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Abstract: Optimization problems are ubiquitous in every field, and they are becoming more and
more complex, which greatly challenges the effectiveness of existing optimization methods. To solve
the increasingly complicated optimization problems with high effectiveness, this paper proposes an
adaptive covariance scaling estimation of distribution algorithm (ACSEDA) based on the Gaussian
distribution model. Unlike traditional EDAs, which estimate the covariance and the mean vector,
based on the same selected promising individuals, ACSEDA calculates the covariance according
to an enlarged number of promising individuals (compared with those for the mean vector). To
alleviate the sensitivity of the parameters in promising individual selections, this paper further
devises an adaptive promising individual selection strategy for the estimation of the mean vector
and an adaptive covariance scaling strategy for the covariance estimation. These two adaptive
strategies dynamically adjust the associated numbers of promising individuals as the evolution
continues. In addition, we further devise a cross-generation individual selection strategy for the
parent population, used to estimate the probability distribution by combing the sampled offspring
in the last generation and the one in the current generation. With the above mechanisms, ACSEDA
is expected to compromise intensification and diversification of the search process to explore and
exploit the solution space and thus could achieve promising performance. To verify the effectiveness
of ACSEDA, extensive experiments are conducted on 30 widely used benchmark optimization
problems with different dimension sizes. Experimental results demonstrate that the proposed
ACSEDA presents significant superiority to several state-of-the-art EDA variants, and it preserves
good scalability in solving optimization problems.

Keywords: estimation of distribution algorithm; covariance scaling; gaussian distribution; meta-heuristic
algorithm; problem optimization

1. Introduction

Optimization problems are ubiquitous in daily life and industrial engineering [1,2],
such as protein structure prediction [3], community detection [4], control of pollutant
spreading [5] and multi-compartment electric vehicle routing [6]. These optimization
problems often preserve characteristics such as non-convex, discontinuous, and non-
differentiable [7–10], which greatly challenge the effectiveness of traditional gradient-based
optimization algorithms or even make them infeasible [11]. In particular, in the era of
big data and the Internet of Things, optimization problems are becoming more and more
complex due to the increase in dimensionality [12–14]. For instance, some unimodal prob-
lems become multimodal with many local optima [15], while some multimodal problems
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become more complicated with an increasing number of wide and flat local areas [16–18].
Such complicated optimization problems are becoming more and more common nowadays,
and thus, it is urgent to develop effective optimization algorithms to solve them, so as to
promote the development of related fields.

As a kind of gradient-free meta-heuristic algorithm, estimation of distribution algo-
rithm (EDA) mainly maintains a population of individuals to iteratively search the solution
space, with each individual representing a feasible solution [19]. During each generation,
it selects a number of promising individuals to estimate the probability distribution of
the population, and it then randomly samples a new population of solutions based on
the estimated probability distribution [20,21]. Due to the randomness in sampling the
offspring, EDA preserves high diversity and strong global search ability [22]. Therefore, a
lot of researchers have paid extensive attention to developing effective EDAs, and, conse-
quently, not only have EDAs been applied to solve various optimization problems, such as
multimodal optimization problems [23] and multi-objective optimization problems [24],
but also they have been employed to solve many real-world problems, such as multi-
policy insurance investment planning [25] and multi-source heterogeneous user-generated
content-driven interactive [22].

In the literature, most EDAs utilize the Gaussian distribution model to evaluate the
probability distribution of the population, which is then adopted to sample new solu-
tions [26,27]. During the estimation of the distribution, based on whether the correlation
between variables is considered, the current Gaussian estimations of distribution algo-
rithms (GEDAs) are mainly divided into two categories [20,27,28], namely univariate
GEDAs (UGEDAs) [29–31] and multivariate GEDAs (MGEDAs) [32–36].

UGEDAs [30] consider that each variable is independent on each other. Therefore, the
probability distribution of each variable is estimated individually. The most advantageous
property of UGEDAs is that the computational cost of the distribution estimation and the
offspring sampling is low [31]. However, their effectiveness deteriorates drastically when
confronted with optimization problems with interacted variables [29].

Different from UGEDAs, MGEDAs take the correlation among variables into con-
sideration [34], which is realized by estimating the covariance among all variables. With
the covariance matrix, MGEDAs could capture the structure of the optimization problem
and thus implicitly offer useful information to direct the search of the population [35].
Due to this advantage, MGEDAs achieve much better performance than UGEDAs, espe-
cially on problems with many interactive variables [20]. As a result, MGEDAs have been
extensively researched in the literature [37–39]. However, such superiority of MGEDAs
is at the sacrifice of efficiency, as calculating the covariance among all variables is very
time-consuming [32].

In MGEDAs, the parameters (i.e., the mean vector and the covariance matrix) of the
probability distribution are usually estimated based on a certain number of promising
individuals [28]. Specifically, in the probability distribution, the mean vector plays a
key role in controlling the center of the offspring to be sampled, while the covariance
takes charge of the range of the offspring around the center. In other words, the mean
vector makes a crucial influence on the convergence of the population to the optimal areas,
while the covariance affects the population diversity [40]. Therefore, to maintain high
search diversity for EDAs, many researchers have designed variance or covariance scaling
methods [37,41–43] to enlarge the sampling range of the estimated probability distribution.
However, on the one side, the basic covariance (variance) is still estimated on the same
promising individuals selected for the estimation of the mean vector in most existing
GEDAs. Therefore, after the covariance (variance) scaling, implemented by multiplying a
scaling factor on the estimated covariance (variance) in most covariance scaling methods,
the learned structure of the optimization problem, by them, remains unchanged; on the
other side, most existing covariance (variance) scaling methods enlarge the estimated
covariance (variance) the same degree in different directions.
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To remedy the above shortcomings, this paper devises an adaptive covariance scaling
method for MGEDAs, leading to an adaptive covariance scaling estimation of distribution
algorithm (ACSEDA). Specifically, for the estimation of the mean vector in the probability
distribution, it is the same as existing MGEDAs, namely estimating it based on a certain
number of promising individuals. However, for the estimation of the covariance in the
probability distribution, different from existing MGEDAs, ACSEDA first adaptively en-
larges the number of promising individuals, and then, it calculates the covariance on the
basis of the scaled promising individuals. In this way, the sampling range of the estimated
probability distribution could be enlarged, which is helpful for sampling diversified off-
spring. As a result, the search diversity of EDA could be amplified, and thus, the chance of
falling into local areas could be declined.

As a whole, the main contributions of this paper are summarized as follows:

(1) An adaptive covariance scaling method is proposed to adaptively enlarge the sam-
pling range of the estimated probability distribution. Different from most existing
covariance scaling methods, we scale the covariance by calculating the covariance
based on an amplified number of promising individuals. As a result, not only could
the learned structure of the optimization problem captured by the algorithm be im-
proved but the covariance in different directions is also scaled differently. In this way,
it is expected that the sampled offspring are not only of high quality, but they are also
diversified in different areas.

(2) An adaptive selection of promising individuals for the estimation of the mean vector
is further designed by adaptively decreasing the selection ratio, which is the number
of the selected promising individuals out of the whole population. In this way, the
estimated mean vector, namely the center of the offspring to be sampled, is gradually
close to the promising areas that the current population covers. Therefore, the search
process is gradually biased toward exploiting the solution space to refine the solution
accuracy. However, it should be mentioned that such a bias is not greedy and not
at the serious sacrifice of the population diversity because of the aforementioned
covariance scaling technique.

(3) A cross-generation individual selection scheme, for the parent population to estimate
the probability distribution, is devised by combining the sampled offspring in the
last generation and the one in the current generation to select parent individuals for
the next generation. Instead of directly utilizing the sampled offspring as the parent
population for the next generation in most existing MGEDAs, the proposed ACSEDA
combines the sampled offspring in the last generation and the one in the current
generation to select the top half best individuals to form the parent population for the
next generation. In this way, the parent population formed is neither too crowded
nor too scattered, and thus, the estimated probability distribution is of high quality to
sample slightly diversified offspring to approach the optimal areas.

(4) With the above mechanisms, the proposed ACSEDA is expected to compromise
intensification and diversification of the search process well to explore and exploit
the solution space and could thus achieve promising performance.

To verify the effectiveness of the proposed ACSEDA, this paper conducts extensive
experiments on the widely used CEC2014 [44] benchmark optimization problems, with
different dimension sizes, by comparing ACSEDA to 7 state-of-the-art GEDAs. In addi-
tion, deep investigations on the components of ACSEDA are also taken to observe what
contributes to its promising performance in solving optimization problems.

The remainder of this study is organized as follows: Section 2 reviews related works
on GEDAs; then, the proposed ACSEDA is elucidated in detail in Section 3; in Section 4,
extensive experiments are conducted to verify the effectiveness of the developed ACSEDA;
last, in Section 5, conclusions are presented.
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2. Related Work
2.1. Basic GEDA

The overall framework of a general GEDA is outlined in Algorithm 1. As a whole,
the basic principle of GEDA is to iteratively build a Gaussian probability distribution
model, based on a certain number of promising individuals selected from the current
population, and then sample new individuals based on the built probability model for the
next generation [21].

Algorithm 1: The Procedure of GEDA.

Input: population size PS, selection ratio sr;
1: Set g = 0, and randomly initialize the population Pg;
2: Obtain the global best solution Gbest;
3: Repeat
4: Select dsr ∗ PSe promising solutions Sg from Pg;
5: Build a Gaussian probability distribution model Gg based on Sg;
6: Randomly generate a new population Pg+1 by sampling from Gg;
7: Update the global best solution Gbest;
8: g = g + 1;
9: Until the stopping criterion is met.
Output: the global best solution Gbest;

Specifically, as shown in Algorithm 1, given that the population size is PS and the
selection ratio is sr (which is the number of selected promising individuals out of the
whole population), the number of selected promising individuals in each generation is
s = dsr ∗ PSe. After PS individuals are initialized randomly and evaluated accordingly, as
shown in Line 1, the global best solution found so far is obtained (as shown in Line 2).
Subsequently, it comes to the main iteration of the algorithm. First, a set (S) of s promising
individuals are selected from the current population (Line 4). Then, a Gaussian probability
distribution model is estimated based on the selected individuals (Line 5). After that,
PS new individuals are randomly sampled based on the estimated Gaussian distribution
to form a new population (Line 6). Subsequently, the newly generated individuals are
evaluated, and the global best solution is updated. The above process proceeds repeatedly
until the termination condition is met. At last, the found global best solution is output.

In GEDAs, the key component is the way to estimate the probability distribution.
Different manners of probability distribution estimation result in different kinds of GEDAs.
In the literature, based on whether the linkage between variables is considered, existing
GEDAs are mainly classified into two categories [20,27,28], namely univariate GEDAs
(UGEDAs) [29–31,45,46] and multivariate GEDAs [27,32–36].

(1) UGEDAs: In UGEDAs [29,45,46], each variable is considered to be separable and
independent on each other. As a result, the probability distribution of D variables
can be estimated separately, and the joint probability distribution of D variables is
computed as follows:

P(x1, x2, . . . , xD) =
D

∏
i=1

P(xi). (1)

where P(xi) is the probability distribution of the ith variable, which is estimated as:

P(xi) =
1

σi
√

2π
e−

(xi−µi)
2

2σi (2)

where ui and σi are the mean value and the variance of the ith variable respectively,
which are calculated as follows:

µi =
1
s

s

∑
j=1

Sj
i (3)
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σi =

√√√√(
1

s− 1

s

∑
j=1

(Sj
i − µi)

2
) (4)

where S is the set of the selected promising individuals, Sj
i is the ith dimension of the

jth promising individual in S, and D denotes the dimension size of the optimization
problem. Based on the estimated probability distribution of each variable, a new
solution can be constructed by randomly sampling a new value of each variable
separately, based on the associated probability distribution.

(2) MGEDAs: In MGEDAs [33–36], the correlations between variables are taken into
consideration to estimate the probability distribution. Consequently, different from
UGEDAs, the probability distribution of D variables in MGEDAs is estimated together,
and the joint probability distribution of D variables is computed as follows:

P(x1, x2, . . . , xD) =
1√

(2π)D
∣∣∣C∣∣∣ e

(− 1
2 (X−µ)TC−1(X−µ)) (5)

where u is the mean vector of the multivariate Gaussian distribution, which is calcu-
lated by Equation (3). C is the covariance matrix, which is calculated as follows:

C =
1

s− 1
(S− µ)(S− µ)T (6)

Based on the estimated joint probability distribution, a new solution is constructed by
jointly sampling values for all variables, randomly, from the multivariate Gaussian
distribution model. In general, to make the sampling of new solutions simple, a
modified version presented below is usually utilized to generate the offspring in most
MGEDAs [32,35]:

X = µ + AΛZ
Z ∼ N(0, 1)

(7)

C = AΛ2AT (8)

where A is the eigenvector matrix of C, and Λ is the diagonal matrix whose entries
are the square root of the eigenvalues of C. Z is a real number vector, each value of
which is randomly sampled from a standard normal distribution separately.

With respect to the computational cost, UGEDAs are less time-consuming, while
MGEDAs take more computational cost due to the calculation of the covariance matrix
[33–35]. However, in terms of the optimization performance, MGEDAs show much better
performance, especially on problems with many interacted variables, while UGEDAs only
present promising performance on separable optimization problems [29,30,47]. This is
because MGEDAs could capture the interaction between variables and thus evolve the
population more effectively than UGEDAs [27,37,48].

2.2. Recent Advance of GEDAs

During the optimization, one crucial challenge that most existing GEDAs encounter
is the rapid shrinkage of the variance (or the covariance) [20,42,43], which leads to the
quickly narrowed sampling range of the probability distribution. This may lead to a quick
loss of the search diversity and thus may result in premature convergence and falling into
local areas. To remedy this shortcoming, researchers have devoted plenty of attention
to designing novel mechanisms to improve the quality of the probability distribution in
GEDAs [38,49–51].

In [51], the authors demonstrated empirically that high diversity maintenance is very
crucial for EDAs to achieve satisfactory performance. Then, based on the findings, they
further developed a novel three-step method by combining clustering methods with EDAs
to search for the optimal areas with high diversity. To prevent premature convergence
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in EDAs, Pošík [52] directly multiplied a constant factor on the estimated variance of the
Gaussian distribution in each generation to enlarge the sampling range. In [43], Grahl
et al. proposed a correlation-triggered adaptive variance scaling strategy to reduce the
risk of premature convergence and then embedded it into the iterated density–estimation
evolutionary algorithm (IDEA). Specifically, similar to [52], the proposed method multiplies
a factor to the estimated variance. The difference lies in such a factor not being constant
but dynamically adjusted during the evolution, based on whether the global best solution
is improved or not. In addition, such adjustment is triggered based on the correlation
between the ranks of the normal density and the fitness of the selected solutions. To
further trigger the dynamic adjustment of the scaling factor properly, in [42], Bosman
et al. proposed a novel indicator, named Standard–Deviation Ratio (SDR), to trigger the
adjustment adaptively. Specifically, based on this indicator, the variance scaling is triggered
only when the improvements are found to be far away from the mean vector. In [53], a
cross-entropy based adaptive variance scaling method was proposed. In this method, the
difference between the sampled population and the prediction of the probabilistic model is
first measured, and the scaling factor on the variance is then computed by minimizing the
cross-entropy between the two distributions.

Different from the above variance scaling methods that directly multiply a scaling
factor on the estimated variance, in [49], the authors proposed a novel probability density
estimator based on the new mean vector obtained by the anticipated mean shift strategy.
Then, once the new mean vector gets better, the variance estimator adaptively enlarges
the variance without using an explicit factor, but rather, by using the new better mean
vector to calculate the variance. Furthermore, they also developed a reflecting sampling
strategy to further improve the search efficiency of GEDA. Accompanied with these two
schemes, a new GEDA variant named EDAVERS [49] was developed. Subsequently, a novel
anisotropic adaptive variance scaling (AAVS) method was proposed in [41], and a new
GEDA named AAVS-EDA was designed. Specifically, in this algorithm, a topology-based
detection method was devised to detect the landscape characteristics of the optimization
problems, and then, based on the captured characteristics, the variances along different
eigen-directions are anisotropically scaled. In this way, the variances and the main search
direction of GEDA could be simultaneously adjusted. Recently, Liang et al. proposed
a new GEDA variant, named EDA2 [37], to improve the optimization performance of
EDA. Specifically, instead of only utilizing promising individuals in the current generation
to estimate the Gaussian model, this algorithm stores historical high-quality individuals
generated in the previous generations into an archive and adopts these individuals to
collaboratively estimate the covariance of the Gaussian model. In this manner, valuable
historical evolution information could be integrated into the estimated model.

The above mentioned MGEDAs usually adopt the full rank covariance matrix to
estimate the covariance. Since the calculation of the full-rank covariance matrix is very
time-consuming, the computational complexity of most MGEDAs is usually high. To
alleviate this shortcoming, researchers turn to seeking efficient covariance matrix adaption
(CMA) techniques for EDA [54]. As for the covariance matrix, a direct and simple method
to speed up its computation is to reduce the degrees of freedom. To this end, Ros and
Hansen [55] proposed to only update the elements in the diagonal of the covariance matrix,
leading to a de-randomized evolution strategy, named sep-CMA-ES. This method reduces
the updating time and space complexity of the covariance matrix from quadratic to linear.
In [56], the authors devised an adaptive diagonal decoding scheme to accelerate covariance
matrix adaptation. Further, ref. [57] developed a matrix-free CMA strategy by employing
combinations of difference vectors between archived individuals and random vectors,
generated by the univariate Gaussian distribution along directions of the past shifts of
the mean vector. In [58], Beyer and Sendhoff proposed a matrix adaptation evolution
strategy (MA-ES) by removing one evolution path in the calculation of the covariance
matrix, leading to that the covariance update is no longer needed. In [59], Li and Zhang
first designed a rank one evolution strategy by using a single principal search direction,
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which is of linear complexity. Then, they developed a rank-m evolution strategy by
employing multiple search directions. In particular, these two evolution strategies mainly
adopt principal search directions to seek for the optimal low rank approximation to the
covariance matrix. In [60], He et al. put forward a search direction adaptation evolution
strategy (SDA-ES) with linear time and space complexity. Specifically, this algorithm first
models the covariance matrix with an identity matrix along with multiple search directions.
Then, it uses a heuristic to update the search directions such as the principal component
analysis.

Besides the advance of GEDAs in covariance (or variance) scaling and adaption, some
researchers have also attempted to design new ways to shift the mean vector of the Gaussian
distribution model. For instance, in [61], Bosman et al. proposed an anticipated mean shift
to update the mean vector and then used the updated mean vector to calculate the variance.
In addition, some researchers have also attempted to adopt other distribution models,
instead of the Gaussian distribution model, to estimate the probability distribution. For
example, in [62], a probabilistic graphical model was designed to consider the dependencies
between multivariate variables. Specifically, in this algorithm, a parallel of a certain number
of subgraphs, with a smaller number of variables, is estimated separately to capture the
dependencies among variables in each subgraph. Then, each estimated graph model
associated with the subgraph samples new values for the associated variables separately.
In [39], the authors utilized the Boltzmann distribution to build the probability distribution
model in EDA, leading to BUMDA. In particular, the distribution parameters are derived
from the analytical minimization of the Kullback–Leibler divergence. In [50], the authors
devised a novel multiple sub-models maintenance technique for EDA, leading to a new
EDA variant, named maintaining and processing sub-models (MAPS). Specifically, this
algorithm maintains multiple sub-models to detect promising areas.

Since EDAs utilize the estimated probability distribution model to sample new solu-
tions, they generally lack subtle refinement to improve the solution accuracy [63]. To fill
this gap, local search methods are commonly accompanied with EDAs to refine the found
promising solutions [38,49,50]. For instance, in [64], simulated annealing (SA) based local
search operator was incorporated into EDA to balance the exploration and exploitation to
search the solution space properly. Specifically, the SA-based local search is probabilisti-
cally executed on some good solutions to improve their accuracy. To improve the solution
accuracy, Zhou et al. [38] developed cheap and expensive local search methods for EDA,
leading to a new EDA variant named EDA/LS. In particular, this EDA variant adopts a
modified univariate histogram probabilistic model to sample a part of individuals, and it
then utilizes a cheap local search method to sample the rest of the individuals. Besides, it
also employs an expensive local search method to refine the found promising solutions.
Along this direction, an extension of EDA/LS, named EDA/LS-MS, was developed in [65]
by introducing a mean shift strategy to replace the cheap local search method in EDA/LS
to refine some good parent solutions.

Though a lot of remarkable GEDA variants have emerged and shown promising
performance in solving optimization problems, they still encounter limitations, such as
falling into local areas and premature convergence. In particular, it is found that most
existing GEDAs estimate the variance (or covariance) based on the same selected promising
individuals used for the estimation of the mean vector. Although various variance (or co-
variance) scaling methods [37,43,49,53,66] and covariance matrix adaption methods [56–60]
have been proposed to improve the sampling range of the estimated probability distri-
bution model, on the one hand, the structure of the optimization problem captured by
most existing GEDA variants remains unchanged after the scaling; on the other hand, most
existing variance (covariance) scaling methods scale the estimated variance (covariance)
equally in different directions. This is actually not beneficial to effectively sample new
promising individuals.

To alleviate the above concern, this paper devises an adaptive covariance scaling EDA
by adaptively enlarging the number of promising individuals (as compared with those
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for the mean vector estimation) to estimate the covariance. In this way, not only does the
structure of the optimization problem captured by the algorithm become better, but also
the covariance is scaled differently in different directions.

3. Proposed ACSEDA

To improve the effectiveness of EDA in solving optimization problems, this paper
proposes an adaptive covariance scaling EDA (ACSEDA) by introducing more promising
individuals to calculate the covariance. Furthermore, to alleviate the sensitivity of the
proposed ACSEDA to parameters, this paper further devises two adaptive strategies for the
two key parameters in ACSEDA. The components of ACSEDA are elucidated as follows.

3.1. Adaptive Covariance Scaling

In traditional GEDAs [27], both the mean vector and the covariance of the multivariate
Gaussian distribution model are estimated based on the selected promising individuals.
Then, on the basis of the estimated probability distribution model, the offspring are sampled
randomly. In particular, we can see that the mean vector has a great influence on the
convergence speed of GEDAs to promising areas, while the covariance mainly takes charge
of the sampling range of the distribution model, which plays a significant role in high
diversity maintenance.

During the evolution, the population gradually approaches the promising areas
and the selected promising individuals used for probability distribution estimation are
gradually aggregated together as well. In this situation, the estimated covariance would
become smaller and smaller. Once the estimated mean vector falls into local areas, the
sampled offspring could hardly escape from local areas. As a consequence, the population
falls into local areas, and premature convergence occurs. Such a predicament is encountered
by many existing GEDAs [20].

To alleviate this issue, this paper proposes a covariance scaling strategy to enlarge
the covariance by introducing more promising individuals on the basis of the selected
individuals for the estimation of the mean vector. Specifically, given the population size is
PS, s = dsr ∗ PSe promising individuals are first selected from the population to estimate
the mean vector of the probability distribution, where sr is the selection ratio, defined
as the number of selected individuals out of the population. Then, different from most
existing GEDAs [67], which estimate the covariance based on the sc = dcs ∗ PSe individuals
as well, this paper selects sc promising individuals to estimate the covariance, where cs is
the covariance scaling parameter, which is the number of the promising individuals out
of the population and is usually larger than sr. In this way, more promising individuals
are selected to participate in the estimation of the covariance and thus, the covariance is
enlarged.

As shown in Figure 1, after the population is sorted from the best to the worst with
respect to the fitness, s best individuals are selected to form the promising individual set S,
and then, the mean vector u is estimated based on S according to Equation (3). Subsequently,
different from most existing GEDAs, the proposed covariance scaling method selects sc
best individuals to form the promising individual set SC to estimate the covariance. It
should be mentioned that cs is usually larger than sr, which also indicates that SC is larger
than S. In this way, S is a subset of SC. Subsequently, instead of using S to calculate the
covariance according to Equation (6), the proposed method utilizes SC, namely an enlarged
individual set, to estimate the covariance as follows:

C =
1

sc− 1
(SC − µ)(SC − µ)T (9)
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Figure 1. The visual structure of the covariance scaling strategy.

As shown in Figure 1, since more promising individuals participate in the estimation
of the covariance, the sampling range of the estimated probability distribution model is
enlarged. On the one hand, the sampled offspring based on this model are more diversified,
which is very beneficial for the population to avoid falling into local areas. On the other
hand, it might also be likely to generate more promising individuals close to the promising
areas, and thus, the convergence could also be strengthened to some extent.

Remark 1. It deserves attention that different from existing covariance scaling methods, which
scales the covariance directly with a fixed scalar, the proposed covariance scaling method estimates
the covariance based on an enlarged number of promising individuals as compared to those for the
estimation of the mean vector. This brings the following two benefits for the estimated probability
distribution model:

(1) By introducing more promising individuals, the proposed scaling method enlarges the co-
variance differently in different directions between variables and thus it implicitly takes the
difference between variables into consideration. However, existing scaling methods [37] en-
large the covariance with a same scalar and hence they do not consider the difference between
variables.

(2) The proposed scaling method is likely to better capture the structure of the optimization problem
with respect to the correlations between variables by introducing more promising individuals.
Nevertheless, the structure captured by existing scaling methods remains unchanged after the
scaling.

Taking a deep investigation on the parameter cs, in the proposed covariance scaling
method, we find that neither a too large cs, nor a too small cs are proper to aid EDA to
achieve promising performance. On the one side, a too-large cs may lead to a too large
sampling range of the probability distribution. This may result in too diversified offspring
sampled from the distribution model. In particular, it is found that, in the early stage of the
evolution, a large cs may be beneficial to maintain a large sampling range and thus sample
diversified offspring. This is helpful for EDA to explore the solution space in very different
directions, whereas, in the late stage, such a setting of cs is not appropriate because it is
not beneficial for the population to extensively exploit the found promising areas to refine
the solution accuracy. On the other side, a too-small cs may bring in a too-small sampling
range of the distribution model, which may sample concentrated offspring. Though it is
desirable in the late stage of the evolution, it is not suitable during the whole evolution,
because it may increase the risk of EDA in falling into local areas. Consequently, based on
the above analysis, it is found that cs should not be fixed, but dynamically adjusted during
the evolution process.

To the above end, this paper further designs an adaptive strategy for cs as follows:

cs = 1− (1− srmin)(
FEs

FEsmax
)

2
(10)
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where srmin denotes the lower bound of the selection ratio sr used for the estimation of
the mean vector of the multivariate Gaussian distribution model, FEsmax is the maximum
number of fitness evaluations, while FEs denotes the used number of fitness evaluations
up to the current generation.

From Equation (10), we can see that cs decreases from 1.0 to srmin as the evolution
continues. Specifically, it is found that, in the early stage, most individuals in the population
are used to estimate the covariance. This brings two benefits for EDA: (1) the sampling
range of the probability distribution model is large and thus the sampled offspring are
diversified and scatter dispersedly to explore the solution space. It is not only beneficial for
the population to find more promising areas, but it is also very profitable for the population
to avoid falling into local areas. (2) The captured structure of the optimization problem
tends to be global and accurate with a large number of promising individuals. In the
early stage, the individuals are usually scattered diversely in the solution space. In this
situation, the captured structure of the optimization problem is usually global. Therefore, to
accurately capture the correlations between variables globally, a large number of promising
individuals are usually needed. Consequently, in the early stage, it is helpful to capture an
accurate structure of the optimization problem when cs is large.

Conversely, in the late stage, from Equation (10), it is found that cs becomes smaller and
smaller. This leads to a narrow sampling range of the probability distribution. Therefore,
the sampled offspring are concentrated and surrounded around the mean vector. In this
situation, the population exploits the found promising areas, and thus, the accuracy of the
solution can be improved.

To summarize, with the above adaptive covariance scaling scheme, the proposed EDA
variant is expected to obtain a promising balance between diversification and intensification
of the population. Therefore, the algorithm could explore and exploit the complicated solu-
tion space properly to obtain promising performance in solving complicated optimization
problems.

3.2. Adaptive Promising Individuals Selection

In GEDAs, the number (s = dsr ∗ PSe) of selected promising individuals, for the
estimation of the mean vector, makes a significant influence on the convergence speed of
EDAs. As shown in Figure 1, the mean vector mainly takes control of the center of the
sampled offspring. A too-large sr may lead to that a large number of promising individuals
being used to estimate the mean vector. As a result, the estimated mean vector may be too
far away from the promising areas. In the early stage of the evolution, this is beneficial for
EDAs to maintain high search diversity. Nevertheless, in the late stage of the evolution, a
large sr may slow down the convergence of the population to find high-quality solutions.
On the contrary, a too-small sr may result in the estimated mean vector being too close
to the promising areas. This case is suitable, in the late stage of the evolution, to exploit
the found promising areas. However, it may lead to premature convergence if we keep sr
small during the whole evolution, especially when the selected promising individuals all
fall into local areas.

Based on the above analysis, it might as well dynamically adjust sr during the evolu-
tion. To this end, this paper devises a simple adaptive strategy for sr as follows:

sr = srmax − (srmax − srmin)

(
FEs

FEsmax

)0.1
(11)

where srmax and srmin represent the maximum selection ratio and the minimum selection
ratio, which accordingly determine the maximum number (smax = dsrmax ∗ PSe) and the
minimum number (smin = dsrmin ∗ PSe) of the selected promising individuals. In this paper,
we set them as 0.35 and 0.05, respectively.

From Equation (11), we can see that in the early stage, sr is large, and then, it decreases
gradually as the evolution goes. This indicates that during the evolution, the mean vector
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of the estimated probability distribution is becoming closer and closer to the promising
areas. In this way, the population gradually tends to exploit the found promising areas.

Remark 2. In particular, compared Equation (11) with Equation (10), as shown in Figure 2, the
following findings can be obtained:

(1) sr decreases dramatically in the early stage, and mildly in the late stage, while cs decreases
mildly in the early stage, and dramatically in the late stage. This actually matches the
expectation that the proposed ACSEDA should explore the solution space in the early stage
without serious loss of convergence, while it should exploit the search space in the late stage
without serious sacrifice of search diversity. For one thing, in the early stage, sr decreases
rapidly and thus the estimated mean vector is close to the promising areas that the current
population lies. However, it should be mentioned that in such a situation, the sampling
diversity of the estimated probability distribution is not declined, because the estimated
covariance is large due to the large cs. On the contrary, in this situation, the sampling quality
of the estimated probability distribution could be improved due to the high-quality mean vector
and thus the population could effectively explore the search space to find promising areas in the
early stage. In the late stage, sr decreases mildly, while cs descends quickly. In this situation,
the quality of the mean vector is gradually promoted by approaching the promising areas
closer and closer. At the same time, the sampling range of the estimated distribution gradually
shrinks due to the covariance estimated on the reduced number of promising individuals.
Therefore, in the late stage, ACSEDA gradually biases to exploiting the found promising areas
to improve the solution quality. However, it should be mentioned that such a bias is not at the
serious sacrifice of the search diversity because of the proposed covariance scaling technique.

(2) cs is always larger than sr during the evolution and the gap between cs and sr gradually shrinks
as the evolution goes. This indicates that during the evolution, compared with traditional
GEDAs, the covariance is always amplified, so that the estimated probability distribution
could sample diversified offspring around the estimated mean vector with high quality. In
addition, the gradually narrowed difference between sr and cs indicates that the scaling of
the covariance is gradually declined. This implies that the proposed ACSEDA gradually
concentrates on exploiting the solution space to refine the solution accuracy.
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3.3. Cross-Generation Individual Selection for Parent Population

In traditional EDAs [28], the offspring is directly utilized as the parent population
for the next generation to estimate the probability distribution model. Since the quality of
the sampled offspring is uncertain, the quality of the estimated probability distribution
model may not be improved or even degrade compared with the estimated probability
distribution in the last generation. This may slow down the convergence of the population
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to promising areas. Therefore, to remedy this shortcoming, some EDA variants [68]
combine the offspring and the parent population together and then select the best PS
individuals as the parent population for the next generation. However, such selection is
too greedy and thus may lead to premature convergence and falling into local areas.

To alleviate the above predicament, and to further make a promising compromise
between convergence and diversity, this paper further devises a cross-generation individual
selection strategy for the parent population.

As Figure 3 shows, this paper combines the sampled offspring in the last generation
and the sampled offspring in the current generation and then selects the best PS individuals
as the parent population for the next generation to estimate the probability distribution
model. In this way, the historical information in the last generation can be utilized to build
the probability distribution model.
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Remark 3. Different from existing individual selection methods [26,48,69], the proposed cross-
generation individual selection strategy takes advantage of the sampled offspring in the two con-
secutive generations to select individuals for the parent population in the next generation. Such a
selection strategy brings the following benefits to ACSEDA:

(1) Individuals in the parent population are diversified. The sampled offspring in the last gen-
eration usually have big difference with the offspring in the current generation. Combining
them together to select individuals is less likely to generate crowded individuals for the parent
population. As a result, the estimated probability distribution model is less likely to fall into
local areas and at the same time, has a wide sampling range to generate diversified offspring.
In this way, ACSEDA could preserve high search diversity during the evolution.

(2) With this strategy, the latest historical promising individuals in the last generation could be
integrated with those in the current offspring. As a consequence, individuals in the parent
population are not only diversified, but also of high quality. Hence, the estimated probability
distribution is of high quality to generate more promising offspring. By this means, the
convergence of ACSEDA could be guaranteed.

(3) With this selection strategy, ACSEDA is further expected to preserve a good compromise
between exploration and exploitation to search the solution space effectively. Experiments
conducted in Section 4 will demonstrate the effectiveness of the proposed cross-generation
individual selection strategy.

3.4. Overall Procedure of ACSEDA

Combining the above three schemes together, the proposed ACSEDA is outlined in
Algorithm 2. Specifically, after the initialization of the population (Line 2), the algorithm
goes to the main iteration loop for evolution (Lines 5–16). In the main loop, it first executes
the proposed adaptive promising individual selection strategy for the estimation of the
mean vector (Lines 6 and 7). Then, it comes to the proposed adaptive covariance scaling
strategy to estimate the covariance of the probability distribution model (Lines 8 and 9).
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Subsequently, the offspring are randomly sampled based on the estimated probability dis-
tribution model (Line 10). Hereafter, it arrives at the proposed cross-generation individual
selection strategy to select individuals for the parent population in the next generation
(Line 12). At last, a local search method is conducted on the global best solution to refine
its accuracy (Line 14).

Algorithm 2: The Procedure of ACSEDA.

Input: population size PS;
1: Set FEs = 0;
2: Initialize PS individuals randomly and evaluate their fitness;
3: FEs = FEs + PS;
4: Obtain the global best solution Gbest and store the current population;
5: While (FEs < FEsmax)
6: Calculate the selection ratio sr according to Equation (11);
7: Select dsr ∗ PSe promising solutions from the population and calculate the mean value µ

using Equation (3);
8: Calculate the covariance scaling parameter cs according to Equation (10);
9: Estimate the covariance matrix C according to Equation (9);
10: Randomly sample PS new individuals based on the estimated multivariate Gaussian
model, evaluate their fitness and store them;
11: FEs = FEs + PS;
12: Combine the offspring in the last generation and the offspring in the current generation to
select PS better individuals to form the parent population for the next generation;
13: Update the global best solution Gbest;
14: Execute local search 2 times on Gbest;
15: FEs = FEs +2;
16: End While
Output: the global best solution Gbest;

In Algorithm 2, it should be noticed that a local search strategy is additionally added
to improve the solution accuracy of the global best solution. This is because EDAs are
probability distribution model based optimization algorithms, and as a consequence, EDAs
usually lack strong local exploitation [26,38,70]. Therefore, in the literature [23,38,70],
local search methods are generally accompanied by EDAs to improve the solution quality.
Hence, the same as most existing EDA variants [23,26,38,70,71], ACSEDA also adopts a
local search method to refine the global best solution, as shown in Line 14.

For simplicity and keeping consistent with the probability distribution model in
ACSEDA, this paper applies the univariate Gaussian distribution with a small variance to
execute the local search on the global best solution. In this paper, the small variance is set
as 1.0 × 10−4. In addition, for saving computational resources, we execute the local search
method on the global best solution only two times, as shown in Line 14.

As a whole, with the proposed three main techniques and the local search method,
ACSEDA is expected to explore and exploit the solution space properly to locate the optima
of optimization problems.

4. Experimental Studies

This section mainly conducts extensive experiments to verify the effectiveness of the
proposed ACSEDA. Specifically, the commonly used CEC 2014 benchmark problem set [44]
is adopted in this paper. This benchmark set contains 30 various complicated optimiza-
tion problems, such as unimodal problems, multimodal problems, hybrid problems, and
composition problems. For detailed information on this benchmark set, please refer to [44].

4.1. Experimental Settings

First, to comprehensively demonstrate the effectiveness of the proposed ACSEDA, we
select several state-of-the-art EDA variants to make comparisons in solving the complicated
CEC 2014 benchmark problems. Specifically, the selected state-of-the-art EDA variants are
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EDA2 [37], EDAVERS [49], EDA/LS [38], EDA/LS-MS [65], MA-ES [58], and BUMDA [39].
In addition, as a baseline method, the traditional multivariate Gaussian model based
EDA [28] is also utilized as a compared method. To tell it apart from the others, we denote
it as TRA-EDA in the experiments.

Second, to make comprehensive comparisons between the proposed ACSEDA and
the above compared EDA variants, we compare their optimization performance in solving
the CEC 2014 problems with three different dimension sizes, namely 30-D, 50-D, and 100-D.
For fairness, the maximum number of fitness evaluations (FEsmax) is set as 10,000 ∗ D for
all algorithms.

Third, for fair comparisons, the key parameter settings of the compared algorithms
are set, as recommended, in the associated papers. For the population size, we tune the
settings of all algorithms on the CEC 2014 benchmark set with different dimension sizes.
Specifically, after preliminary experiments, the parameter settings of all algorithms are
shown in Table 1.

Table 1. Parameter settings of ACSEDA and the compared algorithms.

Algorithm ACSEDA EDA/LS EDA2 EDA/LS-MS EDAVERS BUMDA TRA-EDA MA-ES
Parameter PS PS M Pb Pc θ PS l PS M Pa Pb θ PS sr PS PS sr PS mu

D
30 1300 150

15 0.2 0.2 0.1
100

20
150

15 0.2 0.2 0.1
500

0.35
900 2500

0.2
4 +

b3 ∗ ln Dc |PS/2|50 1800 150 200 1000 600 1100 4700
100 3200 150 300 2000 700 1500 6000

Fourth, to comprehensively evaluate the optimization performance of each algorithm,
we execute each algorithm independently for 30 runs and utilize the median, mean, and
standard deviation values over the 30 independent runs to evaluate its optimization
performance. Furthermore, to tell the statistical significance, we conduct the Wilcoxon
rank-sum test, at the significance level of α = 0.05, to compare the proposed ACSEDA with
each associated EDA variant. In addition, to compare the overall optimization performance
of all algorithms on the whole CEC 2014 benchmark set, we further conduct the Friedman
test at the significance level of α = 0.05 by taking advantage of the mean value of each
algorithm on each function in the benchmark set.

At last, it deserves attention that all algorithms are programmed under MATLAB
R2018a, and they are run on the same computer with Intel(R) Core(TM) i7-10700T CPU @
2.90 GHz 2.90 GHz and 8 G RAM.

4.2. Comparison with State-of-the-Art EDAs

Table 2, Table 3, and Table 4 display the comparison results between ACSEDA and
the compared EDA variants on the 30-D, 50-D, and 100-D CEC 2014 benchmark problems,
respectively. In these tables, the symbols “+”, ”−” and “=” represent that ACSEDA
is significantly better than, significantly worse than, and equivalent to the associated
compared algorithms on the associated problems, respectively. Besides, “w/t/l” denotes
the numbers of the problems where ACSEDA achieves significantly better performance,
equivalent performance, and significantly worse performance than the compare algorithms,
respectively. Actually, “w/t/l” is equal to the numbers of “+”, ”=” and “−”, respectively.
Additionally, in the last rows of this table, the averaged rank of each algorithm obtained
from the Friedman test is presented.
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Table 2. Comparison between ACSEDA and the compared state-of-the-art EDA variants on the 30-D CEC2014 benchmark problems. The bold results indicate that ACSEDA is significantly
better than the compared methods.

F Category Quality ACSEDA EDA2 EDAVERS EDA/LS EDA/LS-MS TRA-EDA BUMDA MA-ES

F1

Unimodal
Prob-
lems

Median 0.00 × 100 0.00 × 100 6.48 × 104 1.90 × 10−9 1.83 × 10−9 6.94 × 107 1.15 × 108 1.42 × 10−14

Mean 0.00 × 100 0.00 × 100 7.76 × 104 9.09 × 101 1.98 × 101 6.80 × 107 1.16 × 108 1.37 × 10−14

Std 0.00 × 100 0.00 × 100 4.85 × 104 4.89 × 102 1.07 × 102 1.17 × 107 2.12 × 107 2.55 × 10−15

p-value - NaN= 1.21 × 10−12+ 1.21 × 10−12+ 1.21 × 10−12+ 1.21 × 10−12+ 1.21 × 10−12+ 1.17 × 10−13+

F2

Median 0.00 × 100 0.00 × 100 2.54 × 103 1.48 × 10−11 4.59 × 10−11 6.61 × 109 1.80 × 104 2.84 × 10−14

Mean 0.00 × 100 0.00 × 100 2.36 × 103 2.52 × 10−10 1.45 × 10−10 6.58 × 109 5.15 × 105 2.65 × 10−14

Std 0.00 × 100 0.00 × 100 8.94 × 102 5.04 × 10−10 2.43 × 10−10 1.05 × 109 2.45 × 106 7.09 × 10−15

p-value - NaN= 1.21 × 10−12+ 1.21 × 10−12+ 1.21 × 10−12+ 1.21 × 10−12+ 1.21 × 10−12+ 7.15 × 10−13+

F3

Median 0.00 × 100 0.00 × 100 1.41 × 103 8.42 × 10−9 8.85 × 10−10 9.83 × 103 6.49 × 103 5.68 × 10−14

Mean 0.00 × 100 0.00 × 100 1.44 × 103 3.10 × 10−9 2.34 × 10−9 1.00 × 104 6.52 × 103 5.68 × 10−14

Std 0.00 × 100 0.00 × 100 5.54 × 102 4.33 × 10−9 4.21 × 10−9 1.97 × 103 1.85 × 103 5.05 × 10−29

p-value - NaN= 1.21 × 10−12+ 1.21 × 10−12+ 1.21 × 10−12+ 1.21 × 10−12+ 1.21 × 10−12+ 1.69 × 10−14+

F1–3 w/t/l - 0/3/0 3/0/0 3/0/0 3/0/0 3/0/0 3/0/0 3/0/0

F4

Simple
Multi-
modal
Prob-
lems

Median 3.25 × 100 0.00 × 100 6.39 × 10−1 1.02 × 10−9 4.75 × 10−9 7.93 × 102 9.74 × 101 5.68 × 10−14

Mean 3.15 × 100 0.00 × 100 6.14 × 10−1 1.33 × 10−1 2.66 × 10−1 7.72 × 102 9.88 × 101 2.66 × 10−1

Std 1.02 × 100 0.00 × 100 2.76 × 10−1 7.16 × 10−1 9.94 × 10−1 1.27 × 102 2.69 × 101 9.94 × 10−1

p-value - 1.21 × 10−12− 3.82 × 10−10− 2.15 × 10−10− 1.41 × 10−9− 3.02 × 10−11+ 3.02 × 10−11+ 1.69 × 10−10−

F5

Median 2.09 × 101 2.10 × 101 2.10 × 101 2.00 × 101 2.00 × 101 2.09 × 101 2.10 × 101 2.00 × 101

Mean 2.09 × 101 2.09 × 101 2.09 × 101 2.00 × 101 2.00 × 101 2.09 × 101 2.10 × 101 2.04 × 101

Std 4.96 × 10−2 4.86 × 10−2 7.13 × 10−2 5.47 × 10−6 3.43 × 10−2 5.47 × 10−2 5.00 × 10−2 6.93 × 10−1

p-value - 7.01 × 10−2= 7.48 × 10−2= 1.17 × 10−11− 9.37 × 10−12− 8.77 × 10−1= 2.32 × 10−2+ 3.96 × 10−4−

F6

Median 1.99 × 10−6 0.00 × 100 1.77 × 10−5 4.09 × 101 3.81 × 101 4.58 × 10−1 1.50 × 100 2.25 × 101

Mean 2.07 × 10−6 2.09 × 10−1 4.76 × 10−1 4.05 × 101 3.84 × 101 5.16 × 10−1 1.61 × 100 2.24 × 101

Std 8.29 × 10−7 5.63 × 10−1 8.19 × 10−1 2.14 × 100 2.75 × 100 4.43 × 10−1 1.12 × 100 4.08 × 100

p-value - 3.82 × 10−5+ 6.61 × 10−1= 3.02 × 10−11+ 3.02 × 10−11+ 3.02 × 10−11+ 1.07 × 10−7+ 3.02 × 10−11+

F7

Median 0.00 × 100 0.00 × 100 1.14 × 10−13 2.21 × 10−2 3.69 × 10−2 9.12 × 101 3.24 × 10−2 1.14 × 10−13

Mean 0.00 × 100 0.00 × 100 1.06 × 10−13 3.52 × 10−2 4.84 × 10−2 9.01 × 101 9.35 × 10−2 2.79 × 10−3

Std 0.00 × 100 0.00 × 100 2.84 × 10−14 4.56 × 10−2 6.23 × 10−2 1.25 × 101 1.41 × 10−1 4.40 × 10−3

p-value - NaN= 7.15 × 10−13+ 1.20 × 10−12+ 1.19 × 10−12+ 1.21 × 10−12+ 1.21 × 10−12+ 3.85 × 10−13+

F8

Median 9.95 × 10−1 6.47 × 100 1.52 × 102 2.27 × 102 2.06 × 102 1.49 × 101 0.00 × 100 1.68 × 102

Mean 1.16 × 100 6.60 × 100 1.32 × 102 2.38 × 102 2.13 × 102 1.54 × 101 0.00 × 100 1.68 × 102

Std 8.93 × 10−1 1.81 × 100 5.09 × 101 6.69 × 101 6.08 × 101 3.39 × 100 0.00 × 100 3.98 × 100

p-value - 1.92 × 10−11+ 3.86 × 10−11+ 2.13 × 10−11+ 2.13 × 10−11+ 2.13 × 10−11+ 4.26 × 10−9− 2.02 × 10−11+
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Table 2. Cont.

F Category Quality ACSEDA EDA2 EDAVERS EDA/LS EDA/LS-MS TRA-EDA BUMDA MA-ES

F9

Median 9.95 × 10−1 5.47 × 100 1.48 × 102 3.33 × 102 3.20 × 102 1.10 × 101 9.95 × 10−1 1.87 × 102

Mean 1.16 × 100 5.80 × 100 1.31 × 102 3.28 × 102 3.18 × 102 1.13 × 101 1.41 × 100 1.88 × 102

Std 9.29 × 10−1 1.69 × 100 4.96 × 101 6.66 × 101 4.01 × 101 2.68 × 100 1.05 × 100 5.42 × 100

p-value - 2.85 × 10−11+ 1.13 × 10−11+ 2.40 × 10−11+ 2.40 × 10−11+ 2.40 × 10−11+ 2.03 × 10−2+ 2.10 × 10−11+

F10

Median 3.59 × 100 6.33 × 100 5.69 × 103 4.76 × 103 4.04 × 103 2.39 × 102 2.84 × 101 3.88 × 103

Mean 1.13 × 101 5.28 × 101 5.62 × 103 4.76 × 103 4.11 × 103 2.86 × 102 3.81 × 101 3.90 × 103

Std 2.89 × 101 8.32 × 101 3.90 × 102 1.24 × 103 8.86 × 102 1.98 × 102 5.51 × 101 3.24 × 102

p-value - 2.10 × 10−3+ 3.02 × 10−11+ 3.02 × 10−11+ 3.02 × 10−11+ 1.09 × 10−10+ 8.77 × 10−2= 3.01 × 10−11+

F11

Median 8.36 × 100 1.52 × 101 6.55 × 103 4.64 × 103 4.69 × 103 2.63 × 102 2.26 × 102 4.31 × 103

Mean 2.80 × 101 7.94 × 101 6.53 × 103 5.04 × 103 4.99 × 103 2.58 × 102 2.43 × 102 4.31 × 103

Std 4.53 × 101 1.19 × 102 2.54 × 102 1.36 × 103 1.07 × 103 1.53 × 102 2.10 × 102 2.21 × 102

p-value - 2.87 × 10−2+ 3.02 × 10−11+ 3.02 × 10−11+ 3.02 × 10−11+ 2.44 × 10−9+ 8.84 × 10−7+ 2.98 × 10−11+

F12

Median 2.35 × 100 2.46 × 100 2.56 × 100 6.89 × 10−1 6.67 × 10−1 2.47 × 100 2.51 × 100 3.34 × 10−2

Mean 2.32 × 100 2.49 × 100 2.56 × 100 9.21 × 10−1 7.84 × 10−1 2.39 × 100 2.47 × 100 3.68 × 10−2

Std 2.41 × 10−1 2.71 × 10−1 1.98 × 10−1 8.73 × 10−1 4.11 × 10−1 3.49 × 10−1 2.56 × 10−1 2.29 × 10−2

p-value - 1.76 × 10−2+ 1.89 × 10−4+ 5.57 × 10−10− 4.50 × 10−11− 1.45 × 10−1= 1.70 × 10−2+ 3.02 ×
10−11−

F13

Median 9.34 × 10−2 4.40 × 10−2 1.85 × 10−1 5.86 × 10−1 7.04 × 10−1 3.24 × 100 4.27 × 10−2 3.16 × 10−1

Mean 9.35 × 10−2 4.39 × 10−2 1.84 × 10−1 1.85 × 100 2.57 × 100 3.20 × 100 4.25 × 10−2 3.40 × 10−1

Std 1.50 × 10−2 1.08 × 10−2 2.68 × 10−2 2.53 × 100 2.87 × 100 2.03 × 10−1 8.97 × 10−3 9.18 × 10−3

p-value - 6.07 × 10−11− 3.34 × 10−11+ 3.02 × 10−11+ 3.02 × 10−11+ 3.02 × 10−11+ 3.69 × 10−11- 3.02 × 10−11+

F14

Median 2.59 × 10−1 4.10 × 10−1 3.10 × 10−1 3.18 × 10−1 3.27 × 10−1 4.63 × 101 3.89 × 10−1 3.39 × 10−1

Mean 2.62 × 10−1 4.06 × 10−1 3.11 × 10−1 3.36 × 10−1 3.42 × 10−1 4.68 × 101 3.89 × 10−1 3.81 × 10−1

Std 5.24 × 10−2 3.87 × 10−2 3.61 × 10−2 9.64 × 10−2 9.18 × 10−2 5.15 × 100 3.91 × 10−2 1.37 × 10−1

p-value - 1.78 × 10−10+ 3.01 × 10−4+ 7.66 × 10−5+ 9.51 × 10−6+ 3.02 × 10−11+ 5.07 × 10−11+ 1.61 × 10−6+

F15

Median 4.16 × 100 4.24 × 100 1.30 × 101 9.26 × 101 8.31 × 101 3.60 × 100 3.46 × 100 3.24 × 100

Mean 4.21 × 100 4.26 × 100 1.30 × 101 9.75 × 101 8.43 × 101 4.69 × 100 4.68 × 100 3.40 × 100

Std 1.43 × 100 1.08 × 100 1.04 × 100 3.23 × 101 2.67 × 101 3.53 × 100 5.52 × 100 9.00 × 10−1

p-value - 7.39 × 10−1= 3.02 × 10−11+ 3.02 × 10−11+ 3.02 × 10−11+ 9.82 × 10−1= 3.11 × 10−1= 3.51 × 10−2−

F16

Median 8.81 × 100 1.24 × 101 1.11 × 101 1.36 × 101 1.34 × 101 1.06 × 101 1.09 × 101 1.37 × 101

Mean 8.74 × 100 1.23 × 101 1.11 × 101 1.35 × 101 1.34 × 101 1.05 × 101 1.09 × 101 1.37 × 101

Std 5.75 × 10−1 1.92 × 10−1 3.95 × 10−1 3.73 × 10−1 2.65 × 10−1 3.39 × 10−1 4.89 × 10−1 9.40 × 10−2

p-value - 3.02 × 10−11+ 3.34 × 10−11+ 3.02 × 10−11+ 3.02 × 10−11+ 4.08 × 10−11+ 3.34 × 10−11+ 3.02 × 10−11+
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Table 2. Cont.

F Category Quality ACSEDA EDA2 EDAVERS EDA/LS EDA/LS-MS TRA-EDA BUMDA MA-ES
F4–16 w/t/l - 8/3/2 10/2/1 10/0/3 10/0/3 10/3/0 9/2/2 9/0/4

F17

Hybrid
Problems

Median 1.45 × 101 1.16 × 101 3.19 × 104 2.13 × 103 6.76 × 104 9.97 × 104 3.05 × 107 1.76 × 103

Mean 2.17 × 101 2.00 × 101 3.58 × 104 4.10 × 107 2.38 × 107 1.36 × 105 2.98 × 107 1.77 × 103

Std 2.98 × 101 2.80 × 101 1.97 × 104 7.15 × 107 5.06 × 107 1.05 × 105 7.53 × 106 4.44 × 102

p-value - 4.16 × 10−1= 3.02 × 10−11+ 3.02 × 10−11+ 3.02 × 10−11+ 3.02 × 10−11+ 3.02 × 10−11+ 3.02 × 10−11+

F18

Median 4.71 × 10−1 1.33 × 100 6.85 × 101 1.61 × 102 1.56 × 102 2.28 × 101 1.38 × 102 8.24 × 101

Mean 8.77 × 10−1 1.14 × 100 1.13 × 102 9.57 × 108 5.05 × 108 2.57 × 101 1.79 × 102 8.36 × 101

Std 6.39 × 10−1 7.04 × 10−1 9.31 × 101 1.82 × 109 1.32 × 109 9.48 × 100 1.36 × 102 3.01 × 101

p-value - 6.79 × 10−2= 3.02 × 10−11+ 3.02 × 10−11+ 3.02 × 10−11+ 3.02 × 10−11+ 3.02 × 10−11+ 3.02 × 10−11+

F19

Median 2.78 × 100 3.66 × 100 4.86 × 100 1.56 × 101 1.44 × 101 4.28 × 101 2.10 × 101 9.97 × 100

Mean 2.78 × 100 3.72 × 100 4.89 × 100 6.83 × 101 5.28 × 101 4.36 × 101 2.42 × 101 9.86 × 100

Std 5.02 × 10−1 4.02 × 10−1 4.92 × 10−1 1.85 × 102 1.33 × 102 7.25 × 10−1 1.00 × 101 1.52 × 100

p-value - 7.12 × 10−9+ 3.34 × 10−11+ 3.02 × 10−11+ 3.02 × 10−11+ 2.87 × 10−11+ 3.02 × 10−11+ 3.02 × 10−11+

F20

Median 1.25 × 100 1.57 × 100 3.95 × 100 1.52 × 104 1.62 × 104 7.85 × 102 3.29 × 104 2.31 × 102

Mean 1.33 × 100 1.76 × 100 4.14 × 100 2.10 × 104 2.61 × 104 1.03 × 103 3.18 × 104 2.72 × 102

Std 1.98 × 10−1 5.96 × 10−1 1.26 × 100 1.89 × 104 2.55 × 104 6.34 × 102 5.47 × 103 1.43 × 102

p-value - 7.70 × 10−4+ 3.02 × 10−11+ 3.02 × 10−11+ 3.02 × 10−11+ 3.02 × 10−11+ 3.02 × 10−11+ 3.02 × 10−11+

F21

Median 1.92 × 100 1.85 × 100 2.65 × 104 2.23 × 104 3.49 × 104 2.29 × 102 3.40 × 106 8.32 × 102

Mean 1.45 × 101 3.35 × 101 2.93 × 104 5.96 × 106 1.05 × 107 2.86 × 102 3.38 × 106 8.98 × 102

Std 3.40 × 101 5.26 × 101 9.29 × 103 2.53 × 107 2.38 × 107 1.94 × 102 1.58 × 106 3.58 × 102

p-value - 8.88 × 10−1= 3.02 × 10−11+ 3.02 × 10−11+ 3.02 × 10−11+ 3.02 × 10−11+ 3.02 × 10−11+ 3.02 × 10−11+

F22

Median 2.67 × 101 2.81 × 101 2.46 × 102 1.15 × 103 1.24 × 103 3.67 × 101 1.53 × 102 4.15 × 102

Mean 3.46 × 101 3.63 × 101 2.54 × 102 1.28 × 103 1.41 × 103 8.88 × 101 1.57 × 102 4.95 × 102

Std 2.97 × 101 3.17 × 101 4.84 × 101 6.04 × 102 7.89 × 102 6.13 × 101 1.16 × 102 1.63 × 102

p-value - 2.77 × 10−5+ 3.02 × 10−11+ 3.02 × 10−11+ 3.02 × 10−11+ 6.72 × 10−10+ 9.76 × 10−10+ 3.02 × 10−11+

F17–22 w/t/l - 3/3/0 6/0/0 6/0/0 6/0/0 6/0/0 6/0/0 6/0/0

F23 Composition
Problems

p-value 3.15 × 102 3.15 × 102 3.15 × 102 3.20 × 102 3.20 × 102 3.37 × 102 3.19 × 102 2.00 × 102

Mean 3.15 × 102 3.15 × 102 3.15 × 102 4.20 × 102 4.87 × 102 3.38 × 102 3.20 × 102 2.00 × 102

Std 5.68 × 10−14 5.68 × 10−14 5.68 × 10−14 2.59 × 102 2.96 × 102 3.78 × 100 1.92 × 100 0.00 × 100

p-value - NaN= NaN= 1.21 × 10−12+ 1.21 × 10−12+ 1.21 × 10−12+ 1.21 × 10−12+ 1.69 × 10−14−



Mathematics 2021, 9, 3207 18 of 38

Table 2. Cont.

F Category Quality ACSEDA EDA2 EDAVERS EDA/LS EDA/LS-MS TRA-EDA BUMDA MA-ES

F24

Median 2.00 × 102 2.00 × 102 2.23 × 102 2.63 × 102 2.56 × 102 2.27 × 102 2.30 × 102 2.00 × 102

Mean 2.04 × 102 2.00 × 102 2.23 × 102 2.80 × 102 2.65 × 102 2.27 × 102 2.30 × 102 2.00 × 102

Std 8.66 × 100 0.00 × 100 7.69 × 10−1 5.55 × 101 3.19 × 101 1.50 × 100 2.92 × 100 1.31 × 10−4

p-value - 1.10 × 10−2− 9.93 × 10−12+ 6.48 × 10−12+ 6.48 × 10−12+ 6.48 × 10−12+ 6.48 × 10−12+ 2.03 × 10−1=

F25

Median 2.03 × 102 2.03 × 102 2.00 × 102 3.06 × 102 2.82 × 102 2.07 × 102 2.06 × 102 2.00 × 102

Mean 2.03 × 102 2.03 × 102 2.00 × 102 2.97 × 102 2.78 × 102 2.07 × 102 2.06 × 102 2.00 × 102

Std 1.33 × 102 2.63 × 10−2 0.00 × 100 4.49 × 102 2.76 × 101 3.90 × 10−1 1.24 × 100 0.00 × 100

p-value - 8.27 × 10−1= 5.91 × 10−13− 1.74 × 10−11+ 1.74 × 10−11+ 1.74 × 10−11+ 1.74 × 10−11+ 5.91 × 10−13−

F26

Median 1.00 × 102 1.00 × 102 1.00 × 102 1.01 × 102 1.00 × 102 1.00 × 102 1.00 × 102 2.00 × 102

Mean 1.00 × 102 1.00 × 102 1.00 × 102 1.05 × 102 1.04 × 102 1.01 × 102 1.01 × 102 2.00 × 102

Std 1.84 × 10−2 1.25 × 10−2 1.06 × 102 2.38 × 102 1.82 × 102 1.05 × 100 9.10 × 10−1 0.00 × 100

p-value - 2.37 × 10−1− 3.34 × 10−11+ 3.02 × 10−11+ 3.02 × 10−11+ 3.02 × 10−11+ 3.02 × 10−11+ 3.02 × 10−11+

F27

Median 3.00 × 102 3.41 × 102 3.00 × 102 1.58 × 103 1.46 × 103 4.24 × 102 3.00 × 102 2.00 × 102

Mean 3.00 × 102 3.38 × 102 3.00 × 102 1.49 × 103 1.21 × 103 4.14 × 102 3.17 × 102 2.00 × 102

Std 0.00 × 100 4.02 × 101 0.00 × 100 2.92 × 102 4.53 × 102 3.09 × 102 2.56 × 102 0.00 × 100

p-value - 2.20 × 10−6+ NaN= 1.21 × 10−12+ 1.21 × 10−12+ 1.21 × 10−12+ 1.21 × 10−12+ 1.69 × 10−14−

F28

Median 8.41 × 102 8.19 × 102 8.16 × 102 5.49 × 103 4.98 × 103 7.10 × 102 4.78 × 102 2.00 × 102

Mean 8.40 × 102 8.21 × 102 8.22 × 102 5.56 × 103 5.11 × 103 7.03 × 102 4.76 × 102 2.00 × 102

Std 2.05 × 101 4.03 × 101 2.02 × 101 1.59 × 103 1.06 × 103 6.79 × 101 5.60 × 100 0.00 × 100

p-value - 2.15 × 10−2− 3.34 × 10−3− 3.01 × 10−11+ 3.01 × 10−11+ 7.09 × 10−9− 3.01 × 10−11− 1.20 × 10−12−

F29

Median 7.21 × 102 7.15 × 102 1.24 × 103 4.17 × 108 4.37 × 108 1.00 × 103 5.88 × 102 2.00 × 102

Mean 7.28 × 102 1.40 × 106 1.28 × 103 4.14 × 108 4.40 × 108 1.04 × 103 8.95 × 102 2.00 × 102

Std 2.71 × 101 3.59 × 106 1.39 × 102 1.18 × 108 1.53 × 108 1.60 × 102 8.34 × 102 0.00 × 100

p-value - 1.56 × 10−2+ 3.02 × 10−11+ 3.02 × 10−11+ 3.02 × 10−11+ 3.34 × 10−11+ 6.57 × 10−2= 1.21 × 10−12−

F30

Median 1.35 × 103 8.73 × 102 2.13 × 103 3.40 × 106 3.33 × 106 9.55 × 102 4.69 × 102 2.00 × 102

Mean 1.57 × 103 1.00 × 103 2.03 × 103 3.60 × 106 3.41 × 106 1.02 × 103 4.82 × 102 2.00 × 102

Std 5.78 × 102 4.70 × 102 5.37 × 102 1.45 × 106 1.62 × 106 2.69 × 102 2.16 × 102 0.00 × 100

p-value - 1.43 × 10−5− 5.56 × 10−4+ 3.02 × 10−11+ 3.02 × 10−11+ 5.46 × 10−6− 3.02 × 10−11− 1.21 × 10−12−

F23–30 w/t/l - 2/2/4 4/2/2 8/0/0 8/0/0 6/0/2 5/1/2 1/1/6
w/t/l - 13/11/6 23/4/3 27/0/3 27/0/3 25/3/2 23/3/4 19/1/10
Rank 2.25 2.97 4.77 6.43 6.10 5.03 4.83 3.62
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Table 3. Comparison between ACSEDA and the compared state-of-the-art EDA variants on the 50-D CEC2014 benchmark problems. The bold results indicate that ACSEDA is significantly
better than the compared methods.

F Category Quality ACSEDA EDA2 EDAVERS EDA/LS EDA/LS-MS TRA-EDA BUMDA MA-ES

F1

Unimodal
Prob-
lems

Median 1.42 × 10−14 7.11 × 10−14 4.09 × 105 6.84 × 10−9 1.28 × 10−8 3.42 × 108 1.61 × 107 1.42 × 10−14

Mean 1.14 × 10−14 7.06 × 10−14 4.13 × 105 6.41 × 102 9.33 × 107 3.50 × 108 1.63 × 107 1.80 × 10−14

Std 6.77 × 10−15 1.00 × 10−14 7.25 × 104 2.32 × 103 5.02 × 108 5.08 × 107 3.06 × 106 6.28 × 10−15

p-value - 5.50 × 10−12+ 9.04 × 10−12+ 9.04 × 10−12+ 9.04 × 10−12+ 9.04 × 10−12+ 9.04 × 10−12+ 5.37 × 10−4+

F2

Median 5.97 × 10−13 1.23 × 10−11 3.30 × 103 1.77 × 10−11 3.67 × 10−11 3.27 × 1010 3.27 × 103 2.84 × 10−14

Mean 7.40 × 10−13 1.23 × 10−11 3.49 × 103 7.56 × 10−10 1.59 × 10−9 3.32 × 1010 1.56 × 104 3.60 × 10−14

Std 3.83 × 10−13 1.92 × 10−12 1.76 × 103 2.98 × 10−9 3.81 × 10−9 1.79 × 109 2.60 × 104 1.26 × 10−14

p-value - 2.98 × 10−12+ 2.98 × 10−12+ 8.43 × 10−7+ 1.48 × 10−6+ 2.98 × 10−11+ 2.98 × 10−11+ 8.74 × 10−12−

F3

Median 0.00 × 100 0.00 × 100 4.85 × 103 1.10 × 10−8 1.11 × 10−8 2.93 × 104 1.25 × 104 1.14 × 10−13

Mean 0.00 × 100 0.00 × 100 5.10 × 103 1.74 × 101 4.35 × 10−5 2.87 × 104 1.35 × 104 1.00 × 10−13

Std 0.00 × 100 0.00 × 100 1.03 × 103 9.36 × 101 1.72 × 10−4 2.52 × 103 5.05 × 103 2.40 × 10−14

p-value - NaN= 1.21 × 10−12+ 1.21 × 10−12+ 1.21 × 10−12+ 1.21 × 10−12+ 1.21 × 10−12+ 1.97 × 10−13+

F1–3 w/t/l - 2/1/0 3/0/0 3/0/0 3/0/0 3/0/0 3/0/0 2/0/1

F4

Simple
Multi-
modal
Prob-
lems

Median 9.81 × 101 5.35 × 100 8.16 × 101 5.71 × 10−9 1.29 × 10−8 4.47 × 103 1.25 × 102 1.14 × 10−13

Mean 9.25 × 101 3.93 × 101 7.80 × 101 1.04 × 103 3.86 × 103 4.46 × 103 1.28 × 102 3.99 × 10−1

Std 7.64 × 100 4.51 × 101 2.13 × 101 5.11 × 103 1.27 × 104 4.24 × 102 1.57 × 101 1.20 × 100

p-value - 1.93 × 10−3− 4.80 × 10−4− 5.29 × 10−9+ 7.12 × 10−8+ 1.62 × 10−11+ 1.10 × 10−10+ 8.76 × 10−12−

F5

Median 2.11 × 101 2.11 × 101 2.11 × 101 2.00 × 101 2.00 × 101 2.11 × 101 2.11 × 101 2.00 × 101

Mean 2.11 × 101 2.11 × 101 2.11 × 101 2.00 × 101 2.00 × 101 2.11 × 101 2.11 × 101 2.05 × 101

Std 4.14 × 10−2 2.54 × 10−2 3.32 × 10−2 0.00 × 100 2.21 × 10−2 4.83 × 10−2 3.07 × 10−2 7.59 × 10−1

p-value - 8.30 × 10−1= 2.51 × 10−2− 1.21 × 10−12− 4.10 × 10−12− 1.45 × 10−1= 1.19 × 10−1= 1.95 × 10−3−

F6

Median 5.22 × 10−5 1.39 × 10−4 5.51 × 10−1 7.19 × 101 6.91 × 101 6.96 × 100 3.64 × 10−1 4.21 × 101

Mean 1.74 × 10−2 2.52 × 10−1 8.59 × 10−1 7.17 × 101 6.93 × 101 7.18 × 100 9.50 × 10−1 4.15 × 101

Std 9.31 × 10−2 5.81 × 10−1 9.72 × 10−1 3.34 × 100 3.41 × 100 2.00 × 100 1.23 × 100 6.17 × 100

p-value - 3.16 × 10−10+ 1.09 × 10−10+ 3.02 × 10−11+ 3.02 × 10−11+ 3.02 × 10−11+ 1.41 × 10−9+ 3.02 × 10−11+

F7

Median 0.00 × 100 0.00 × 100 3.41 × 10−13 1.72 × 10−2 1.97 × 10−2 2.98 × 102 5.73 × 10−3 2.27 × 10−13

Mean 0.00 × 100 0.00 × 100 9.86 × 10−4 2.39 × 10−2 2.18 × 10−2 2.99 × 102 2.20 × 10−2 2.47 × 10−4

Std 0.00 × 100 0.00 × 100 2.96 × 10−3 2.69 × 10−2 2.33 × 10−2 1.73 × 101 4.80 × 10−2 1.33 × 10−3

p-value - NaN= 6.50 × 10−13+ 1.20 × 10−12+ 1.20 × 10−12+ 1.21 × 10−12+ 1.21 × 10−12+ 5.02 × 10−13+

F8

Median 2.98 × 100 7.96 × 100 3.09 × 102 4.69 × 102 4.35 × 102 4.93 × 101 0.00 × 100 3.10 × 102

Mean 2.98 × 100 7.89 × 100 2.96 × 102 4.83 × 102 4.57 × 102 4.82 × 101 3.32 × 10−2 3.10 × 102

Std 1.23 × 100 2.56 × 100 5.42 × 101 1.07 × 102 9.68 × 101 6.28 × 100 1.79 × 10−1 5.00 × 100

p-value - 7.55 × 10−10+ 2.51 × 10−11+ 2.51 × 10−11+ 2.51 × 10−11+ 2.51 × 10−11+ 1.69 × 10−12− 2.47 × 10−11+
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Table 3. Cont.

F Category Quality ACSEDA EDA2 EDAVERS EDA/LS EDA/LS-MS TRA-EDA BUMDA MA-ES

F9

Median 2.49 × 100 6.96 × 100 3.11 × 102 7.00 × 102 6.23 × 102 3.80 × 101 1.99 × 100 4.37 × 102

Mean 2.49 × 100 6.96 × 100 2.82 × 102 6.95 × 102 6.54 × 102 3.75 × 101 2.14 × 100 4.35 × 102

Std 1.35 × 100 1.87 × 100 8.86 × 101 1.20 × 102 9.46 × 101 4.75 × 100 2.74 × 100 9.41 × 100

p-value - 1.59 × 10−10+ 2.61 × 10−11+ 2.61 × 10−11+ 2.61 × 10−11+ 2.61 × 10−11+ 2.95 × 10−1= 2.59 × 10−11+

F10

Median 8.44 × 100 1.30 × 102 1.18 × 104 7.57 × 103 7.42 × 103 1.06 × 103 5.79 × 101 7.87 × 103

Mean 1.07 × 102 1.99 × 102 1.18 × 104 8.30 × 103 8.24 × 103 1.04 × 103 6.25 × 101 7.84 × 103

Std 1.65 × 102 1.80 × 102 4.28 × 102 2.40 × 103 2.07 × 103 4.09 × 102 4.11 × 101 3.26 × 102

p-value - 5.44 × 10−3+ 3.02 × 10−11+ 3.02 × 10−11+ 3.02 × 10−11+ 9.91 × 10−11+ 6.95 × 10−1= 3.02 × 10−11+

F11

Median 1.36 × 102 1.42 × 102 1.25 × 104 8.39 × 103 8.52 × 103 2.57 × 103 4.52 × 102 8.44 × 103

Mean 1.18 × 102 1.63 × 102 1.25 × 104 9.46 × 103 9.43 × 103 2.52 × 103 4.58 × 102 8.47 × 103

Std 9.29 × 100 1.65 × 102 3.67 × 102 2.78 × 103 3.02 × 103 9.47 × 102 2.82 × 102 2.77 × 102

p-value - 2.84 × 10−1= 3.02 × 10−11+ 3.02 × 10−11+ 3.02 × 10−11+ 3.02 × 10−11+ 3.65 × 10−11+ 3.02 × 10−11+

F12

Median 3.35 × 100 3.30 × 100 3.20 × 100 7.43 × 10−1 6.52 × 10−1 3.27 × 100 3.38 × 100 2.85 × 10−2

Mean 3.35 × 100 3.27 × 100 3.25 × 100 8.15 × 10−1 6.83 × 10−1 3.26 × 100 3.35 × 100 3.26 × 10−2

Std 2.52 × 10−1 2.71 × 10−1 3.05 × 10−1 3.04 × 10−1 2.57 × 10−1 2.56 × 10−1 1.99 × 10−1 1.70 × 10−2

p-value - 2.84 × 10−1= 1.96 × 10−1= 3.02 × 10−1− 3.02 × 10−11− 2.17 × 10−1= 8.77 × 10−1= 3.02 × 10−11−

F13

Median 1.40 × 10−1 7.28 × 10−2 2.46 × 10−1 4.98 × 10−1 4.50 × 10−1 3.71 × 100 6.67 × 10−2 3.63 × 10−1

Mean 1.40 × 10−1 7.48 × 10−2 2.44 × 10−1 1.24 × 100 4.97 × 10−1 3.72 × 100 6.38 × 10−2 3.63 × 10−1

Std 1.89 × 10−2 1.03 × 10−2 2.22 × 10−2 2.15 × 100 1.24 × 10−1 1.31 × 10−1 1.03 × 10−2 6.78 × 10−2

p-value - 3.02 × 10−11− 4.08 × 10−11+ 3.02 × 10−11+ 3.02 × 10−11+ 3.02 × 10−11+ 3.02 × 10−11− 3.02 × 10−11+

F14

Median 2.57 × 10−1 4.01 × 10−1 3.73 × 10−1 3.82 × 10−1 3.97 × 10−1 6.42 × 101 4.36 × 10−1 3.37 × 10−1

Mean 2.40 × 10−1 3.93 × 10−1 3.76 × 10−1 4.58 × 10−1 4.95 × 10−1 6.40 × 101 4.27 × 10−1 4.23 × 10−1

Std 6.75 × 10−2 4.80 × 10−2 2.87 × 10−2 1.86 × 10−1 1.86 × 10−1 3.95 × 100 3.49 × 10−2 2.25 × 10−1

p-value - 5.07 × 10−10+ 1.61 × 10−10+ 2.87 × 10−10+ 3.16 × 10−10+ 3.02 × 10−11+ 4.08 × 10−11+ 1.87 × 10−7+

F15

Median 4.87 × 100 1.23 × 101 2.74 × 101 1.84 × 102 1.73 × 102 2.39 × 103 5.30 × 100 6.61 × 100

Mean 4.81 × 100 1.19 × 101 2.64 × 101 1.84 × 102 1.82 × 102 2.45 × 102 5.27 × 100 6.61 × 100

Std 4.93 × 10−1 1.79 × 100 4.02 × 100 4.72 × 101 5.73 × 101 9.48 × 102 6.27 × 10−1 1.37 × 100

p-value - 3.02 × 10−11+ 3.34 × 10−11+ 3.02 × 10−11+ 3.02 × 10−11+ 3.02 × 10−11+ 2.38 × 10−3+ 7.69 × 10−8+

F16

Median 1.80 × 101 2.18 × 101 2.07 × 101 2.28 × 101 2.25 × 101 2.01 × 101 1.98 × 101 2.24 × 101

Mean 1.80 × 101 2.18 × 101 2.07 × 101 2.28 × 101 2.26 × 101 2.00 × 101 1.97 × 101 2.24 × 101

Std 6.67 × 10−1 2.58 × 10−1 3.75 × 10−1 5.14 × 10−1 4.27 × 10−1 2.92 × 10−1 4.87 × 10−1 1.40 × 10−1

p-value - 3.02 × 10−11+ 3.02 × 10−11+ 3.02 × 10−11+ 3.02 × 10−11+ 3.02 × 10−11+ 1.09 × 10−10+ 3.02 × 10−11+
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Table 3. Cont.

F Category Quality ACSEDA EDA2 EDAVERS EDA/LS EDA/LS-MS TRA-EDA BUMDA MA-ES
F4–16 w/t/l - 7/4/2 11/1/1 11/0/2 11/0/2 11/2/0 07/4/2 10/0/3

F17

Hybrid
Problems

Median 7.79 × 101 3.16 × 101 3.45 × 104 5.74 × 107 1.49 × 104 1.96 × 107 1.69 × 107 2.45 × 103

Mean 1.16 × 102 3.77 × 101 3.62 × 104 3.42 × 108 1.04 × 108 2.02 × 107 1.76 × 107 2.49 × 103

Std 7.34 × 101 2.47 × 101 1.57 × 104 4.09 × 108 1.77 × 108 4.76 × 106 3.45 × 106 5.06 × 102

p-value - 1.10 × 10−11− 3.02 × 10−11+ 3.02 × 10−11+ 3.02 × 10−11+ 3.02 × 10−11+ 3.02 × 10−11+ 3.02 × 10−11+

F18

Median 7.84 × 100 1.40 × 100 1.58 × 102 2.88 × 102 2.98 × 102 5.85 × 108 1.02 × 103 1.66 × 102

Mean 8.47 × 100 1.35 × 100 2.13 × 102 3.49 × 109 1.34 × 109 6.42 × 108 1.08 × 103 1.65 × 102

Std 3.23 × 100 6.37 × 10−1 1.59 × 102 7.03 × 109 3.62 × 109 1.93 × 108 5.06 × 102 4.18 × 101

p-value - 3.02 × 10−11− 4.98 × 10−11+ 3.02 × 10−11+ 3.02 × 10−11+ 3.02 × 10−11+ 3.02 × 10−11+ 3.02 × 10−11+

F19

Median 1.09 × 101 7.36 × 100 3.50 × 101 2.53 × 101 2.55 × 101 5.99 × 101 6.30 × 101 1.85 × 101

Mean 1.08 × 101 7.46 × 100 3.48 × 101 2.59 × 101 9.34 × 101 5.81 × 101 6.07 × 101 1.84 × 101

Std 7.71 × 10−1 7.65 × 10−1 4.99 × 100 2.77 × 100 3.64 × 102 9.80 × 100 9.75 × 100 2.52 × 100

p-value - 4.50 × 10−11− 4.50 × 10−11+ 3.02 × 10−11+ 3.02 × 10−11+ 3.02 × 10−11+ 3.02 × 10−11+ 4.08 × 10−11+

F20

Median 1.96 × 100 2.52 × 100 2.33 × 103 6.41 × 104 8.45 × 104 5.01 × 102 3.41 × 104 3.01 × 102

Mean 1.95 × 100 2.50 × 100 2.37 × 103 9.01 × 104 7.81 × 104 5.08 × 102 3.35 × 104 3.27 × 102

Std 2.27 × 10−1 3.48 × 10−1 7.57 × 102 1.47 × 105 4.91 × 104 2.60 × 102 6.10 × 103 1.35 × 102

p-value - 1.16 × 10−7+ 3.02 × 10−11+ 3.02 × 10−11+ 3.02 × 10−11+ 3.02 × 10−11+ 3.02 × 10−11+ 3.02 × 10−11+

F21

Median 2.47 × 102 1.23 × 102 7.13 × 104 2.35 × 107 1.23 × 106 1.64 × 103 8.45 × 106 1.75 × 103

Mean 1.99 × 102 9.74 × 101 7.27 × 104 8.60 × 107 1.83 × 107 1.98 × 103 8.53 × 106 1.76 × 103

Std 8.11 × 101 7.43 × 101 1.94 × 104 1.08 × 108 3.03 × 107 1.49 × 103 2.01 × 106 4.26 × 102

p-value - 8.15 × 10−5− 3.02 × 10−11+ 3.02 × 10−11+ 3.02 × 10−11+ 3.34 × 10−11+ 3.02 × 10−11+ 3.02 × 10−11+

F22

Median 2.72 × 101 3.02 × 101 9.51 × 102 1.89 × 103 2.11 × 103 9.87 × 101 4.69 × 101 7.94 × 102

Mean 3.54 × 101 3.02 × 101 9.06 × 102 9.23 × 103 3.33 × 103 1.18 × 102 1.37 × 102 7.58 × 102

Std 3.02 × 101 6.70 × 10−1 1.90 × 102 2.74 × 104 5.36 × 103 6.15 × 101 1.46 × 102 2.84 × 102

p-value - 1.36 × 10−7− 3.02 × 10−11+ 3.02 × 10−11+ 3.02 × 10−11+ 2.23 × 10−9+ 1.17 × 10−9+ 3.02 × 10−11+

F17–22 w/t/l - 1/0/5 6/0/0 6/0/0 6/0/0 6/0/0 6/0/0 6/0/0

F23

Composition
Problems

Median 3.44 × 102 3.44 × 102 3.44 × 102 2.48 × 103 1.70 × 103 4.17 × 102 3.66 × 102 2.00 × 102

Mean 3.44 × 102 3.44 × 102 3.44 × 102 2.20 × 103 1.52 × 103 4.21 × 102 3.66 × 102 2.00 × 102

Std 1.71 × 10−13 1.71 × 10−13 1.71 × 10−13 9.29 × 102 6.07 × 102 1.44 × 101 2.74 × 100 0.00 × 100

p-value - NaN= NaN= 1.21 × 10−12+ 1.21 × 10−12+ 1.21 × 10−12+ 1.21 × 10−12+ 1.69 × 10−14−

F24

Median 2.68 × 102 2.68 × 102 2.67 × 102 4.09 × 102 3.60 × 102 2.72 × 102 2.78 × 102 2.00 × 102

Mean 2.68 × 102 2.68 × 102 2.64 × 102 4.78 × 102 4.44 × 102 2.72 × 102 2.78 × 102 2.00 × 102

Std 1.33 × 100 1.10 × 100 5.66 × 100 1.69 × 102 1.40 × 102 8.52 × 10−1 1.11 × 100 0.00 × 100

p-value - 9.17 × 10−1= 3.00 × 10−1= 2.88 × 10−11+ 2.88 × 10−11+ 5.25 × 10−11+ 2.88 × 10−11+ 1.14 × 10−12−
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Table 3. Cont.

F Category Quality ACSEDA EDA2 EDAVERS EDA/LS EDA/LS-MS TRA-EDA BUMDA MA-ES

F25

Median 2.05 × 102 2.05 × 102 2.00 × 102 5.77 × 102 4.32 × 102 2.17 × 102 2.14 × 102 2.00 × 102

Mean 2.05 × 102 2.05 × 102 2.00 × 102 5.57 × 102 4.29 × 102 2.17 × 102 2.15 × 102 2.00 × 102

Std 1.49 × 10−1 1.58 × 10−1 0.00 × 100 8.87 × 101 5.87 × 101 1.56 × 100 5.84 × 100 0.00 × 100

p-value - 4.12 × 10−1= 1.19 × 10−12− 2.98 × 10−11+ 2.98 × 10−11+ 2.98 × 10−11+ 2.98 × 10−11+ 1.19 × 10−12−

F26

Median 1.00 × 102 1.00 × 102 2.00 × 102 1.01 × 102 1.01 × 102 1.06 × 102 1.74 × 102 2.00 × 102

Mean 1.00 × 102 1.00 × 102 1.96 × 102 2.90 × 102 1.72 × 102 1.06 × 102 1.58 × 102 2.00 × 102

Std 4.78 × 10−2 1.35 × 10−2 1.64 × 101 2.27 × 102 1.18 × 102 1.35 × 100 4.00 × 101 0.00 × 100

p-value - 8.98 × 10−11− 2.80 × 10−11+ 6.06 × 10−11+ 1.09 × 10−10+ 2.98 × 10−11+ 2.98 × 10−11+ 1.21 × 10−11+

F27

Median 3.00 × 102 4.19 × 102 3.52 × 102 2.68 × 103 2.51 × 103 7.00 × 102 3.68 × 102 2.00 × 102

Mean 3.17 × 102 4.23 × 102 3.48 × 102 2.67 × 103 2.49 × 103 7.00 × 102 3.74 × 102 2.00 × 102

Std 2.20 × 101 4.98 × 101 4.35 × 101 1.79 × 102 1.16 × 102 5.13 × 101 2.72 × 101 0.00 × 100

p-value - 5.37 × 10−11+ 5.79 × 10−6+ 2.95 × 10−11+ 2.95 × 10−11+ 2.95 × 10−11+ 4.11 × 10−9+ 1.18 × 10−12−

F28

Median 1.16 × 103 1.16 × 103 1.15 × 103 1.15 × 104 1.02 × 104 1.92 × 103 4.29 × 102 2.00 × 102

Mean 1.16 × 103 1.19 × 103 1.15 × 103 1.15 × 104 9.91 × 103 2.01 × 103 4.31 × 102 2.00 × 102

Std 4.37 × 101 1.68 × 102 3.88 × 101 2.14 × 103 2.17 × 103 4.59 × 102 6.89 × 100 0.00 × 100

p-value - 9.35 × 10−1= 1.81 × 10−1= 3.02 × 10−11+ 3.02 × 10−11+ 1.33 × 10−11+ 3.02 × 10−11+ 1.21 × 10−12−

F29

Median 8.14 × 102 7.39 × 102 1.66 × 103 1.57 × 109 1.05 × 109 1.23 × 103 7.29 × 102 2.00 × 102

Mean 8.34 × 102 4.24 × 106 1.67 × 103 1.57 × 109 1.06 × 109 2.65 × 103 9.82 × 102 2.00 × 102

Std 5.15 × 101 1.63 × 107 1.50 × 102 3.30 × 108 2.06 × 108 2.81 × 103 7.50 × 102 0.00 × 100

p-value - 6.77 × 10−5+ 3.02 × 10−11+ 3.02 × 10−11+ 3.02 × 10−11+ 9.92 × 10−11+ 1.33 × 10−1= 1.21 × 10−12−

F30

Median 8.56 × 103 9.37 × 103 9.02 × 103 2.49 × 107 1.83 × 107 1.74 × 105 8.19 × 102 2.00 × 102

Mean 8.57 × 103 9.50 × 103 9.20 × 103 2.66 × 107 1.92 × 107 1.67 × 105 8.17 × 102 2.00 × 102

Std 3.37 × 102 7.30 × 102 3.67 × 102 1.14 × 107 6.42 × 106 2.95 × 104 1.82 × 102 0.00 × 100

p-value - 1.07 × 10−7+ 7.77 × 10−9+ 3.02 × 10−11+ 3.02 × 10−11+ 3.02 × 10−11+ 3.02 × 10−11+ 1.21 × 10−12−

F23–30 w/t/l - 3/4/1 4/3/1 8/0/0 8/0/0 8/0/0 5/1/2 1/0/7
w/t/l - 13/9/8 24/4/2 28/0/2 28/0/2 28/2/0 21/5/4 19/0/11
Rank 2.33 2.93 4.52 6.80 6.27 5.70 4.30 3.15
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Table 4. Comparison between ACSEDA and the compared state-of-the-art EDA variants on the 100-D CEC2014 benchmark problems. The bold results indicate that ACSEDA is significantly
better than the compared methods.

F Category Quality ACSEDA EDA2 EDAVERS EDA/LS EDA/LS-MS TRA-EDA BUMDA MA-ES

F1

Unimodal
Prob-
lems

Median 1.80 × 10−9 6.82 × 10−13 1.25 × 106 1.87 × 106 1.39 × 103 4.74 × 108 8.33 × 107 4.26 × 10−14

Mean 1.90 × 10−9 7.24 × 10−13 1.22 × 106 8.24 × 109 4.41 × 108 4.62 × 108 8.48 × 107 1.46 × 10−13

Std 7.43 × 10−9 1.70 × 10−13 1.68 × 105 8.95 × 109 1.03 × 109 6.07 × 107 8.05 × 106 5.46 × 10−13

p-value - 2.99 × 10−11− 3.02 × 10−11+ 3.02 × 10−11+ 3.02 × 10−11+ 3.02 × 10−11+ 3.02 × 10−11+ 1.20 × 10−11−

F2

Median 3.84 × 10−7 9.36 × 10−11 9.84 × 103 1.88 × 10−10 1.14 × 10−10 9.69 × 1010 4.27 × 104 8.53 × 10−14

Mean 3.94 × 10−7 9.67 × 10−11 1.12 × 104 1.54 × 10−9 3.87 × 101 9.74 × 1010 7.15 × 104 7.48 × 10−14

Std 2.02 × 10−7 2.78 × 10−11 5.42 × 103 3.04 × 10−9 2.08 × 102 3.46 × 109 9.73 × 104 1.55 × 10−14

p-value - 3.02 × 10−11− 3.02 × 10−11+ 3.02 × 10−11+ 5.57 × 10−10+ 3.02 × 10−11+ 3.02 × 10−11+ 1.48 × 10−11−

F3

Median 5.40 × 10−13 0.00 × 100 6.11 × 103 2.13 × 10−8 2.57 × 10−8 1.11 × 105 2.39 × 104 1.71 × 10−13

Mean 7.09 × 10−13 0.00 × 100 6.25 × 103 9.02 × 10−1 4.18 × 102 1.10 × 105 2.34 × 104 2.01 × 10−13

Std 4.71 × 10−13 0.00 × 100 1.48 × 103 4.31 × 100 1.13 × 103 5.11 × 103 3.80 × 103 4.08 × 10−14

p-value - 1.18 × 10−12− 2.96 × 10−11+ 2.96 × 10−11+ 2.96 × 10−11+ 2.96 × 10−11+ 2.96 × 10−11+ 4.68 × 10−9−

F1–3 w/t/l - 0/0/3 3/0/0 2/0/1 3/0/0 3/0/0 3/0/0 0/0/3

F4

Simple
Multi-
modal
Prob-
lems

Median 1.85 × 102 2.01 × 102 1.43 × 102 3.99 × 100 1.37 × 10−7 1.27 × 104 1.91 × 102 1.71 × 10−13

Mean 1.81 × 102 1.92 × 102 1.40 × 102 1.04 × 104 4.09 × 103 1.27 × 104 1.82 × 102 1.20 × 100

Std 2.93 × 101 2.69 × 101 7.29 × 100 3.91 × 104 1.31 × 104 7.87 × 102 2.44 × 101 1.83 × 100

p-value - 3.76 × 10−1= 1.83 × 10−9− 3.51 × 10−9+ 1.45 × 10−7+ 2.61 × 10−11+ 9.70 × 10−1= 1.14 × 10−11−

F5

Median 2.13 × 101 2.13 × 101 2.13 × 101 2.00 × 101 2.00 × 101 2.13 × 101 2.13 × 101 2.00 × 101

Mean 2.13 × 101 2.13 × 101 2.13 × 101 2.00 × 101 2.00 × 101 2.13 × 101 2.13 × 101 2.03 × 101

Std 2.74 × 10−2 2.56 × 10−2 2.46 × 10−2 1.47 × 10−2 0.00 × 100 2.28 × 10−2 3.62 × 10−2 6.25 × 10−1

p-value - 1.70 × 10−2− 1.86 × 10−1= 3.16 × 10−12− 1.21 × 10−12− 1.69 × 10−1= 5.44 × 10−1= 9.19 × 10−6−

F6

Median 4.10 × 10−3 1.94 × 100 1.01 × 101 1.55 × 102 6.88 × 101 3.37 × 101 4.93 × 100 1.19 × 102

Mean 3.83 × 10−1 2.43 × 100 1.06 × 101 1.56 × 102 6.96 × 101 3.39 × 101 5.05 × 100 1.20 × 102

Std 5.70 × 10−1 1.85 × 100 3.51 × 100 5.33 × 100 2.75 × 100 3.54 × 100 1.58 × 100 7.18 × 100

p-value - 9.51 × 10−6+ 3.02 × 10−11+ 3.02 × 10−11+ 3.02 × 10−11+ 3.02 × 10−11+ 3.34 × 10−11+ 3.02 × 10−11+

F7

Median 2.27 × 10−13 0.00 × 100 1.02 × 10−12 1.90 × 10−8 1.72 × 10−2 1.10 × 103 5.50 × 10−2 3.41 × 10−13

Mean 2.31 × 10−13 0.00 × 100 1.00 × 10−12 9.27 × 10−3 2.65 × 10−2 1.10 × 103 7.16 × 10−2 4.93 × 10−4

Std 1.19 × 10−13 0.00 × 100 1.84 × 10−13 2.21 × 10−2 2.82 × 10−2 3.23 × 101 5.06 × 10−2 1.84 × 10−3

p-value - 8.27 × 10−13− 1.98 × 10−11+ 2.22 × 10−11+ 2.25 × 10−11+ 2.25 × 10−11+ 2.25 × 10−11+ 4.97 × 10−6+

F8

Median 9.45 × 100 2.39 × 101 7.33 × 102 1.56 × 103 4.64 × 102 2.71 × 102 0.00 × 100 6.15 × 102

Mean 9.22 × 100 2.37 × 101 5.79 × 102 1.48 × 103 4.93 × 102 2.75 × 102 1.33 × 10−1 6.13 × 102

Std 2.52 × 100 4.46 × 100 2.94 × 102 3.00 × 102 1.31 × 102 1.62 × 101 3.38 × 10−1 1.08 × 101

p-value - 3.11 × 10−11+ 2.88 × 10−11+ 2.88 × 10−11+ 2.88 × 10−11+ 2.88 × 10−11+ 3.86 × 10−12− 2.86 × 10−11+
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Table 4. Cont.

F Category Quality ACSEDA EDA2 EDAVERS EDA/LS EDA/LS-MS TRA-EDA BUMDA MA-ES

F9

Median 7.96 × 100 2.14 × 101 7.43 × 102 1.68 × 103 5.92 × 102 2.77 × 102 2.98 × 100 8.09 × 102

Mean 8.06 × 100 2.08 × 101 6.50 × 102 1.68 × 103 6.27 × 102 2.78 × 102 3.26 × 100 8.06 × 102

Std 2.29 × 100 4.72 × 100 2.40 × 102 2.62 × 102 1.31 × 102 1.83 × 101 1.46 × 100 1.52 × 101

p-value - 4.34 × 10−11+ 2.78 × 10−11+ 2.78 × 10−11+ 2.78 × 10−11+ 2.78 × 10−11+ 2.22 × 10−9− 2.77 × 10−11+

F10

Median 6.11 × 102 1.63 × 103 2.79 × 104 1.78 × 104 7.72 × 103 6.51 × 103 1.01 × 102 1.64 × 104

Mean 6.60 × 102 1.79 × 103 2.78 × 104 2.20 × 104 8.58 × 103 6.55 × 103 1.17 × 102 1.65 × 104

Std 3.85 × 102 7.29 × 102 7.77 × 102 7.13 × 103 2.27 × 103 7.46 × 102 1.16 × 102 4.17 × 102

p-value - 1.55 × 10−9+ 3.02 × 10−11+ 3.02 × 10−11+ 3.02 × 10−11+ 3.02 × 10−11+ 1.20 × 10−8− 3.02 × 10−11+

F11

Median 1.43 × 103 1.81 × 103 2.89 × 104 2.17 × 104 7.99 × 103 5.73 × 103 1.25 × 103 1.31 × 104

Mean 1.44 × 103 1.85 × 103 2.87 × 104 2.29 × 104 8.34 × 103 5.66 × 103 1.23 × 103 1.31 × 104

Std 3.41 × 102 4.59 × 102 9.63 × 102 6.21 × 103 1.97 × 103 4.87 × 102 5.13 × 102 4.55 × 102

p-value - 1.24 × 10−3+ 3.02 × 10−11+ 3.02 × 10−11+ 3.02 × 10−11+ 3.02 × 10−11+ 6.57 × 10−2= 3.02 × 10−11+

F12

Median 3.80 × 100 3.97 × 100 3.99 × 100 1.04 × 100 6.78 × 10−1 4.00 × 100 3.93 × 100 2.03 × 10−2

Mean 3.85 × 100 3.99 × 100 3.97 × 100 1.19 × 100 7.28 × 10−1 3.93 × 100 3.96 × 100 2.03 × 10−2

Std 2.16 × 10−1 2.21 × 10−1 2.00 × 10−1 5.49 × 10−1 2.81 × 10−1 3.04 × 10−1 2.10 × 10−1 6.72 × 10−3

p-value - 3.15 × 10−2+ 3.92 × 10−2+ 3.02 × 10−11− 3.02 × 10−11− 5.75 × 10−2= 7.98 × 10−2= 3.02 × 10−11−

F13

Median 2.38 × 10−1 1.33 × 10−1 3.15 × 10−1 4.35 × 10−1 4.99 × 10−1 5.54 × 100 5.77 × 10−2 5.49 × 10−1

Mean 2.36 × 10−1 1.35 × 10−1 3.23 × 10−1 2.39 × 100 8.72 × 10−1 5.54 × 100 5.85 × 10−2 5.57 × 10−1

Std 2.01 × 10−2 1.85 × 10−2 2.55 × 10−2 3.94 × 100 1.17 × 100 7.78 × 10−2 9.94 × 10−3 7.13 × 10−2

p-value - 3.02 × 10−11− 3.69 × 10−11+ 3.02 × 10−11+ 2.15 × 10−10+ 3.02 × 10−11+ 3.02 × 10−11− 3.02 × 10−11+

F14

Median 2.74 × 10−1 4.00 × 10−1 3.59 × 10−1 1.44 × 102 3.77 × 10−1 3.29 × 102 4.56 × 10−1 2.92 × 10−1

Mean 2.70 × 10−1 3.86 × 10−1 3.63 × 10−1 2.40 × 102 4.26 × 10−1 3.27 × 102 4.50 × 10−1 3.66 × 10−1

Std 4.12 × 10−2 4.86 × 10−2 1.83 × 10−2 2.63 × 102 1.50 × 10−1 7.41 × 100 2.05 × 10−2 2.36 × 10−1

p-value - 3.82 × 10−9+ 4.98 × 10−11+ 3.02 × 10−11+ 1.29 × 10−9+ 3.02 × 10−11+ 3.02 × 10−11+ 3.02 × 10−11+

F15

Median 1.04 × 101 1.04 × 101 6.55 × 101 5.57 × 102 1.93 × 102 1.90 × 105 1.20 × 101 1.38 × 101

Mean 1.06 × 101 1.03 × 101 6.01 × 101 2.48 × 107 2.48 × 105 1.90 × 105 1.22 × 101 1.45 × 101

Std 8.45 × 10−1 8.26 × 10−1 1.66 × 101 7.66 × 107 1.33 × 106 3.06 × 104 1.07 × 100 2.62 × 100

p-value - 3.33 × 10−1= 1.29 × 10−9+ 3.02 × 10−11+ 3.02 × 10−11+ 3.02 × 10−11+ 1.29 × 10−6+ 1.69 × 10−9+

F16

Median 4.12 × 101 4.60 × 101 4.53 × 101 4.65 × 101 2.26 × 101 4.33 × 101 4.26 × 101 4.59 × 101

Mean 4.12 × 101 4.59 × 101 4.53 × 101 4.64 × 101 2.26 × 101 4.33 × 101 4.26 × 101 4.58 × 101

Std 5.74 × 10−1 2.25 × 10−1 3.31 × 10−1 9.07 × 10−1 4.77 × 10−1 4.56 × 10−1 5.66 × 10−1 1.42 × 10−1

p-value - 3.02 × 10−11+ 3.02 × 10−11+ 3.02 × 10−11+ 3.02 × 10−11− 3.69 × 10−11+ 1.07 × 10−9+ 3.02 × 10−11+
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Table 4. Cont.

F Category Quality ACSEDA EDA2 EDAVERS EDA/LS EDA/LS-MS TRA-EDA BUMDA MA-ES
F4–16 w/t/l - 8/2/3 11/1/1 11/0/2 10/0/3 11/2/0 5/4/4 10/0/3

F17

Hybrid
Problems

Median 7.10 × 102 8.16 × 102 2.78 × 105 1.29 × 109 1.33 × 107 9.57 × 107 3.87 × 107 5.48 × 103

Mean 7.27 × 102 7.72 × 102 2.74 × 105 1.32 × 109 1.19 × 108 9.54 × 107 3.85 × 107 5.59 × 103

Std 1.93 × 102 2.45 × 102 5.52 × 104 9.08 × 108 1.52 × 108 1.15 × 107 3.48 × 106 6.64 × 102

p-value - 3.26 × 10−1= 3.02 × 10−11+ 3.02 × 10−11+ 3.02 × 10−11+ 3.02 × 10−11+ 3.02 × 10−11+ 3.02 × 10−11+

F18

Median 5.80 × 101 2.62 × 101 2.02 × 102 5.64 × 108 2.47 × 102 3.04 × 109 1.36 × 102 3.63 × 102

Mean 5.89 × 101 2.60 × 101 2.54 × 102 1.97 × 1010 1.41 × 109 3.01 × 109 1.73 × 102 3.63 × 102

Std 1.37 × 101 7.82 × 100 1.87 × 102 2.58 × 1010 3.71 × 109 4.29 × 108 1.43 × 102 6.79 × 101

p-value - 7.39 × 10−11− 7.12 × 10−9+ 3.02 × 10−11+ 3.02 × 10−11+ 3.02 × 10−11+ 2.50 × 10−3+ 3.02 × 10−11+

F19

Median 9.09 × 101 9.40 × 101 9.44 × 101 5.32 × 101 2.61 × 101 5.03 × 102 6.97 × 101 6.03 × 101

Mean 9.10 × 101 9.40 × 101 9.44 × 101 2.43 × 103 2.57 × 101 5.14 × 102 7.21 × 101 6.28 × 101

Std 1.21 × 100 1.38 × 100 1.41 × 100 4.59 × 103 2.12 × 100 6.67 × 101 1.71 × 101 1.41 × 101

p-value - 2.67 × 10−9+ 3.16 × 10−10+ 1.86 × 10−1= 3.02 × 10−11− 3.02 × 10−11+ 9.51 × 10−6− 8.48 × 10−9−

F20

Median 6.20 × 100 9.31 × 100 8.31 × 103 2.43 × 105 6.28 × 104 2.68 × 104 1.08 × 105 6.01 × 102

Mean 6.68 × 100 9.56 × 100 8.43 × 103 2.33 × 106 6.75 × 104 2.60 × 104 1.08 × 105 6.36 × 102

Std 2.34 × 100 2.40 × 100 2.00 × 103 5.76 × 106 3.67 × 104 2.96 × 103 1.89 × 104 1.92 × 102

p-value - 8.88 × 10−6+ 3.02 × 10−11+ 3.02 × 10−11+ 3.02 × 10−11+ 3.02 × 10−11+ 3.02 × 10−11+ 3.02 × 10−11+

F21

Median 2.23 × 102 1.83 × 102 1.59 × 105 9.21 × 108 5.22 × 106 3.03 × 106 2.42 × 107 3.58 × 103

Mean 2.51 × 102 1.98 × 102 1.51 × 105 8.09 × 108 2.02 × 107 3.18 × 106 2.40 × 107 3.51 × 103

Std 8.04 × 101 6.34 × 101 3.04 × 104 5.30 × 108 3.12 × 107 1.09 × 106 2.95 × 106 5.75 × 102

p-value - 1.08 × 10−2− 3.02 × 10−11+ 3.02 × 10−11+ 3.02 × 10−11+ 3.02 × 10−11+ 3.02 × 10−11+ 3.02 × 10−11+

F22

Median 3.89 × 101 3.75 × 101 3.54 × 103 4.09 × 103 1.86 × 103 7.75 × 101 2.58 × 102 1.20 × 103

Mean 4.62 × 101 6.56 × 101 3.49 × 103 1.07 × 105 2.43 × 103 9.21 × 101 2.90 × 102 1.26 × 103

Std 3.11 × 101 5.21 × 101 2.48 × 102 2.59 × 105 1.73 × 103 4.21 × 101 2.09 × 102 3.12 × 102

p-value - 6.00 × 10−1= 3.02 × 10−11+ 3.02 × 10−11+ 3.02 × 10−11+ 5.00 × 10−9+ 1.43 × 10−8+ 3.02 × 10−11+

F17–22 w/t/l - 2/2/2 6/0/0 5/1/0 5/0/1 6/0/0 5/0/1 5/0/1

F23

Composition
Problems

Median 3.48 × 102 3.48 × 102 3.48 × 102 6.57 × 103 1.64 × 103 4.43 × 102 3.59 × 102 2.00 × 102

Mean 3.48 × 102 3.48 × 102 3.48 × 102 6.72 × 103 1.44 × 103 4.41 × 102 3.59 × 102 2.00 × 102

Std 0.00 × 100 0.00 × 100 0.00 × 100 1.60 × 103 6.17 × 102 1.26 × 101 2.91 × 100 0.00 × 100

p-value - NaN= NaN= 1.21 × 10−12+ 3.36 × 10−11+ 1.21 × 10−12+ 1.21 × 10−12+ 1.69 × 10−14−

F24

Median 3.72 × 102 3.72 × 102 3.62 × 102 5.05 × 102 3.39 × 102 3.82 × 102 3.82 × 102 2.00 × 102

Mean 3.73 × 102 3.73 × 102 3.61 × 102 5.07 × 102 4.29 × 102 3.82 × 102 3.82 × 102 2.00 × 102

Std 2.22 × 100 1.90 × 100 4.63 × 100 2.74 × 101 1.32 × 102 1.41 × 100 1.59 × 100 0.00 × 100

p-value - 7.73 × 10−1= 4.08 × 10−11− 3.02 × 10−11+ 1.91 × 10−1= 3.02 × 10−11+ 3.02 × 10−11+ 1.21 × 10−12−
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Table 4. Cont.

F Category Quality ACSEDA EDA2 EDAVERS EDA/LS EDA/LS-MS TRA-EDA BUMDA MA-ES

F25

Median 2.15 × 102 2.16 × 102 2.00 × 102 1.35 × 103 4.27 × 102 2.42 × 102 2.22 × 102 2.00 × 102

Mean 2.15 × 102 2.16 × 102 2.00 × 102 1.37 × 103 4.20 × 102 2.42 × 102 2.23 × 102 2.00 × 102

Std 3.90 × 10−1 8.62 × 10−1 0.00 × 100 2.04 × 102 5.42 × 101 3.06 × 100 9.36 × 100 0.00 × 100

p-value - 1.11 × 10−4+ 1.21 × 10−12− 3.02 × 10−11+ 3.02 × 10−11+ 3.02 × 10−11+ 2.39 × 10−4+ 1.21 × 10−12−

F26

Median 2.00 × 102 2.00 × 102 2.00 × 102 1.07 × 103 1.01 × 102 2.00 × 102 2.00 × 102 2.00 × 102

Mean 2.00 × 102 2.00 × 102 2.00 × 102 8.64 × 102 1.25 × 102 2.00 × 102 2.00 × 102 2.00 × 102

Std 2.50 × 10−4 3.97 × 10−4 7.67 × 10−3 4.77 × 102 6.80 × 101 2.31 × 10−3 4.88 × 10−2 0.00 × 100

p-value - 3.16 × 10−1= 1.96 × 10−12+ 9.65 × 10−8+ 1.02 × 10−6− 9.17 × 10−6+ 2.59 × 10−11+ 9.91 × 10−13−

F27

Median 3.00 × 102 4.65 × 102 3.98 × 102 5.45 × 103 2.42 × 103 1.78 × 103 3.13 × 102 2.00 × 102

Mean 3.04 × 102 4.96 × 102 4.15 × 102 5.50 × 103 2.43 × 103 1.78 × 103 3.23 × 102 2.00 × 102

Std 7.91 × 100 1.13 × 102 5.12 × 101 3.00 × 102 1.17 × 102 1.05 × 102 2.48 × 101 0.00 × 100

p-value - 3.02 × 10−11+ 3.02 × 10−11+ 3.02 × 10−11+ 3.02 × 10−11+ 3.02 × 10−11+ 7.60 × 10−7+ 1.21 × 10−12−

F28

Median 2.31 × 103 2.79 × 103 2.17 × 103 2.99 × 104 1.07 × 104 3.99 × 103 8.14 × 102 2.00 × 102

Mean 2.31 × 103 2.74 × 103 2.17 × 103 2.98 × 104 1.05 × 104 4.45 × 103 8.14 × 102 2.00 × 102

Std 1.10 × 102 5.59 × 102 5.72 × 101 5.35 × 103 1.89 × 103 1.10 × 103 1.85 × 101 0.00 × 100

p-value - 1.17 × 10−2+ 2.38 × 10−7− 3.02 × 10−11+ 3.02 × 10−11+ 3.02 × 10−11+ 3.02 × 10−11− 1.21 × 10−12−

F29

Median 1.13 × 103 7.44 × 102 1.79 × 103 5.47 × 109 9.15 × 108 1.49 × 105 3.32 × 102 2.00 × 102

Mean 1.26 × 103 7.85 × 102 1.80 × 103 5.60 × 109 9.62 × 108 1.69 × 105 4.54 × 102 2.00 × 102

Std 2.79 × 102 1.55 × 102 4.30 × 101 1.23 × 109 2.57 × 108 1.26 × 105 3.73 × 102 0.00 × 100

p-value - 3.16 × 10−10− 3.82 × 10−10+ 3.02 × 10−11+ 3.02 × 10−11+ 3.02 × 10−11+ 5.00 × 10−9− 1.21 × 10−12−

F30

Median 9.17 × 103 4.37 × 103 8.66 × 103 3.02 × 108 1.31 × 107 7.14 × 104 1.92 × 103 2.00 × 102

Mean 8.91 × 103 4.71 × 103 8.82 × 103 3.11 × 108 1.38 × 107 8.01 × 104 1.88 × 103 2.00 × 102

Std 1.03 × 103 1.21 × 103 6.54 × 102 1.03 × 108 5.63 × 106 2.63 × 104 4.86 × 102 0.00 × 100

p-value - 9.92 × 10−11− 3.87 × 10−1= 3.02 × 10−11+ 3.02 × 10−11+ 3.90 × 10−10+ 3.02 × 10−11− 1.21 × 10−12−

F23–30 w/t/l - 3/3/2 3/2/3 8/0/0 6/1/1 8/0/0 5/0/3 0/0/8
w/t/l - 13/7/10 23/3/4 26/1/3 24/1/5 28/2/0 18/4/8 15/0/15
Rank 2.70 3.37 4.58 7.07 5.27 5.83 4.03 3.15
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From Table 2, the comparison results between ACSEDA and the compared state-of-
the-art EDAs on the 30-D CEC 2014 benchmark problems can be summarized as follows:

(1) As shown in the last row of Table 2, in view of the Friedman test, it is found that the
proposed ACSEDA obtains the smallest rank and this rank value is much smaller
than those of the other algorithms. This indicates that ACSEDA achieves the best
overall performance on the 30-D CEC 2014 benchmark set and obtains significant
superiority to the compared algorithms.

(2) As shown in the second-to-last row of Table 2, from the perspective of the Wilcoxon
rank-sum test, we can see that ACSEDA achieves significantly better performance
than the compared algorithms on at least 23 problems, except for EDA2 and MA-ES.
Compared with EDA2, ACSEDA shows significant superiority on 13 problems, and
only presents inferiority on 6 problems. Competing with MA-ES, ACSEDA presents
significant dominance on 19 problems, and it loses the competition on 10 problems.

(3) With respect to the optimization performance on different kinds of problems, on the
three unimodal problems, both ACSEDA and EDA2 achieve the true global optima of
these three problems and thus show significantly better performance than the other
6 EDA variants. On the 13 simple multimodal problems, ACSEDA is significantly
superior to EDAVESR, EDA/LS, EDA/LS-MS, and TRA-EDA on 10 problems, and it
also beats EDA2, BUMDA, and MA-ES down on 8, 9, and 9 problems, respectively.
In terms of the six hybrid problems, the optimization performance of ACSEDA is
significantly better than the compared EDA variants on all these functions, except
for EDA2. In comparison with EDA2, ACSEDA shows great superiority on three
problems and achieves equivalent performance with EDA2 on three problems. In
particular, on these six hybrid problems, ACSEDA shows no inferiority to all the
compared EDA variants. As for the eight composition problems, it is observed that
ACSEDA is significantly better than EDA/LS and EDA/LS-MS on all these problems.
In comparison with TRA-EDA and BUMDA, it outperforms them on six and five
problems, respectively. Particularly, on this kind of problem, ACSEDA is a litter
inferior to EDA2 and MA-ES.

(4) To sum up, it is observed that ACSEDA shows very competitive, or even significantly
better, performance in solving the 30-D CEC 2014 benchmark problems, as compared
with the selected state-of-the-art EDA variants. In particular, encountered with
complicated optimization problems, such as multimodal problems, hybrid problems,
and composition problems, the proposed ACSEDA shows great superiority to the
compared algorithms, which indicates that it is very promising for complicated
problems.

Subsequently, from Table 3, we can get the following findings, with respect to the
comparison results between ACSEDA and the compared state-of-the-art EDA variants, on
the 50-D CEC 2014 benchmark problems:

(1) In terms of the Friedman test, as shown in the last row of Table 3, it is found that
ACSEDA still achieves the lowest rank among all algorithms. This verifies that
ACSEDA still obtains the best overall performance on the 50-D CEC 2014 problems.

(2) With respect to the Wilcoxon rank sum test, as shown in the second last row of Table 3,
ACSEDA outperforms EDAVERS, EDA/LS, EDA/LS-MS, TRA-EDA, and BUMDA
significantly on 24, 28, 28, 28, and 21 problems, respectively. Compared with EDA2,
ACSEDA attains much better performance on 13 problems and equivalent perfor-
mance on 9 problems. Competing with MA-ES, ACSEDA significantly outperforms it
on 19 problems and only shows inferiority on 11 problems.

(3) Regarding the performance on different kinds of optimization problems, on the three
unimodal problems, except for EDA2 and MA-ES, ACSEDA still presents great superi-
ority to the other compared EDA variants on all the three problems. In particular, both
ACSEDA and EDA2 locate the true global optimum of F3, while ACSEDA displays
great dominance over EDA2 on the other two problems. Compared with MA-ES,
ACSEDA is much better on two problems, and it obtains worse performance on only
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one problem. On the 13 simple multimodal functions, ACSEDA significantly outper-
forms EDAVERS, EDA/LS, EDA/LS-MS, and TRA-EDA on 11 problems, performs
significantly better than MA-ES on 10 problems, and wins the competition on 7 prob-
lems, as competed with both EDA2 and BUMDA. On the 6 hybrid problems, ACSEDA
is significantly superior to the compared EDA variants on all the six problems, except
for EDA2. In competition with EDA2, ACSEDA loses the competition on five prob-
lems. On the 8 composition problems, ACSEDA is better than EDA/LS, EDA/LS-MS,
TRA-EDA on all eight problems. At the same time, it achieves equivalent or even
much better performance than EDA2, EDAVERS, and BUMDA on at least six problems.
However, ACSEDA shows inferior performance to MA-ES on seven problems.

(4) In summary, encountered with the 50-D CEC 2014 problems, ACSEDA still exhibits
significantly better performance than the compared EDA variants. This further
demonstrates that ACSEDA is promising for both simple optimization problems,
such as unimodal problems, and complicated optimization problems, such as hybrid
problems and composition problems.

At last, from Table 4, the following observations can be achieved from the comparison
results between ACSEDA and the compared state-of-the-art EDA variants on the 100-D
CEC 2014 benchmark problems:

(1) From the averaged rank obtained from the Friedman test, it is observed that ACSEDA
still obtains the smallest rank value among all algorithms. This means that ACSEDA
consistently achieves the best overall optimization performance on the 100-D CEC
2014 benchmark set.

(2) According to the results of the Wilcoxon rank sum test, ACSEDA presents great
dominance to EDAVERS, EDA/LS, EDA/LS-MS, and TRA-EDA on 23, 26, 24, and
28 problems, respectively. In comparison with EDA2 and BUMDA, ACSEDA ob-
tains competitive or even better performance on 20 and 22 problems, respectively.
Compared with MA-ES, ACSEDA achieves much better performance on 15 problems
and presents inferiority on 15 problems as well. This indicates that ACSEDA is very
competitive to MA-ES on the 100-D CEC2014 benchmark problems.

(3) Concerning the optimization performance on different kinds of optimization prob-
lems, on the three unimodal problems, ACSEDA outperforms EDAVERS, EDA/LS-MS,
TRA-EDA, and BUMDA on all these three problems, and it performs much better
than EDA/LS on two problems. However, it loses the competition on these three
problems to both EDA2 and MA-ES. When it comes to the 13 simple multimodal
functions, ACSEDA shows significantly better performance than EDAVERS, EDA/LS,
EDA/LS-MS, TRA-EDA, and MA-ES on at least 10 problems, and presents great supe-
riority to EDA2 on 8 problems. On these 13 problems, ACSEDA and BUMDA achieve
very similar performance. Encountered with the six hybrid problems, ACSEDA ex-
hibits much better performance than the compared EDA variants on at least five
problems, except for EDA2. Faced with the eight composition problems, ACSEDA is
better than EDA/LS, EDA/LS-MS, TRA-EDA, and BUMDA on at least five problems,
presents very competitive performance with EDA2 and EDAVERS, and is only inferior
to MA-ES.

(4) To conclude, encountered with the 100-D CEC 2014 problems, ACSEDA still shows
great superiority to the compared state-of-the-art EDA variants in solving such high-
dimensional problems. In particular, on the complicated problems with such high
dimensionality, such as the hybrid problems and the composition problems, ACSEDA
still presents significant dominance to most of the compared algorithms. This further
demonstrates that the proposed ACSEDA is promising for optimization problems.

Comprehensively speaking, from the above comparisons, we can see that ACSEDA
consistently exhibits great superiority to the compared state-of-the-art EDA variants on the
CEC 2014 benchmark problem set with different dimension sizes. This demonstrates that
ACSEDA is promising for both simple unimodal problems and complicated multimodal
problems. Besides, it also preserves good scalability in solving optimization problems.
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The above demonstrated superiority of the proposed ACSEDA mainly benefits from the
proposed three techniques. With the cohesive cooperation of them, ACSEDA could strike a
promising balance between exploration and exploitation to search the complicated solution
space properly.

4.3. Deep Investegation on ACSEDA

From the above comparison experiments, we can see that ACSEDA shows great
dominance over the compared state-of-the-art EDA variants. In this section, we take a deep
observation on ACSEDA to investigate the influence of each component, so it is clear to see
what contributes to the promising performance of ACSEDA.

4.3.1. Effectiveness of the Covariance Scaling Strategy

First, we conduct experiments to verify the effectiveness of the proposed covariance
scaling strategy, which is realized by setting a larger cs (to estimate the covariance) than the
selection ratio sr (to estimate the mean vector). To this end, first, we fix different sr. Then,
based on each fixed sr, we set different cs, each of which is larger than the associated sr.
Subsequently, based on the above settings of sr and cs, we conduct experiments on the 50-D
CEC 2014 benchmark problems. Table 5 shows the comparison results among ACSEDA
with different settings of the selection ratio (sr) and different settings of the covariance
scaling (cs) parameter on the 50-D CEC 2014 benchmark problems. In this table, the best
results are highlighted in bold in each part associated with each fixed sr. In addition, the
averaged ranks of each cs, in each part obtained from the Friedman test, are listed in the
last row of the table.

From Table 5, we can get the following findings:

(1) With respect to the comparison results of each part, it is found that a larger cs than
sr helps ACSEDA achieve much better performance than the one with cs = sr. In
particular, it is interesting to find that the superiority of the ACSEDA with a larger cs
(than sr) to the one without the covariance scaling (cs = sr) is particularly significant
in solving complicated problems such as F20-F30. This demonstrates the covariance
scaling technique is helpful for ACSEDA to obtain promising performance in solving
optimization problems, especially on complicated problems.

(2) It is also interesting to find that neither a too small cs, nor a too large cs (compared with
sr) are suitable for ACSEDA to achieve promising performance. For instance, when
sr = 0.1, we find that, though ACSEDA with a too-small cs (cs ≤ 0.4) achieves much
better performance than the one with cs = sr (namely without covariance scaling),
its performance is much worse than the ones with a larger cs (0.4 < cs < 0.8). On
the contrary, when ACSEDA has a too large cs (cs ≥ 0.8), its performance degrades
dramatically, as compared with the ones with a proper cs. A similar situation occurs
to ACSEDA with the other settings of sr when cs is either too large or too small. Such
experimental results verify the analysis presented in Section 3.1.

To sum up, it is found that the proposed covariance scaling strategy is effective to
help EDA achieve promising performance in solving optimization problems, especially
complicated problems.
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Table 5. Comparison among ACSEDA, with different settings of the selection ratio (sr) and different settings of the covariance scaling (cs) parameter, on the 50-D CEC 2014 benchmark
problems. The best results in each part are highlighted in bold in this table.

sr = 0.1 sr = 0.2 sr = 0.3 sr = 0.4 sr = 0.5

F
cs = 0.1 cs = 0.2 cs = 0.3 cs = 0.4 cs = 0.5 cs = 0.6 cs = 0.7 cs = 0.8 cs = 0.9 cs = 1.0 cs = 0.2 cs = 0.4 cs = 0.6 cs = 0.8 cs = 1.0 cs = 0.3 cs = 0.6 cs = 0.9 cs = 1.0 cs = 0.4 cs = 0.8 cs = 1.0 cs = 0.5 cs = 1.0
cs/sr =

1.0
cs/sr =

2.0
cs/sr =

3.0
cs/sr =

4.0
cs/sr =

5.0
cs/sr =

6.0
cs/sr =

7.0
cs/sr =

8.0
cs/sr =

9.0
cs/sr =

10.0
cs/sr =

1.0
cs/sr =

2.0
cs/sr =

3.0
cs/sr =

4.0
cs/sr =

5.0
cs/sr =

1.0
cs/sr =

2.0
cs/sr =

3.0
cs/sr =

3.3
cs/sr =

1.0
cs/sr =

2.0
cs/sr =

2.5
cs/sr =

1.0
cs/sr =

2.0

F1
2.32 ×

108
2.33 ×

107
1.44 ×

105
3.43 ×

103
5.87 ×
10−14

5.74 ×
10−10

4.28 ×
10−6

2.57 ×
10−2

5.70 ×
102

1.03 ×
108

4.00 ×
108

3.98 ×
106

4.67 ×
101

1.87 ×
10−2

9.68 ×
107

6.93 ×
108

9.64 ×
104

2.52 ×
103

1.02 ×
108

1.05 ×
109

3.46 ×
103

1.26 ×
108

1.44 ×
109

1.47 ×
108

F2
3.39 ×
1010

1.41 ×
1010

5.17 ×
108

9.41 ×
101

9.35 ×
10−12

1.08 ×
10−7

7.97 ×
10−4

5.14 ×
100

4.17 ×
104

2.97 ×
109

3.94 ×
1010

7.22 ×
108

1.87 ×
10−2

4.16 ×
100

2.34 ×
109

4.71 ×
1010

3.71 ×
108

2.33 ×
104

2.15 ×
109

5.63 ×
1010

9.39 ×
102

2.09 ×
109

6.48 ×
1010

2.01 ×
109

F3
3.47 ×

104
1.30 ×

104
4.03 ×

102
0.00 ×

100
0.00 ×

100
2.80 ×
10−13

2.45 ×
10−9

1.77 ×
10−5

1.75 ×
10−1

1.13 ×
105

3.72 ×
104

5.53 ×
103

1.71 ×
10−13

1.02 ×
10−5

1.13 ×
105

4.33 ×
104

2.81 ×
102

8.26 ×
10−2

1.17 ×
105

4.81 ×
104

9.73 ×
10−6

1.17 ×
105

5.47 ×
104

1.17 ×
105

F4
4.69 ×

103
1.46 ×

103
1.36 ×

102
9.02 ×

101
8.96 ×

101
9.26 ×

101
9.42 ×

101
9.65 ×

101
9.73 ×

101
3.38 ×

102
5.58 ×

103
6.39 ×

102
9.31 ×

101
9.53 ×

101
3.31 ×

102
6.81 ×

103
1.33 ×

102
9.55 ×

101
3.52 ×

102
8.82 ×

103
9.32 ×

100
3.76 ×

102
1.06 ×

104
4.20 ×

102

F5
2.11 ×

101
2.11 ×

101
2.11 ×

101
2.11 ×

101
2.11 ×

101
2.11 ×

101
2.11 ×

101
2.11 ×

101
2.11 ×

101
2.11 ×

101
2.11 ×

101
2.11 ×

101
2.11 ×

101
2.11 ×

101
2.11 ×

101
2.11 ×

101
2.11 ×

101
2.11 ×

101
2.11 ×

101
2.11 ×

101
2.11 ×

101
2.11 ×

101
2.11 ×

101
2.11 ×

101

F6
1.91 ×

101
8.04 ×

100
1.36 ×

100
1.65 ×
10−1

6.99 ×
10−2

1.89 ×
10−2

3.50 ×
10−2

3.66 ×
10−1

1.80 ×
100

3.38 ×
101

1.39 ×
101

2.32 ×
100

1.21 ×
10−1

1.46 ×
10−1

3.12 ×
101

1.44 ×
101

1.06 ×
10−1

1.51 ×
100

3.06 ×
101

1.58 ×
101

1.50 ×
10−1

3.06 ×
101

1.76 ×
101

3.13 ×
101

F7
3.19 ×

102
1.29 ×

102
6.81 ×

100
0.00 ×

100
0.00 ×

100
1.17 ×
10−13

1.03 ×
10−9

6.92 ×
10−6

6.71 ×
10−2

3.39 ×
101

3.68 ×
102

6.40 ×
101

1.14 ×
10−13

4.14 ×
10−6

2.64 ×
101

4.33 ×
102

7.17 ×
100

3.47 ×
10−2

2.46 ×
101

5.12 ×
102

4.55 ×
10−6

2.45 ×
101

5.92 ×
102

2.44 ×
101

F8
1.61 ×

102
8.34 ×

101
3.44 ×

101
1.63 ×

101
8.86 ×

100
6.00 ×

100
4.88 ×

100
3.39 ×

100
1.71 ×

101
3.02 ×

102
1.26 ×

102
4.67 ×

101
1.19 ×

101
4.02 ×

100
2.97 ×

102
1.14 ×

102
2.81 ×

101
1.09 ×

101
2.96 ×

102
1.15 ×

102
1.56 ×

101
2.96 ×

102
1.29 ×

102
2.96 ×

102

F9
1.60 ×

102
7.09 ×

101
2.67 ×

101
9.24 ×

100
6.53 ×

100
4.11 ×

100
3.68 ×

100
3.79 ×

100
1.15 ×

102
3.32 ×

102
1.09 ×

102
3.34 ×

101
6.37 ×

100
2.70 ×

100
3.27 ×

102
1.02 ×

102
1.93 ×

101
3.32 ×

101
3.26 ×

102
1.07 ×

102
9.42 ×

100
3.21 ×

102
1.23 ×

102
3.26 ×

102

F10
4.63 ×

103
2.46 ×

103
1.25 ×

103
8.25 ×

102
5.36 ×

102
3.14 ×

102
2.76 ×

102
1.30 ×

102
3.55 ×

102
8.99 ×

103
3.26 ×

103
1.37 ×

103
7.34 ×

102
2.96 ×

102
8.83 ×

103
2.79 ×

103
1.05 ×

103
9.53 ×

102
9.21 ×

103
2.70 ×

103
1.23 ×

103
9.28 ×

103
2.86 ×

103
1.01 ×

104

F11
4.85 ×

103
2.46 ×

103
1.31 ×

103
8.47 ×

102
6.18 ×

102
4.83 ×

102
3.77 ×

102
3.00 ×

102
3.22 ×

103
1.05 ×

104
3.24 ×

103
1.33 ×

103
7.81 ×

102
5.04 ×

102
1.05 ×

104
2.87 ×

103
1.26 ×

103
3.65 ×

103
1.05 ×

104
2.73 ×

103
1.23 ×

103
1.08 ×

104
2.66 ×

103
1.10 ×

104

F12
1.14 ×

100
3.17 ×

100
3.21 ×

100
3.20 ×

100
3.15 ×

100
3.28 ×

100
3.23 ×

100
3.18 ×

100
3.23 ×

100
3.42 ×

100
3.21 ×

100
3.28 ×

100
3.20 ×

100
3.30 ×

100
3.20 ×

100
3.27 ×

100
3.28 ×

100
3.22 ×

100
3.35 ×

100
3.26 ×

100
3.28 ×

100
3.25 ×

100
3.25 ×

100
3.33 ×

100

F13
3.81 ×

100
1.53 ×

100
1.78 ×
10−1

1.43 ×
10−1

1.40 ×
10−1

1.30 ×
10−1

1.08 ×
10−1

8.13 ×
10−2

6.16 ×
10−2

4.44 ×
10−1

4.01 ×
100

3.50 ×
10−1

1.33 ×
10−1

9.14 ×
10−2

3.78 ×
10−1

4.38 ×
100

1.63 ×
10−1

6.22 ×
10−2

4.16 ×
10−1

4.74 ×
100

1.22 ×
10−1

4.24 ×
10−1

5.13 ×
100

4.27 ×
10−1

F14
6.72 ×

101
2.05 ×

101
2.85 ×
10−1

3.37 ×
10−1

3.30 ×
10−1

3.15 ×
10−1

2.93 ×
10−1

2.61 ×
10−1

2.69 ×
10−1

8.46 ×
100

8.23 ×
101

8.36 ×
10−1

3.20 ×
10−1

2.98 ×
10−1

5.38 ×
100

9.72 ×
101

3.02 ×
10−1

3.06 ×
10−1

3.74 ×
100

1.14 ×
102

3.26 ×
10−1

4.16 ×
100

1.37 ×
102

3.64 ×
100

F15
5.07 ×

103
5.31 ×

101
5.65 ×

100
4.75 ×

100
4.94 ×

100
4.77 ×

100
7.47 ×

100
1.38 ×

101
2.54 ×

101
8.19 ×

101
7.77 ×

103
6.69 ×

100
5.02 ×

100
1.30 ×

101
6.93 ×

101
1.20 ×

104
5.41 ×

100
2.34 ×

101
6.93 ×

101
2.26 ×

104
1.27 ×

101
7.29 ×

101
4.24 ×

104
8.86 ×

101

F16
1.72 ×

101
1.58 ×

101
1.84 ×

101
1.91 ×

101
2.03 ×

101
2.02 ×

101
2.02 ×

101
2.01 ×

101
2.02 ×

101
2.03 ×

101
1.74 ×

101
1.97 ×

101
2.07 ×

101
2.08 ×

101
2.05 ×

101
2.00 ×

101
2.13 ×

101
2.12 ×

101
2.10 ×

101
2.12 ×

101
2.20 ×

101
2.16 ×

101
2.24 ×

101
2.24 ×

101

F17
1.18 ×

107
6.54 ×

102
3.78 ×

102
2.87 ×

102
2.51 ×

102
2.42 ×

102
2.30 ×

102
3.50 ×

102
7.20 ×

102
5.30 ×

106
2.58 ×

107
3.90 ×

102
3.20 ×

102
4.51 ×

102
6.01 ×

106
4.60 ×

107
4.82 ×

102
9.18 ×

102
6.59 ×

106
8.43 ×

107
6.54 ×

102
7.59 ×

106
1.23 ×

108
9.22 ×

106

F18
2.44 ×

108
1.30 ×

102
9.18 ×

101
4.83 ×

101
2.76 ×

101
2.44 ×

101
2.42 ×

101
2.63 ×

101
1.63 ×

102
1.72 ×

108
8.31 ×

108
8.80 ×

101
3.95 ×

101
4.11 ×

101
1.40 ×

108
1.77 ×

109
7.36 ×

101
1.66 ×

102
1.32 ×

108
3.13 ×

109
7.62 ×

101
1.27 ×

108
4.56 ×

109
1.22 ×

108

F19
8.07 ×

101
3.42 ×

101
2.69 ×

101
1.45 ×

101
1.23 ×

101
1.19 ×

101
1.22 ×

101
1.23 ×

101
1.31 ×

101
8.38 ×

101
9.25 ×

101
3.61 ×

101
1.44 ×

101
1.23 ×

101
8.69 ×

101
1.34 ×

102
3.42 ×

101
1.30 ×

101
8.90 ×

101
2.11 ×

102
1.62 ×

101
9.02 ×

101
3.22 ×

102
9.37 ×

101

F20
7.88 ×

102
9.08 ×

101
3.64 ×

101
9.82 ×

100
5.40 ×

100
3.19 ×

100
2.71 ×

100
4.25 ×

100
3.90 ×

101
2.17 ×

104
1.21 ×

103
4.07 ×

101
7.49 ×

100
5.36 ×

100
2.97 ×

104
1.69 ×

103
2.34 ×

101
3.38 ×

101
3.55 ×

104
2.51 ×

103
2.10 ×

101
3.88 ×

104
3.84 ×

103
3.82 ×

104

F21
1.22 ×

104
9.05 ×

102
4.28 ×

102
3.15 ×

102
2.61 ×

102
2.62 ×

102
2.84 ×

102
3.24 ×

102
5.40 ×

102
3.39 ×

106
1.45 ×

104
4.69 ×

102
3.00 ×

102
3.99 ×

102
4.06 ×

106
2.85 ×

104
4.04 ×

102
7.46 ×

102
4.15 ×

106
5.22 ×

104
5.38 ×

102
4.96 ×

106
1.19 ×

105
5.55 ×

106

F22
1.48 ×

102
6.22 ×

101
5.03 ×

101
3.77 ×

101
3.87 ×

101
5.43 ×

101
5.87 ×

101
6.81 ×

101
8.39 ×

101
8.07 ×

102
1.43 ×

102
7.32 ×

101
6.23 ×

101
7.91 ×

101
8.02 ×

102
3.79 ×

102
4.38 ×

101
1.20 ×

102
8.64 ×

102
1.12 ×

103
8.50 ×

101
8.52 ×

102
3.10 ×

103
8.66 ×

102

F23
4.62 ×

102
3.93 ×

102
3.52 ×

102
3.44 ×

102
3.44 ×

102
3.44 ×

102
3.44 ×

102
3.44 ×

102
3.44 ×

102
3.94 ×

102
4.53 ×

102
3.75 ×

102
3.44 ×

102
3.44 ×

102
4.02 ×

102
4.62 ×

102
3.52 ×

102
3.44 ×

102
4.14 ×

102
4.94 ×

102
3.44 ×

102
4.24 ×

102
5.24 ×

102
4.44 ×

102

F24
2.80 ×

102
2.74 ×

102
2.73 ×

102
2.72 ×

102
2.72 ×

102
2.70 ×

102
2.70 ×

102
2.69 ×

102
2.70 ×

102
3.27 ×

102
2.76 ×

102
2.73 ×

102
2.73 ×

102
2.71 ×

102
3.22 ×

102
2.75 ×

102
2.73 ×

102
2.73 ×

102
3.21 ×

102
2.74 ×

102
2.74 ×

102
3.21 ×

102
2.72 ×

102
3.22 ×

102

F25
2.22 ×

102
2.15 ×

102
2.09 ×

102
2.05 ×

102
2.05 ×

102
2.05 ×

102
2.05 ×

102
2.05 ×

102
2.05 ×

102
2.36 ×

102
2.20 ×

102
2.13 ×

102
2.05 ×

102
2.05 ×

102
2.47 ×

102
2.21 ×

102
2.09 ×

102
2.05 ×

102
2.51 ×

102
2.20 ×

102
2.05 ×

102
2.51 ×

102
2.19 ×

102
2.51 ×

102

F26
1.27 ×

102
1.11 ×

102
1.04 ×

102
1.01 ×

102
1.03 ×

102
1.00 ×

102
1.00 ×

102
1.00 ×

102
1.00 ×

102
1.62 ×

102
1.33 ×

102
1.17 ×

102
1.05 ×

102
1.05 ×

102
1.85 ×

102
1.38 ×

102
1.19 ×

102
1.06 ×

102
1.91 ×

102
1.64 ×

102
1.08 ×

102
1.99 ×

102
1.71 ×

102
1.80 ×

102

F27
1.05 ×

103
6.94 ×

102
4.08 ×

102
3.37 ×

102
3.29 ×

102
3.36 ×

102
3.30 ×

102
3.34 ×

102
3.81 ×

102
1.08 ×

103
9.37 ×

102
5.39 ×

102
3.22 ×

102
3.29 ×

102
1.03 ×

103
9.48 ×

102
3.93 ×

102
3.62 ×

102
1.02 ×

103
1.02 ×

103
3.24 ×

102
1.02 ×

103
1.10 ×

103
1.04 ×

103

F28
2.40 ×

103
1.73 ×

103
1.51 ×

103
1.16 ×

103
1.17 ×

103
1.18 ×

103
1.21 ×

103
1.23 ×

103
1.28 ×

103
1.47 ×

103
2.34 ×

103
1.47 ×

103
1.16 ×

103
1.25 ×

103
1.51 ×

103
2.43 ×

103
1.48 ×

103
1.30 ×

103
1.56 ×

103
2.15 ×

103
1.23 ×

103
1.56 ×

103
2.33 ×

103
1.56 ×

103

F29
1.24 ×

104
2.66 ×

103
1.97 ×

103
1.20 ×

103
8.88 ×

102
9.91 ×

102
1.29 ×

103
1.71 ×

103
4.11 ×

103
1.07 ×

106
1.16 ×

104
1.64 ×

103
9.69 ×

102
1.62 ×

103
1.70 ×

106
3.79 ×

104
1.59 ×

103
4.49 ×

103
5.00 ×

106
4.45 ×

104
1.24 ×

103
4.60 ×

106
1.15 ×

105
7.17 ×

106

F30
1.68 ×

105
3.69 ×

104
1.66 ×

104
1.06 ×

104
9.03 ×

103
8.77 ×

103
9.08 ×

103
9.47 ×

103
9.29 ×

103
3.70 ×

104
2.36 ×

105
2.54 ×

104
9.83 ×

103
8.95 ×

103
5.48 ×

104
3.11 ×

105
1.73 ×

104
9.12 ×

103
5.35 ×

104
5.07 ×

105
9.99 ×

103
6.20 ×

104
6.99 ×

105
7.81 ×

104

Rank 8.83 7.43 6.03 4.53 3.25 3.25 3.22 3.65 5.73 9.07 4.20 3.00 1.62 1.98 4.20 3.30 1.70 1.60 3.40 2.43 1.20 2.37 1.57 1.43
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4.3.2. Effectiveness of the Proposed Adaptive Covariance Scaling Strategy

Then, we conduct experiments to verify the effectiveness of the proposed adaptive
covariance scaling method, which is realized by dynamically adjusting cs according to
Equation (10). Since the proposed adaptive covariance scaling method is related to sr, as
can be seen from Equation (10), we first fix sr as 0.1 and 0.2 to investigate the effectiveness
of the proposed adaptive method. These two settings of sr are utilized because, from the
experimental result in the last subsection as shown in Table 5, when sr is larger than 0.3,
ACSEDA achieves much worse performance and thus, it is meaningless to investigate the
effectiveness of the proposed adaptive cs when sr is larger than 0.3. Subsequently, for each
set of sr, we set different fixed cs for ACSEDA and then compare them with the ACSEDA
with the adaptive cs strategy.

Table 6 presents the comparison between ACSEDA with the adaptive covariance
scaling method and the ones with different fixed settings of cs on the 50-D CEC 2014
benchmark problems. From this table, we attain the following observations:

(1) As a whole, no matter if it is from the perspective of the averaged rank obtained
from the Friedman test or from the perspective of the number of problems where
the algorithm achieves the best results, the ACSEDA with the proposed adaptive cs
obtains much better performance than those with different fixed cs. This verifies that
the proposed adaptive cs strategy is effective to help ACSEDA achieve promising
performance.

(2) Under the same set of sr, we find that the optimal fixed cs for ACSEDA to achieve the
best performance is different on different problems. This indicates that the optimal
setting of cs is not consistent for all problems. With the proposed adaptive strategy, we
can see that not only is the sensitivity of ACSEDA to cs alleviated, but its optimization
performance is also largely promoted.

In summary, based on the above experiments, we can see that the proposed covariance
scaling strategy is very beneficial for ACSEDA to achieve promising performance. This is
mainly because the proposed adaptive strategy helps ACSEDA bias to explore the solution
space in the early stage and, gradually, bias to exploit the found promising areas without
serious loss of diversity as the evolution iterates. As a result, with this adaptive strategy,
ACSEDA could explore and exploit the solution space properly to find the optima of
optimization problems.

4.3.3. Effectiveness of the Proposed Adaptive Promising Selection Strategy

Subsequently, we conduct experiments to verify the effectiveness of the proposed
promising individual selection strategy, which is realized by dynamically adjusting the
parameter sr, based on Equation (11). Since the setting of sr influences the covariance
scaling parameter cs, we first fix cs as 0.6 and then accordingly set different fixed sr. It
should be noticed that cs = 0.6 is adopted here because, in the last subsection, as shown in
Table 6, ACSEDA obtains the best overall performance when cs = 0.6 under the two settings
of sr. Then, we compare the ACSEDA with the proposed adaptive sr and the ones with
different fixed sr under the same set of cs (namely cs = 0.6).
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Table 6. Comparison between ACSEDA, with and without the adaptive covariance scaling method, on the 50-D CEC 2014 benchmark problems. The best results in each part are
highlighted in bold in this table.

sr = 0.1 sr = 0.2
F cs = 0.1 cs = 0.2 cs = 0.3 cs = 0.4 cs = 0.5 cs = 0.6 cs = 0.7 cs = 0.8 cs = 0.9 cs = 1.0 Adaptive − cs cs = 0.2 cs = 0.4 cs = 0.6 cs = 0.8 cs = 1.0 Adaptive − cs
F1 2.32 × 108 2.33 × 107 1.44 × 105 3.43 × 103 5.87 × 10−14 5.74 × 10−10 4.28 × 10−6 2.57 × 10−2 5.70 × 102 1.03 × 108 1.47 × 10−14 4.00 × 108 3.98 × 106 4.67 × 101 1.87 × 10−2 9.68 × 107 2.53 × 10−13

F2 3.39 × 108 1.41 × 1010 5.17 × 108 9.41 × 101 9.35 × 10−12 1.08 × 10−7 7.97 × 10−4 5.14 × 100 4.17 × 104 2.97 × 109 2.04 × 10−12 3.94 × 1010 7.22 × 109 1.87 × 10−2 4.16 × 100 2.34 × 109 3.83 × 10−11

F3 3.47 × 104 1.30 × 104 4.03 × 102 0.00 × 100 0.00 × 100 2.80 × 10−13 2.45 × 10−9 1.77 × 10−5 1.75 × 10−1 1.13 × 105 0.00 × 100 3.72 × 104 5.53 × 103 1.71 × 10−14 1.02 × 10−5 1.13 × 105 0.00 × 100

F4 4.69 × 103 1.46 × 103 1.36 × 102 9.02 × 101 8.96 × 101 9.26 × 101 9.42 × 101 9.65 × 101 9.73 × 101 3.38 × 102 9.31 × 101 5.58 × 103 6.39 × 102 9.31 × 101 9.53 × 101 3.31 × 102 9.35 × 101

F5 2.11 × 101 2.11 × 101 2.11 × 101 2.11 × 101 2.11 × 101 2.11 × 101 2.11 × 101 2.11 × 101 2.11 × 101 2.11 × 101 2.11 × 101 2.11 × 101 2.11 × 101 2.11 × 101 2.11 × 101 2.11 × 101 2.11 × 101

F6 1.91 × 101 8.04 × 100 1.36 × 100 1.65 × 10−1 6.99 × 10−2 1.89 × 10−2 3.50 × 10−2 3.66 × 10−1 1.80 × 100 3.38 × 101 1.74 × 10−2 1.39 × 101 2.32 × 100 1.21 × 10−1 1.46 × 10−1 3.12 × 101 2.20 × 10−4

F7 3.19 × 102 1.29 × 102 6.81 × 100 0.00 × 100 0.00 × 100 1.17 × 10−13 1.03 × 10−9 6.92 × 10−6 6.71 × 10−2 3.39 × 101 0.00 × 100 3.68 × 102 6.40 × 101 1.14 × 10−13 4.14 × 10−6 2.64 × 101 0.00 × 100

F8 1.61 × 102 8.34 × 101 3.44 × 101 1.63 × 101 8.86 × 100 6.00 × 100 4.88 × 100 3.39 × 100 1.71 × 101 3.02 × 102 3.05 × 100 1.26 × 102 4.67 × 101 1.19 × 101 4.02 × 100 2.97 × 102 2.35 × 100

F9 1.60 × 102 7.09 × 101 2.67 × 101 9.24 × 100 6.53 × 100 4.11 × 100 3.68 × 100 3.79 × 100 1.15 × 102 3.32 × 102 2.06 × 100 1.09 × 102 3.34 × 101 6.37 × 100 2.70 × 100 3.27 × 102 1.86 × 100

F10 4.63 × 103 2.46 × 103 1.25 × 103 8.25 × 102 5.36 × 102 3.14 × 102 2.76 × 102 1.30 × 102 3.55 × 102 8.99 × 103 7.00 × 101 3.26 × 103 1.37 × 103 7.34 × 102 2.96 × 102 8.83 × 103 1.12 × 102

F11 4.85 × 103 2.46 × 103 1.31 × 103 8.47 × 102 6.18 × 102 4.83 × 102 3.77 × 102 3.00 × 102 3.22 × 103 1.05 × 104 1.22 × 102 3.24 × 103 1.33 × 103 7.81 × 102 5.04 × 102 1.05 × 104 1.72 × 102

F12 1.14 × 100 3.17 × 100 3.21 × 100 3.20 × 100 3.15 × 100 3.28 × 100 3.23 × 100 3.18 × 100 3.23 × 100 3.42 × 100 3.27 × 100 3.21 × 100 3.28 × 100 3.20 × 100 3.30 × 100 3.20 × 100 3.16 × 100

F13 3.81 × 100 1.53 × 100 1.78 × 10−1 1.43 × 10−1 1.40 × 10−1 1.30 × 10−1 1.08 × 10−1 8.13 × 10−2 6.16 × 10−2 4.44 × 10−1 1.47 × 10−1 4.01 × 100 3.50 × 10−1 1.33 × 10−1 9.14 × 10−2 3.78 × 10−1 1.67 × 10−1

F14 6.72 × 101 2.05 × 101 2.85 × 10−1 3.37 × 10−1 3.30 × 10−1 3.15 × 10−1 2.93 × 10−1 2.61 × 10−1 2.69 × 10−1 8.46 × 100 2.81 × 10−1 8.23 × 101 8.36 × 10−1 3.20 × 10−1 2.98 × 10−1 5.38 × 100 2.96 × 10−1

F15 5.07 × 103 5.31 × 101 5.65 × 100 4.75 × 100 4.94 × 100 4.77 × 100 7.47 × 100 1.38 × 101 2.54 × 101 8.19 × 101 4.78 × 100 7.77 × 103 6.69 × 100 5.02 × 100 1.30 × 101 6.93 × 101 5.04 × 100

F16 1.72 × 101 1.58 × 101 1.84 × 101 1.91 × 101 2.03 × 101 2.02 × 101 2.02 × 101 2.01 × 101 2.02 × 101 2.03 × 101 1.80 × 101 1.74 × 101 1.97 × 101 2.07 × 101 2.08 × 101 2.05 × 101 1.86 × 101

F17 1.18 × 107 6.54 × 102 3.78 × 102 2.87 × 102 2.51 × 102 2.42 × 102 2.30 × 102 3.50 × 102 7.20 × 102 5.30 × 106 1.28 × 102 2.58 × 107 3.90 × 102 3.20 × 102 4.51 × 102 6.01 × 106 1.40 × 102

F18 2.44 × 108 1.30 × 102 9.18 × 101 4.83 × 101 2.76 × 101 2.44 × 101 2.42 × 101 2.63 × 101 1.63 × 102 1.72 × 108 7.69 × 100 8.31 × 108 8.80 × 101 3.95 × 101 4.11 × 101 1.40 × 108 1.40 × 101

F19 8.07 × 101 3.42 × 101 2.69 × 101 1.45 × 101 1.23 × 101 1.19 × 101 1.22 × 101 1.23 × 101 1.31 × 101 8.38 × 101 1.11 × 101 9.25 × 101 3.61 × 101 1.44 × 101 1.23 × 101 8.69 × 101 1.12 × 101

F20 7.88 × 102 9.08 × 101 3.64 × 101 9.82 × 100 5.40 × 100 3.19 × 100 2.71 × 100 4.25 × 100 3.90 × 101 2.17 × 104 2.04 × 100 1.21 × 103 4.07 × 101 7.49 × 100 5.36 × 100 2.97 × 104 2.17 × 100

F21 1.22 × 104 9.05 × 102 4.28 × 102 3.15 × 102 2.61 × 102 2.62 × 102 2.84 × 102 3.24 × 102 5.40 × 102 3.39 × 106 2.12 × 102 1.45 × 104 4.69 × 102 3.00 × 102 3.99 × 102 4.06 × 106 2.13 × 102

F22 1.48 × 102 6.22 × 101 5.03 × 101 3.77 × 101 3.87 × 101 5.43 × 101 5.87 × 101 6.81 × 101 8.39 × 101 8.07 × 102 3.70 × 101 1.43 × 102 7.32 × 101 6.23 × 101 7.91 × 101 8.02 × 102 3.70 × 101

F23 4.62 × 102 3.93 × 102 3.52 × 102 3.44 × 102 3.44 × 102 3.44 × 102 3.44 × 102 3.44 × 102 3.44 × 102 3.94 × 102 3.44 × 102 4.53 × 102 3.75 × 102 3.44 × 102 3.44 × 102 4.02 × 102 3.44 × 102

F24 2.80 × 102 2.74 × 102 2.73 × 102 2.72 × 102 2.72 × 102 2.70 × 102 2.70 × 102 2.69 × 102 2.70 × 102 3.27 × 102 2.68 × 102 2.76 × 102 2.73 × 102 2.73 × 102 2.71 × 102 3.22 × 102 2.69 × 102

F25 2.22 × 102 2.15 × 102 2.09 × 102 2.05 × 102 2.05 × 102 2.05 × 102 2.05 × 102 2.05 × 102 2.05 × 102 2.36 × 102 2.05 × 102 2.20 × 102 2.13 × 102 2.05 × 102 2.05 × 102 2.47 × 102 2.05 × 102

F26 1.27 × 102 1.11 × 102 1.04 × 102 1.01 × 102 1.03 × 102 1.00 × 102 1.00 × 102 1.00 × 102 1.00 × 102 1.62 × 102 1.00 × 102 1.33 × 102 1.17 × 102 1.05 × 102 1.05 × 102 1.85 × 102 1.00 × 102

F27 1.05 × 103 6.94 × 102 4.08 × 102 3.37 × 102 3.29 × 102 3.36 × 102 3.30 × 102 3.34 × 102 3.81 × 102 1.08 × 103 3.31 × 102 9.37 × 102 5.39 × 102 3.22 × 102 3.29 × 102 1.03 × 103 3.21 × 102

F28 2.40 × 103 1.73 × 103 1.51 × 103 1.16 × 103 1.17 × 103 1.18 × 103 1.21 × 103 1.23 × 103 1.28 × 103 1.47 × 103 1.18 × 103 2.34 × 103 1.47 × 103 1.16 × 103 1.25 × 103 1.51 × 103 1.14 × 103

F29 1.24 × 104 2.66 × 103 1.97 × 103 1.20 × 103 8.88 × 102 9.91 × 102 1.29 × 103 1.71 × 103 4.11 × 103 1.07 × 106 8.77 × 102 1.16 × 104 1.64 × 103 9.69 × 102 1.62 × 103 1.70 × 106 9.02 × 102

F30 1.68 × 105 3.69 × 104 1.66 × 104 1.06 × 104 9.03 × 103 8.77 × 103 9.08 × 103 9.47 × 103 9.29 × 103 3.70 × 104 8.60 × 103 2.36 × 105 2.54 × 104 9.83 × 103 8.95 × 103 5.48 × 104 8.51 × 103

Rank 9.70 8.40 7.13 4.98 4.05 3.95 4.08 4.55 6.55 10.18 2.42 5.22 3.97 2.47 2.83 5.20 1.32
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Table 7 shows the comparison results between the ACSEDA with the proposed adap-
tive sr and the ones with different fixed settings of sr on the 50-D CEC 2014 benchmark
problems. From this table, the following findings can be attained:

(1) In view of the averaged rank obtained from the Friedman test, the ACSEDA with
the adaptive sr achieves the best overall performance than the ones with different
fixed sr. This verifies the effectiveness of the proposed adaptive promising individual
selection strategy for the estimation of the mean vector.

(2) For different problems, the optimal sr is different for ACSEDA to achieve the best
performance. In particular, we find that a small sr tends to help ACSEDA obtain better
performance than a large sr. The proposed adaptive strategy, based on Equation (11),
matches this observation that sr is dramatically decreased to a small value in the early
stage, and then, it mildly declines as the evolution goes as stated in Section 3.2.

Table 7. Comparison between ACSEDA, with and without the adaptive promising individual selection method, on the 50-D
CEC 2014 benchmark problems. The best results are highlighted in bold in this table.

cs = 0.6

F sr = 0.05 sr = 0.10 sr = 0.15 sr = 0.20 sr = 0.25 sr = 0.30 sr = 0.35 Adaptive − sr

F1 1.61 × 10−14 1.42 × 10−14 1.28 × 10−14 7.55 × 101 2.52 × 104 4.67 × 105 1.75 × 107 1.42 × 10−14

F2 2.91 × 10−12 1.08 × 10−12 9.56 × 10−13 2.02 × 100 1.65 × 107 2.91 × 109 1.20 × 1010 2.22 × 10−12

F3 0.00 × 100 0.00 × 100 0.00 × 100 0.00 × 100 2.28 × 100 1.93 × 103 8.44 × 103 0.00 × 100

F4 9.07 × 101 8.88 × 101 9.14 × 101 9.26 × 101 1.04 × 102 3.45 × 102 1.14 × 103 8.67 × 101

F5 2.11 × 101 2.11 × 101 2.11 × 101 2.11 × 101 2.11 × 101 2.11 × 101 2.11 × 101 2.11 × 101

F6 1.23 × 10−4 7.35 × 10−5 5.20 × 10−2 6.25 × 10−5 1.74 × 10−2 1.64 × 10−2 2.24 × 10−1 9.75 × 10−5

F7 0.00 × 100 0.00 × 100 0.00 × 100 0.00 × 100 6.22 × 10−1 3.07 × 101 1.13 × 102 0.00 × 100

F8 7.36 × 100 6.80 × 100 8.66 × 100 1.43 × 101 1.95 × 101 2.63 × 101 3.48 × 101 9.78 × 100

F9 6.20 × 100 4.91 × 100 6.10 × 100 7.16 × 100 1.20 × 101 1.71 × 101 2.40 × 101 6.70 × 100

F10 2.52 × 102 3.05 × 102 4.49 × 102 5.11 × 102 7.11 × 102 8.08 × 102 7.93 × 102 3.22 × 102

F11 2.30 × 102 3.36 × 102 4.32 × 102 4.96 × 102 5.80 × 102 7.30 × 102 6.84 × 102 3.57 × 102

F12 3.27 × 100 3.27 × 100 3.21 × 100 3.20 × 100 3.20 × 100 3.30 × 100 3.31 × 100 3.25 × 100

F13 1.39 × 10−1 1.55 × 10−1 1.60 × 10−1 1.57 × 10−1 1.53 × 10−1 2.45 × 10−1 8.50 × 10−1 1.51 × 10−1

F14 2.85 × 10−1 2.95 × 10−1 3.17 × 10−1 3.11 × 10−1 3.16 × 10−1 2.77 × 10−1 1.25 × 101 3.09 × 10−1

F15 4.82 × 100 4.78 × 100 4.77 × 100 5.04 × 100 5.07 × 100 5.10 × 100 8.61 × 100 4.77 × 100

F16 1.86 × 101 1.85 × 101 1.84 × 101 1.87 × 101 1.90 × 101 1.91 × 101 1.93 × 101 1.87 × 101

F17 1.80 × 102 1.75 × 102 1.62 × 102 1.97 × 102 1.70 × 102 2.37 × 102 2.28 × 102 1.44 × 102

F18 1.35 × 101 1.85 × 101 2.08 × 101 2.98 × 101 3.97 × 101 5.17 × 101 5.58 × 101 1.61 × 101

F19 1.17 × 101 1.15 × 101 1.22 × 101 1.33 × 101 2.17 × 101 2.81 × 101 2.23 × 101 1.17 × 101

F20 2.58 × 100 2.71 × 100 3.76 × 100 6.29 × 100 9.09 × 100 1.50 × 101 2.34 × 101 3.14 × 100

F21 2.29 × 102 2.11 × 102 2.28 × 102 2.47 × 102 2.72 × 102 3.10 × 102 3.15 × 102 1.98 × 102

F22 4.16 × 101 3.13 × 101 4.45 × 101 3.27 × 101 4.57 × 101 5.78 × 101 5.63 × 101 3.18 × 101

F23 3.44 × 102 3.44 × 102 3.44 × 102 3.44 × 102 3.50 × 102 3.64 × 102 3.80 × 102 3.44 × 102

F24 2.69 × 102 2.71 × 102 2.72 × 102 2.72 × 102 2.72 × 102 2.72 × 102 2.71 × 102 2.70 × 102

F25 2.05 × 102 2.05 × 102 2.05 × 102 2.05 × 102 2.08 × 102 2.10 × 102 2.12 × 102 2.05 × 102

F26 1.00 × 102 1.00 × 102 1.00 × 102 1.02 × 102 1.04 × 102 1.06 × 102 1.09 × 102 1.00 × 102

F27 3.33 × 102 3.23 × 102 3.11 × 102 3.12 × 102 3.17 × 102 4.09 × 102 5.12 × 102 3.13 × 102

F28 1.15 × 103 1.13 × 103 1.15 × 103 1.20 × 103 1.46 × 103 1.40 × 103 1.40 × 103 1.11 × 103

F29 8.43 × 102 8.32 × 102 8.30 × 102 1.07 × 103 1.50 × 103 1.40 × 103 1.34 × 103 8.24 × 102

F30 8.92 × 103 9.05 × 103 9.18 × 103 1.14 × 104 1.54 × 104 2.05 × 104 3.29 × 104 9.20 × 103

Rank 2.98 2.70 3.25 4.53 5.80 6.67 7.43 2.63

Based on the above experiments, it is demonstrated that the proposed adaptive
promising individual selection strategy, for the estimation of the mean vector, is very useful
for ACSEDA to not only achieve promising performance but also alleviate the sensitivity
to the parameter sr.

4.3.4. Effectiveness of the Proposed Cross-Generation Individual Selection Strategy

At last, we conduct experiments to verify the usefulness of the proposed cross-
generation individual selection strategy for the parent population. To this end, we first
develop three other ACSEDA variants by using some existing typical selection strategies
for the parent population. The first is to directly utilize the generated offspring as the
parent population, such as in some traditional EDAs [20,21,28,30]. This variant of ACSEDA
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is denoted as “ACSEDA-O”. The second is to combine the parent population in the last
generation and the generated offspring and then, select the best half of the combined popu-
lation as the parent population for the next generation, as in some EDA variants [51,68].
This variant of ACSEDA is represented as “ACSEDA-OP”. The last one is to maintain
an archive l in some EDA variants [37] to store the historical useful individuals and then
they are combined with the generated offspring to select the best half of the combined
population as the parent population. This ACSEDA variant is denoted as “ACSEDA-OA”.

After the preparation of the compared methods, we conduct experiments on the
50-D CEC 2015 benchmark problems to compare the ACSEDA with the proposed cross-
generation individual selection strategy and the ones with the above mentioned three
compared strategies. Table 8 presents the comparison results among these different variants
of ACSEDA.

Table 8. Comparison among ACSEDA with different selection strategies for the parent population on the 50-D CEC 2014
benchmark problems. The best results are highlighted in bold in this table.

F ACSEDA ACSEDA-O ACSEDA-OP ACSEDA-OA

F1 1.14 × 10−14 9.80 × 101 5.68 × 10−15 5.21 × 10−15

F2 7.40 × 10−2 6.04 × 102 1.04 × 10−13 8.62 × 10−13

F3 0.00 × 100 4.29 × 10−11 0.00 × 100 0.00 × 100

F4 9.25 × 101 9.59 × 101 9.12 × 101 9.68 × 101

F5 2.11 × 101 2.11 × 101 2.11 × 101 2.11 × 101

F6 1.74 × 10−2 4.15 × 10−3 1.74 × 10−2 3.47 × 10−2

F7 0.00 × 100 8.03 × 10−12 1.14 × 10−14 0.00 × 100

F8 2.98 × 100 4.84 × 100 3.13 × 102 5.14 × 101

F9 2.49 × 100 4.88 × 100 3.16 × 102 1.23 × 102

F10 1.07 × 102 4.99 × 101 1.22 × 104 6.17 × 103

F11 1.18 × 102 2.84 × 102 1.27 × 104 9.74 × 103

F12 3.35 × 100 3.19 × 100 3.23 × 100 3.20 × 100

F13 1.40 × 10−1 8.34 × 10−2 2.66 × 10−1 2.21 × 10−1

F14 2.40 × 10−1 2.91 × 10−1 2.28 × 10−1 2.35 × 10−1

F15 4.81 × 100 5.42 × 100 2.81 × 101 2.43 × 101

F16 1.80 × 101 1.88 × 101 2.15 × 101 1.96 × 101

F17 1.16 × 102 7.10 × 102 1.54 × 103 1.42 × 102

F18 8.47 × 100 7.40 × 101 9.10 × 101 1.15 × 101

F19 1.08 × 101 1.22 × 101 1.15 × 101 1.14 × 101

F20 1.95 × 100 1.54 × 101 6.69 × 101 4.34 × 100

F21 1.99 × 102 4.93 × 102 9.70 × 102 2.59 × 102

F22 3.54 × 101 8.56 × 101 9.26 × 102 5.28 × 101

F23 3.44 × 102 3.44 × 102 3.44 × 102 3.44 × 102

F24 2.68 × 102 2.72 × 102 2.68 × 102 2.67 × 102

F25 2.05 × 102 2.05 × 102 2.05 × 102 2.05 × 102

F26 1.00 × 102 1.01 × 102 1.00 × 102 1.00 × 102

F27 3.17 × 102 3.44 × 102 3.25 × 102 3.30 × 102

F28 1.16 × 103 1.36 × 103 1.14 × 103 1.19 × 103

F29 8.34 × 102 1.81 × 104 8.17 × 102 9.04 × 102

F30 8.57 × 103 1.07 × 104 8.60 × 103 8.74 × 103

Rank 1.77 2.92 2.82 2.50

From Table 8, we can see that, from the perspective of the averaged rank obtained
from the Friedman test and the number of problems where the algorithm achieves the
best results, the ACSEDA with the proposed cross-generation individual selection strategy
obtains the best overall performance. In particular, not only is the averaged rank is much
smaller than those of the compared methods but the number of problems where the
proposed ACSEDA achieves the best results is also much larger than those of the compared
methods.

The above observations demonstrate that the proposed cross-generation individual
selection strategy for the parent population is very helpful for ACSEDA to obtain promising
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performance. This is because, by combining the generated offspring in the last generation
and in the current generation, this strategy is less likely to generate crowded individuals
for the parent population in the next generation and could, thus, aid ACSEDA to preserve
high search diversity during the evolution, as analyzed in Section 3.3.

5. Conclusions

This paper has proposed an adaptive covariance scaling estimation of distribution
algorithm (ACSEDA) to solve optimization problems. First, instead of estimating the mean
vector and the covariance, based on the same selected promising individuals like traditional
EDAs, the proposed ACSEDA estimates the covariance based on an enlarged number of
promising individuals. In this way, the sampling range of the estimated probability distri-
bution model is enlarged and thus, the estimated model could generate more diversified
offspring, which is helpful to avoid falling into local areas. To alleviate the sensitivity
of the associated parameter, we further devise an adaptive covariance scaling method to
dynamically adjust the covariance scaling parameter during the evolution. Second, to
further help ACSEDA to explore and exploit the solution space properly, this paper further
devises an adaptive promising individual selection strategy for the estimation of the mean
vector. By dynamically adjusting the selection ratio parameter related to the estimation of
the mean vector, the proposed ACSEDA gradually biases to exploit the found promising
areas without serious loss of diversity as the evolution goes. At last, to further promote the
diversity of the proposed ACSEDA, we develop a cross-generation individual selection
strategy for the parent population. Different from existing selection methods, the proposed
selection method combines the randomly sampled offspring in the last generation and
the one in the current generation, together, and then selects the best half of the combined
population as the parent population to estimate the probability distribution model. With
the cohesive collaboration among the three devised techniques, the proposed ACSEDA
is expected to explore and exploit the solution space appropriately and thus, is likely to
achieve promising performance.

Extensive comparison experiments have been conducted on the widely used CEC 2014
benchmark problem set with different dimension sizes (30-D, 50-D, and 100-D). Experimen-
tal results have demonstrated that the proposed ACSEDA achieves very competitive, or
even much better, performance than several state-of-the-art EDA variants. The comparison
results also show that ACSEDA preserves good scalability to solve higher-dimensional
optimization problems. In addition, deep investigations on the effectiveness of the three
proposed techniques have also been performed. The investigation results have demon-
strated that the three proposed mechanisms make great contributions to helping ACSEDA
to achieve promising performance.
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68. Dong, W.; Chen, T.; Tiňo, P.; Yao, X. Scaling Up Estimation of Distribution Algorithms for Continuous Optimization. IEEE Trans.
Evol. Comput. 2013, 17, 797–822. [CrossRef]

69. Hansen, N. Towards a New Evolutionary Computation. Stud. Fuzziness Soft Comput. 2006, 192, 75–102.
70. Hedar, A.-R.; Allam, A.A.; Fahim, A. Estimation of Distribution Algorithms with Fuzzy Sampling for Stochastic Programming

Problems. Appl. Sci. 2020, 10, 6937. [CrossRef]
71. Maza, S.; Touahria, M. Feature Selection for Intrusion Detection Using New Multi-objective Estimation of Distribution Algorithms.

Appl. Intell. 2019, 49, 4237–4257. [CrossRef]

http://doi.org/10.1162/evco_a_00260
http://doi.org/10.1109/TEVC.2019.2907266
http://doi.org/10.1109/TEVC.2017.2680320
http://doi.org/10.1109/TEVC.2017.2765682
http://doi.org/10.1109/TCYB.2019.2928563
http://doi.org/10.1016/j.asoc.2017.04.066
http://doi.org/10.3390/mca15050866
http://doi.org/10.1504/IJMIC.2013.051930
http://doi.org/10.1109/TEVC.2013.2247404
http://doi.org/10.3390/app10196937
http://doi.org/10.1007/s10489-019-01503-7

	Introduction 
	Related Work 
	Basic GEDA 
	Recent Advance of GEDAs 

	Proposed ACSEDA 
	Adaptive Covariance Scaling 
	Adaptive Promising Individuals Selection 
	Cross-Generation Individual Selection for Parent Population 
	Overall Procedure of ACSEDA 

	Experimental Studies 
	Experimental Settings 
	Comparison with State-of-the-Art EDAs 
	Deep Investegation on ACSEDA 
	Effectiveness of the Covariance Scaling Strategy 
	Effectiveness of the Proposed Adaptive Covariance Scaling Strategy 
	Effectiveness of the Proposed Adaptive Promising Selection Strategy 
	Effectiveness of the Proposed Cross-Generation Individual Selection Strategy 


	Conclusions 
	References

