimization
problems with both high effectiveness and efficiency.

The superiority of STTPSO mainly benefits from the proposed stochastic triad strategy
along with the devised archive, the restart mechanism and the dynamic parameter adjust-
ment strategy. These strategies cooperate cohesively to improve the learning diversity and
learning effectiveness of particles, which help the swarm explore and exploit the solution
space properly to find the optima of optimization problems. To investigate the influence
of the four components, we will conduct a thorough investigation on STTPSO in the
following subsection.
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Figure 1. Convergence behavior comparisons between STTPSO and the seven compared algorithms
on the 16 50D CEC 2017 benchmark problems.

4.3. Deep Investigation on STTPSO

In this section, we aim to verify the effectiveness of each component in STTPSO by
conducting experiments on the 50-D CEC 2017 benchmark set.

4.3.1. Effectiveness of the Reformulation of the Stochastic Triad Topology

First, we conduct experiments to verify the effectiveness of the reformulation of the
stochastic triad topology. In Section 3.1, we mentioned that in order to retain the learning
effectiveness of particles, we let the triad topology structure remain fixed for each particle
and then adjust it based on the evolution state of this particle. In particular, when the
personal best position (pbest) of one particle keeps unchanged for stopmax times, we then
reformulate the triad topology by randomly selecting two personal positions from those of
the current swarm and the archive. In this way, both the learning effectiveness and learning
diversity of particles can be guaranteed.
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To verify the effectiveness of this strategy, we fix stopmax as different values as shown
in Table 7. It should be mentioned that the larger the value of stopmax, the less frequently
the triad topology structure changes. In particular, when stopmax = 0, the triad structure is
consequently changed in every generation. The comparison results among STTPSO with
different settings of stopmax is shown in Table 7.

From Table 7, it is found that (1) from the perspective of the Friedman test,
stopmax = 30 helps STTPSO achieve the best overall performance on the 50-D CEC 2017
benchmark set. In particular, we find that the rank value (2.14) of STTPSO with stopmax = 30
is much smaller than those (at least 4.31) of STTPSO with other settings. This indicates that
the superiority of stopmax = 30 is much more significant than the other settings. Moreover,
we also find that STTPSO with small stopmax, such as stopmax = 0 and stopmax = 5 achieve
a much worse performance. This demonstrates an absence of beneficial effects regarding
STTPSO frequently changing the triad structure. (2) Through meticulous observation,
we find that STTPSO with stopmax = 30 achieves the best performance on 22 problems.
Concerning the other seven problems, its performance is extremely close to the STTPSO
with the associated optimal settings of stopmax.

Based on the above observations, it is verified that the reformulation of the triad topology
is very helpful for STTPSO to achieve promising performance. In particular, such reformulation
should bear neither an excessively high frequency, nor an excessively low frequency.

4.3.2. Effectiveness of the Additional Archive and the Proposed Random Restart Strategy

Subsequently, we conduct experiments to verify the effectiveness of the additional archive
and the random restart strategy. To this end, we first remove the additional archive from
STTPSO, deriving a new version of STTPSO, which we name as STTPSO_WA. Then, we remove
the restart strategy from STTPSO, deriving another version of STTPSO, which we denote as
STTPSO_WR. Subsequently, we conduct experiments on the 50-D CEC 2017 benchmark set to
compare the three versions of STTPSO. Table 8 displays the comparison results.

From Table 8, it is discovered that STTPSO with both the archive and the restart
strategy achieves the best overall performance than the other two versions of STTPSO.
In particular, we find that STTPSO_WR obtains the worst performance. This indicates
that compared with the archive, the restart strategy is far more helpful. This is because
compared with the archive, which stores the obsolete historical information, the restart
strategy is more effective at improving the swarm diversity since it can introduce new
solutions into the archive to promote the learning diversity of particles.

4.3.3. Effectiveness of the Dynamic Acceleration Coefficients

At last, we conduct experiments to verify the effectiveness of the devised dynamic ac-
celeration coefficient strategy. In Section 3.2, instead of using fixed acceleration coefficients,
the proposed STTPSO first randomly samples two different values based on the Gaussian
distribution, and then the larger one between the two sampled values is utilized as c1, while
the smaller one is utilized as c2. In this way, a promising balance between exploration and
exploitation can be preserved. To validate this, we first denote the original strategy in this
paper as “Dynamic”. Then, we replace the settings of c1 and c2 with two other settings. The
first is to directly utilize the sampled values as c1 and c2 without comparison, which we
denote as “Dynamic2”. The other is to utilize the smaller one between the two sampled
values as c1, and the larger one as c2, which is a converse setting of the one used in this
paper, which we denote as “Dynamic3”. Lastly, as the baseline comparison, we adopt fixed
settings for c1 and c2 by varying them from 1.0 to 2.0. Table 9 shows the comparison results
between STTPSO with different settings of c1 and c2 on the 50-D CEC 2017 benchmark set.



Mathematics 2022, 10, 1032 33 of 39

Table 7. Comparison results between STTPSO with different settings of stagnation times on the 50D CEC 2017 functions. The best results are highlighted in bold.

f stopmax = 0 stopmax = 5 stopmax = 10 stopmax = 15 stopmax = 20 stopmax = 25 stopmax = 30 stopmax = 35 stopmax = 40

f 1 9.66 × 106 1.07 × 104 7.82 × 103 6.64 × 103 6.20 × 103 9.07 × 103 4.33 × 103 7.55 × 103 8.64 × 103

f 3 1.75 × 105 7.17 × 104 6.60 × 104 6.66 × 104 6.17 × 104 6.53 × 104 5.85 × 104 6.16 × 104 6.14 × 104

f 4 2.32 × 102 1.97 × 102 1.88 × 102 1.91 × 102 1.95 × 102 1.83 × 102 1.69 × 102 1.74 × 102 1.87 × 102

f 5 3.99 × 102 9.49 × 101 1.50 × 101 1.47 × 101 1.77 × 101 1.67 × 101 9.09 × 100 1.84 × 101 1.69 × 101

f 6 6.74 × 100 8.56 × 10−7 1.51 × 10−6 1.26 × 10−6 1.78 × 10−6 1.50 × 10−6 4.48 × 10−6 1.83 × 10−6 2.53 × 10−6

f 7 4.76 × 102 3.35 × 102 1.16 × 102 6.12 × 101 6.52 × 101 6.75 × 101 6.33 × 101 6.90 × 101 6.32 × 101

f 8 3.97 × 102 4.72 × 101 1.68 × 101 1.74 × 101 1.63 × 101 1.73 × 101 9.35 × 100 1.80 × 101 1.81 × 101

f 9 1.46 × 102 6.68 × 10−1 1.62 × 100 1.39 × 100 1.92 × 100 1.93 × 100 8.56 × 10−1 1.19 × 100 1.17 × 100

f 10 1.32 × 104 1.25 × 104 1.22 × 104 1.13 × 104 1.15 × 104 1.14 × 104 3.49 × 103 1.09 × 104 1.09 × 104

f 11 5.40 × 102 4.67 × 101 5.27 × 101 5.62 × 101 5.81 × 101 6.07 × 101 6.12 × 101 5.77 × 101 6.07 × 101

f 12 7.61 × 107 2.82 × 106 1.83 × 106 2.12 × 106 2.16 × 106 1.64 × 106 8.89 × 105 1.64 × 106 1.69 × 106

f 13 3.65 × 104 3.01 × 104 2.19 × 104 3.04 × 104 2.92 × 104 2.72 × 104 1.63 × 104 2.70 × 104 2.64 × 104

f 14 4.53 × 105 2.17 × 105 2.34 × 105 1.77 × 105 1.74 × 105 2.21 × 105 7.09 × 104 2.19 × 105 1.83 × 105

f 15 3.11 × 104 3.13 × 104 3.13 × 104 2.98 × 104 3.12 × 104 3.11 × 104 1.32 × 104 3.00 × 104 3.00 × 104

f 16 3.04 × 103 1.71 × 103 6.33 × 102 4.70 × 102 4.38 × 102 5.28 × 102 4.23 × 102 5.27 × 102 5.81 × 102

f 17 1.95 × 103 1.04 × 103 7.59 × 102 5.10 × 102 4.22 × 102 3.80 × 102 3.11 × 102 5.28 × 102 6.00 × 102

f 18 5.94 × 106 2.78 × 106 2.51 × 106 2.00 × 106 1.82 × 106 1.82 × 106 4.28 × 105 1.51 × 106 1.64 × 106

f 19 2.46 × 103 2.29 × 103 2.11 × 103 2.02 × 103 1.91 × 103 1.90 × 103 4.33 × 103 1.69 × 103 1.81 × 103

f 20 1.63 × 103 1.29 × 103 1.17 × 103 1.01 × 103 8.36 × 102 8.01 × 102 1.76 × 102 6.15 × 102 6.60 × 102

f 21 6.00 × 102 2.79 × 102 2.28 × 102 2.28 × 102 2.30 × 102 2.29 × 102 2.22 × 102 2.32 × 102 2.32 × 102

f 22 1.33 × 104 1.21 × 104 1.19 × 104 1.05 × 104 9.73 × 103 1.02 × 104 3.10 × 103 9.29 × 103 9.76 × 103

f 23 8.36 × 102 5.13 × 102 5.11 × 102 5.14 × 102 5.18 × 102 5.18 × 102 5.09 × 102 5.21 × 102 5.20 × 102

f 24 8.85 × 102 5.98 × 102 5.89 × 102 5.90 × 102 5.94 × 102 5.91 × 102 5.83 × 102 5.96 × 102 5.95 × 102

f 25 5.48 × 102 4.81 × 102 4.82 × 102 4.83 × 102 4.81 × 102 4.82 × 102 5.06 × 102 4.84 × 102 4.83 × 102

f 26 5.49 × 103 2.37 × 103 2.40 × 103 2.45 × 103 2.51 × 103 2.51 × 103 2.27 × 103 2.54 × 103 2.57 × 103

f 27 6.92 × 102 7.72 × 102 7.66 × 102 7.52 × 102 7.59 × 102 7.56 × 102 6.94 × 102 7.59 × 102 7.63 × 102

f 28 5.01 × 103 4.99 × 103 4.30 × 103 5.00 × 103 4.92 × 103 4.96 × 103 9.06 × 102 4.77 × 103 4.78 × 103

f 29 2.07 × 103 1.32 × 103 1.16 × 103 1.00 × 103 1.03 × 103 9.13 × 102 5.90 × 102 9.35 × 102 1.01 × 103

f 30 1.57 × 106 1.52 × 106 1.45 × 106 1.36 × 106 1.37 × 106 1.34 × 106 8.55 × 105 1.15 × 106 1.24 × 106

rank 8.55 6.52 5.14 4.31 4.69 4.62 2.14 4.31 4.72
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Table 8. Comparison results between STTPSO with and without the archive and the restart strategy
on the 50-D CEC 2017 functions. The best results are highlighted in bold.

f STTPSO STTPSO_WR STTPSO_WA

f 1 4.33 × 103 8.59 × 103 5.75 × 103

f 3 5.85 × 104 6.82 × 104 6.08 × 104

f 4 1.69 × 102 1.96 × 102 1.96 × 102

f 5 9.09 × 100 1.64 × 101 1.46 × 101

f 6 4.48 × 10−6 2.38 × 10−6 3.85 × 10−6

f 7 6.33 × 101 9.71 × 101 5.95 × 101

f 8 9.35 × 100 1.56 × 101 1.45 × 101

f 9 8.56 × 10−1 1.59 × 100 1.57 × 100

f 10 3.49 × 103 1.21 × 104 1.18 × 104

f 11 6.12 × 101 5.07 × 101 5.07 × 101

f 12 8.89 × 105 2.46 × 106 1.85 × 106

f 13 1.63 × 104 2.52 × 104 2.46 × 104

f 14 7.09 × 104 2.17 × 105 1.88 × 105

f 15 1.32 × 104 3.13 × 104 2.70 × 104

f 16 4.23 × 102 6.87 × 102 6.41 × 102

f 17 3.11 × 102 5.46 × 102 3.78 × 102

f 18 4.28 × 105 1.99 × 106 1.63 × 106

f 19 4.33 × 103 2.16 × 103 2.03 × 103

f 20 1.76 × 102 1.12 × 103 8.45 × 102

f 21 2.22 × 102 2.29 × 102 2.27 × 102

f 22 3.10 × 103 1.15 × 104 1.01 × 104

f 23 5.09 × 102 5.12 × 102 5.16 × 102

f 24 5.83 × 102 5.94 × 102 5.98 × 102

f 25 5.06 × 102 4.81 × 102 4.82 × 102

f 26 2.27 × 103 2.40 × 103 2.47 × 103

f 27 6.94 × 102 7.56 × 102 7.47 × 102

f 28 9.06 × 102 4.96 × 103 4.34 × 103

f 29 5.90 × 102 1.01 × 103 8.27 × 102

f 30 8.55 × 105 1.30 × 106 1.12 × 106

rank 1.31 2.62 2.07

From Table 9, it is observed that from the average rank obtained from the Friedman
test, the proposed dynamic strategy for c1 and c2 helps STTPSO achieve the best overall
performance among all setting versions of c1 and c2. This demonstrates that the proposed
dynamic strategy is extremely effective for STTPSO to achieve good performance. In
particular, compared with the fixed settings, the proposed dynamic strategy helps STTPSO
achieve much better performance than all the fixed settings. This demonstrates the dynamic
sampling of c1 and c2 is far more effective than fixed ones. In comparison with the other
two dynamic strategies, STTPSO with the proposed dynamic strategy obtains significantly
better performance than those with the other two dynamic strategies. This demonstrates
utilization of the larger one between the sampled values as c1 and the smaller one as c2
is far more effective. Together, we can observe that the proposed dynamic acceleration
coefficient strategy is helpful in order for STTPSO to achieve good performance.
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Table 9. Comparison results between STTPSO with different acceleration coefficient settings on the 50D CEC 2017 functions. The best results are highlighted in bold.

f Dynamic Dynamic1 Dynamic2
c1 = 1.0 c1 = 1.5 c1 = 2.0

c2 = 1.0 c2 = 1.5 c2 = 2.0 c2 = 1.0 c2 = 1.5 c2 = 2.0 c2 = 1.0 c2 = 1.5 c2 = 2.0

f 1 4.33 × 103 7.70 × 103 8.72 × 103 2.44 × 103 4.08 × 103 7.78 × 103 6.41 × 103 7.75 × 103 1.74 × 104 1.37 × 104 1.93 × 104 5.31 × 107

f 3 5.85 × 104 6.84 × 104 6.43 × 104 6.42 × 104 7.20 × 104 7.39 × 104 5.43 × 104 6.76 × 104 9.44 × 104 6.18 × 104 9.54 × 104 1.46 × 105

f 4 1.69 × 102 1.91 × 102 1.90 × 102 1.18 × 102 1.75 × 102 1.94 × 102 1.91 × 102 1.84 × 102 1.93 × 102 1.80 × 102 1.93 × 102 2.33 × 102

f 5 9.09 × 100 1.68 × 101 1.82 × 101 9.78 × 100 8.50 × 100 1.08 × 101 1.72 × 101 1.71 × 101 2.90 × 102 2.89 × 101 2.94 × 102 3.90 × 102

f 6 4.48 × 10−6 2.37 × 10−4 2.39 × 10−6 7.32 × 10−5 5.44 × 10−6 1.27 × 10−6 8.07 × 10−4 1.50 × 10−6 3.54 × 10−4 3.90 × 10−5 3.99 × 10−3 3.02 × 100

f 7 6.33 × 101 9.75 × 101 7.80 × 101 6.67 × 101 6.24 × 101 1.80 × 102 6.07 × 101 9.58 × 101 3.61 × 102 1.03 × 102 3.65 × 102 4.44 × 102

f 8 9.35 × 100 1.70 × 101 1.76 × 101 8.57 × 100 8.18 × 100 1.13 × 101 1.68 × 101 1.77 × 101 2.85 × 102 2.87 × 101 2.74 × 102 3.88 × 102

f 9 8.56 × 10−1 1.74 × 100 1.60 × 100 6.85 × 10−1 3.14 × 10−1 8.52 × 10−1 1.22 × 100 1.49 × 100 2.31 × 100 4.38 × 100 3.46 × 100 2.95 × 102

f 10 3.49 × 103 1.22 × 104 1.21 × 104 3.52 × 103 7.09 × 103 1.22 × 104 7.77 × 103 1.23 × 104 1.27 × 104 1.14 × 104 1.29 × 104 1.28 × 104

f 11 6.12 × 101 5.16 × 101 5.39 × 101 7.72 × 101 5.91 × 101 4.65 × 101 5.81 × 101 5.04 × 101 1.72 × 102 8.09 × 101 1.91 × 102 4.75 × 102

f 12 8.89 × 105 2.18 × 106 2.40 × 106 7.14 × 105 1.23 × 106 1.87 × 106 1.46 × 106 2.16 × 106 5.52 × 106 3.38 × 106 6.65 × 106 1.08 × 108

f 13 1.63 × 104 3.26 × 104 3.00 × 104 9.33 × 103 1.82 × 104 2.72 × 104 2.11 × 104 3.14 × 104 3.61 × 104 3.65 × 104 3.63 × 104 3.77 × 104

f 14 7.09 × 104 2.77 × 105 2.14 × 105 7.15 × 104 1.02 × 105 1.81 × 105 1.93 × 105 2.41 × 105 2.84 × 105 2.43 × 105 2.40 × 105 4.09 × 105

f 15 1.32 × 104 3.12 × 104 3.14 × 104 3.71 × 103 2.15 × 104 2.97 × 104 3.07 × 104 3.12 × 104 3.15 × 104 3.15 × 104 3.15 × 104 3.19 × 104

f 16 4.23 × 102 6.14 × 102 5.99 × 102 4.96 × 102 4.02 × 102 6.90 × 102 3.92 × 102 5.46 × 102 2.26 × 103 6.08 × 102 2.16 × 103 2.80 × 103

f 17 3.11 × 102 7.20 × 102 6.73 × 102 3.01 × 102 3.85 × 102 7.63 × 102 2.39 × 102 5.93 × 102 1.38 × 103 4.69 × 102 1.26 × 103 1.78 × 103

f 18 4.28 × 105 2.45 × 106 2.39 × 106 3.80 × 105 6.79 × 105 1.55 × 106 1.64 × 106 2.45 × 106 3.21 × 106 2.25 × 106 3.06 × 106 4.03 × 106

f 19 4.33 × 103 2.09 × 103 2.20 × 103 5.91 × 103 1.75 × 103 1.86 × 103 1.70 × 103 2.14 × 103 2.32 × 103 2.37 × 103 2.40 × 103 2.48 × 103

f 20 1.76 × 102 1.13 × 103 1.12 × 103 1.73 × 102 4.35 × 102 1.11 × 103 4.18 × 102 1.17 × 103 1.32 × 103 1.11 × 103 1.36 × 103 1.47 × 103

f 21 2.22 × 102 2.27 × 102 2.30 × 102 2.32 × 102 2.33 × 102 2.22 × 102 2.30 × 102 2.30 × 102 4.92 × 102 2.43 × 102 4.82 × 102 5.92 × 102

f 22 3.10 × 103 1.17 × 104 1.18 × 104 3.24 × 103 4.42 × 103 1.18 × 104 4.83 × 103 1.18 × 104 1.25 × 104 1.23 × 104 1.28 × 104 1.29 × 104

f 23 5.09 × 102 5.18 × 102 5.16 × 102 5.36 × 102 5.40 × 102 5.04 × 102 5.22 × 102 5.15 × 102 6.38 × 102 5.27 × 102 6.32 × 102 8.21 × 102

f 24 5.83 × 102 5.89 × 102 5.87 × 102 6.04 × 102 6.06 × 102 5.73 × 102 5.90 × 102 5.90 × 102 7.90 × 102 5.88 × 102 7.45 × 102 8.85 × 102

f 25 5.06 × 102 4.83 × 102 4.84 × 102 5.51 × 102 5.16 × 102 4.80 × 102 4.84 × 102 4.82 × 102 5.24 × 102 5.16 × 102 5.31 × 102 5.69 × 102

f 26 2.27 × 103 2.44 × 103 2.49 × 103 2.15 × 103 2.34 × 103 2.28 × 103 2.40 × 103 2.42 × 103 2.65 × 103 2.56 × 103 2.67 × 103 5.09 × 103

f 27 6.94 × 102 7.43 × 102 7.67 × 102 7.46 × 102 7.31 × 102 7.07 × 102 7.75 × 102 7.53 × 102 7.42 × 102 8.28 × 102 8.04 × 102 7.80 × 102

f 28 9.06 × 102 5.13 × 103 5.10 × 103 5.29 × 102 5.27 × 102 2.37 × 103 4.60 × 103 5.14 × 103 5.30 × 103 5.67 × 103 5.66 × 103 5.74 × 103

f 29 5.90 × 102 1.14 × 103 1.33 × 103 5.62 × 102 5.92 × 102 8.11 × 102 1.13 × 103 1.13 × 103 1.43 × 103 1.80 × 103 1.62 × 103 1.80 × 103

f 30 8.55 × 105 1.48 × 106 1.38 × 106 8.27 × 105 9.18 × 105 1.33 × 106 1.29 × 106 1.41 × 106 1.53 × 106 1.59 × 106 1.54 × 106 1.51 × 106

rank 2.83 6.45 6.21 3.66 3.79 4.66 4.55 5.97 9.72 8.10 10.38 11.69
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5. Conclusions

This paper has devised a stochastic triad topology-based particle swarm optimization
(STTPSO) algorithm to solve optimization problems. Specifically, in this optimizer, for
each particle, a triad topology is utilized to connect the personal best position of this
particle and two other personal best positions randomly selected from those of particles
in the current swarm and an additional archive used to store obsolete historical best
positions. Then, the best one in the topology and the mean position of the connected
triad personal best positions are employed to update each particle. In addition, during
the evolution, the triad topology structure of each particle is dynamically updated based
on its evolution state. In this way, the learning diversity and learning effectiveness of
particles could be largely promoted, so that the swarm could explore and exploit the
solution space appropriately. To further improve the swarm diversity, a random restart
strategy is proposed by randomly initializing a feasible solution and then inserting into the
archive. To alleviate the sensitivity of STTPSO to the acceleration coefficients, a dynamic
acceleration coefficient strategy is devised based on the Gaussian distribution. With the
above mechanisms, the proposed STTPSO is expected to search the solution space with
proper intensification and diversification to achieve promising performance.

Extensive comparative experiments conducted on the CEC 2017 benchmark set with
three different dimension sizes have demonstrated the effectiveness of STTPSO. Compared
with seven state-of-the-art PSO variants, the proposed STTPSO consistently achieves the
best overall performance on the CEC 2017 set with the three dimension sizes. In particu-
lar, we find that STTPSO exhibits much better performance than the compared methods
regarding complicated optimization problems, such as hybrid problems and composition
problems. In addition, the experimental results verified that STTPSO preserves a good
scalability to solve optimization problems. In depth investigation on the proposed STTPSO
was also conducted to validate the effectiveness of each component in STTPSO. Experimen-
tal results demonstrated each component as being of great benefit for STTPSO to achieve
good performance.

However, from Tables 3–5, we can see that the results obtained by STTPSO on certain
problems remain far from the true optima. Therefore, its optimization performance still
requires improvement. In this paper, we adjusted the parameters in STTPSO dynamically
without considering the evolution state of particles and the difference between particles.
As a result, in future, we will mainly focus on devising adaptive parameter adjustment
strategies by considering both the difference between particles and the evolution state of
particles to further promote the optimization ability of STTPSO.
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