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Artificial intelligence model 
comparison for risk factor analysis 
of patent ductus arteriosus 
in nationwide very low birth weight 
infants cohort
Jae Yoon Na1,6, Dongkyun Kim2,6, Amy M. Kwon3,6, Jin Yong Jeon4, Hyuck Kim5, 
Chang‑Ryul Kim1, Hyun Ju Lee1, Joohyun Lee2* & Hyun‑Kyung Park1*

Despite the many comorbidities and high mortality rate in preterm infants with patent ductus 
arteriosus (PDA), therapeutic strategies vary depending on the clinical setting, and most studies of the 
related risk factors are based on small sample populations. We aimed to compare the performance of 
artificial intelligence (AI) analysis with that of conventional analysis to identify risk factors associated 
with symptomatic PDA (sPDA) in very low birth weight infants. This nationwide cohort study included 
8369 very low birth weight (VLBW) infants. The participants were divided into an sPDA group and an 
asymptomatic PDA or spontaneously close PDA (nPDA) group. The sPDA group was further divided 
into treated and untreated subgroups. A total of 47 perinatal risk factors were collected and analyzed. 
Multiple logistic regression was used as a standard analytic tool, and five AI algorithms were used to 
identify the factors associated with sPDA. Combining a large database of risk factors from nationwide 
registries and AI techniques achieved higher accuracy and better performance of the PDA prediction 
tasks, and the ensemble methods showed the best performances.

The ductus arteriosus usually exists during fetal periods, when circulation in the lungs and body is normally 
supplied by the mother; in term infants, the ductus arteriosus becomes functionally closed by 72 h of age1,2. 
Approximately 20–50% of neonates with gestational age (GA) < 32 weeks have the ductus arteriosus on day 
3 of life3, and up to 60% of neonates with GA < 29 weeks have it2,4. Patent ductus arteriosus (PDA) in preterm 
infants results in increased mortality and morbidities, and clinicians should determine whether PDA treatment 
can increase the chances of survival against the burden of unintended consequences. However, the criteria for 
symptomatic PDA (sPDA) and methods/timing of PDA treatment remain controversial depending on the clinical 
setting5–7. This controversy stems from the subjectivity in radiologic findings and clinical judgment of many other 
neonatal diseases overlapping PDA. Additionally, the controversy increases further if an insufficient workforce 
exists, such as the lack of pediatric cardiologists or skilled neonatologists. Additionally, artificial intelligence (AI) 
produces consistent and unbiased results without being affected by fatigue or emotions. Previous studies have 
proposed methodologies to screen for the presence of PDA in infants by analyzing phonocardiograms using AI 
techniques8,9. The findings revealed that AI techniques outperformed human clinicians9. Along with the high 
performance, explaining the predicted results of AI through risk factor analysis is possible10. Therefore, AI can 
provide a more objective diagnosis by analyzing the factors necessary to classify a patient as sPDA.

AI is the ability of a computer to simulate human intelligence based on substantial amounts of data, sophis-
ticated algorithms, and high computational power11. AI can be classified into supervised learning, unsupervised 
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learning, semisupervised learning and reinforcement learning, depending on the problem and dataset12. Al 
technologies are growing in use in the fields of imaging, diagnosis, therapy selection, risk prediction, disease 
stratification, and precision medicine13. For example, prior studies have predicted the risks of heart transplanta-
tion and in-hospital mortality by supervised learning14,15. More recently, an ensemble model aggregating four 
different classifiers has been developed to predict agitation in invasive mechanical ventilation patients16. Along 
with advances in the accuracy of AI analytics, methodologies for explainable AI (XAI) have also evolved. XAI 
accounts for the rationale underlying the decision-making process and shows which risk factors contribute 
the most to the decision-making process10. This study is the first report to analyze the perinatal risk factors 
for preterm sPDA cases registered in a nationwide cohort database and to suggest the feasibility of supervised 
learning-based AI in newborn screening for this disease. To date, respiratory distress syndrome (RDS), birth 
weight, sex, and gestational age have been deemed risk factors for sPDA17,18. In addition to the factors com-
monly considered by clinicians, we tried to determine whether various factors affect PDA; thus, the model was 
configured to include all the registered variables as much as possible. Ultimately, we tried to diagnose sPDA as 
soon as possible using only perinatal factors without imaging findings.

This study aimed to investigate the perinatal risk factors leading to sPDA and sPDA treatments for very low 
birth weight (VLBW) infants in a nationwide cohort registry and to compare the performance of AI analysis 
with that of conventional analysis. This study may support the idea that an integrated combination of Al and 
conventional analysis can synergistically aid clinical risk prediction and therapy selection in medicine.

Methods
Study design.  Patients and data collection.  In this study, we derived data from infants registered in the 
Korean Neonatal Network (KNN), a nationwide prospective web-based registry of VLBW infants. These data 
were collected from patients admitted to 74 neonatal intensive care units (NICUs) in Korea and analyzed retro-
spectively. The KNN registry was approved by the institutional review board of each participating hospital. In-
formed consent was obtained from the parents of each infant prior to participation in the KNN registry. All the 
methods were performed in accordance with the relevant guidelines and regulations. This study was supported 
by the Korea Centers for Disease Control and Prevention (2019-ER7103-01)19 and was approved by the Hanyang 
University Institutional Review Board (IRB No. 2013-06-025-043).

The cohort data comprised 10,390 VLBW infants born between January 5, 2013, and November 19, 2017, 
weighing less than 1500 g. Infants who had died before three postnatal days since the confirmation of sPDA 
was impossible, those who had received prophylactic or presymptomatic PDA treatment, and those who had 
major congenital anomalies were excluded. Infants with missing or unknown PDA treatment policies were also 
excluded. After this exclusion process, 8,369 infants from the KNN were eligible for sPDA prediction and risk 
factor analysis. After the group without PDA was excluded, the data of 2,982 patients remained and were used 
to analyze the treatment-determining factors of sPDA (Fig. 1).

Figure 1.   The study population was identified using a subsequent flowchart of the study. VLBW infants, very 
low birth weight infants; KNN, Korean Neonatal Network; PDA, patent ductus arteriosus.
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Definitions.  According to the PDA treatment strategy, KNN classified the population as follows: group 1, pro-
phylactic PDA treatment without clinical symptoms or abnormal echocardiographic findings; group 2, PDA 
treatment performed without clinical symptoms due to PDA although PDA was confirmed by echocardiogra-
phy; group 3, sPDA treatment as PDA treatment performed because of clinical symptoms due to PDA; group 
4, only conservative and supportive treatment although with clinical symptoms due to PDA; group 5, asympto-
matic PDA or spontaneously closed PDA (nPDA); group 6, missing or unknown PDA treatment policy. sPDA 
was defined as the presence of more than 2 of the following 5 clinical symptoms with/without echocardiographic 
confirmation of a large left-to-right ductal flow: (1) a systolic or continuous murmur; (2) a bounding pulse 
or hyperactive precordial pulsation; (3) hypotension; (4) respiratory difficulty; and (5) evidence from a chest 
radiograph (pulmonary congestion, cardiomegaly). According to the therapeutic strategies for PDA registered 
in the KNN database, we further stratified the sPDA group into the following two subgroups to compare the 
risk factors in the treatment and nonintervention groups that mediated sPDA closure: treated group (sPDA_tx), 
comprising patients who had received any treatment for sPDA; untreated group (sPDA_nontx), comprising 
patients who had received only conservative treatment or no treatment for sPDA. The term “treatment” refers to 
medication (indomethacin, ibuprofen, and other NSAIDs) or ligation.

Artificial intelligence analysis.  Dataset and preparation.  The obtained cohort data included the fol-
lowing (1) 23 factors related to the prenatal environment and pregnancy; (2) 21 factors associated with delivery 
and the period immediately after birth; and (3) 3 factors recorded after birth in the clinical data. In the sPDA_tx 
group, sepsis and fungal infection included only cases diagnosed earlier than the date of treatment initiation. 
Except for factors with an ambiguous causal relationship with PDA, all the data from the KNN were used to the 
greatest extent possible. Each factor was classified as a continuous, ordinal, or nominal variable. The details of 
each risk factor and abbreviations used in this study are presented in Supplementary Table 1. Some features con-
tained missing values. However, instead of removing missing data, we replaced all occurrences of missing values 
to include as many variables as possible in the analysis (Supplementary Table 2). The imputation was conducted 
using the medians of numerical variables and modes of nominal variables. To prevent unseen information from 
being used in the training process, the median or mode was calculated using only the training set and then im-
puted to the same values as the test data.

Artificial intelligence algorithms.  Five classical AI algorithms (AAs) were selected in this study because their 
specific properties are appropriate for risk prediction analyses: a random forest (RF), a decision tree-based the-
ory used to avoid overfitting; a light gradient boosting machine (L-GBM), a low-bias model formed by combin-
ing sequential weak models with a light computational algorithm; a multilayer perceptron (MLP), a feedforward 
artificial neural network that has excellent pattern extraction capability; a support vector machine (SVM), a 
model optimized exploiting the kernel trick for highly complex problems in cases where linear separation is not 
possible; and k-nearest neighbors (k-NN), which perform classification based on most of the nearby data points. 
Among these AAs, the RF and L-GBM are decision tree-based ensemble models. The AAs used in the present 
study have been previously used to predict hypertension and cardiovascular risk12,20. Further detailed informa-
tion concerning these AAs is provided in Supplementary Methods 1 and 2.

Hyperparameter optimization.  The study population was divided into a training set and a test set at a ratio of 
80:20 using stratified random sampling21. To avoid AA methods overfitting the test set, we applied fivefold cross-
validation to the training set in validating procedure, and the area under the receiver operating curve (AUC) was 
averaged over all the data fold sets22,23. The stratified cross-validation method ensures that each training and test 
fold has a similar distribution of outcomes with the entire dataset to reduce bias in the training and evaluating 
processes. Additionally, cross-validation improves generalization performance by estimating the performance of 
the model by averaging the results of multiple validations24. We used a grid search to find the optimal hyperpa-
rameter that maximizes the AUC by performing cross-validation on all possible hyperparameter combinations.

A significant difference was found in the number of positive and negative classes in the study population. If 
the data are unbalanced, the problem arises that the model gives a higher weight to the majority class; thus, the 
sensitivity to the minority class would be reduced. We resolved the class imbalance using the synthetic minority 
oversampling technique (SMOTE), an oversampling method in which a new minority class sample is synthesized 
by adding a random value to the sample of the original minority class25. We evaluated the performance of the AAs 
using the AUC and accuracy metrics, and 95% confidence intervals (CIs) were calculated using bootstrapping26. 
We implemented the AAs using Python 3.8.5 (Python Software Foundation, https://​www.​python.​org/) and a 
compatible package—i.e., Scikit-Learn version 0.24 (https://​scikit-​learn.​org/)27.

Shapely additive explanation.  After training the AAs, we analyzed the associations between the risk factors 
and outcomes. AI classifiers are black boxes that do not reveal their internal working processes, making it chal-
lenging to understand the associations between specific factors and decisions28. To give clinicians a convincing 
reason to trust the decisions, we used a game theory-based AI interpretation method called SHAP (Shapely 
Additive explanations)29. SHAP is a leading algorithm to identify the main risk factors that drive the decisions of 
a model. The SHAP value of each factor was calculated as the average difference in the prediction probabilities 
between the combinations of risk factors in which the target risk factor was included and not included. Because 
of their computational nature, SHAP values ​​can be positive or negative depending on the side to which the given 
risk factor pushes the model’s predictions.

https://www.python.org/
https://scikit-learn.org/
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MLR analysis.  We also evaluated the predictive accuracies of the examined risk factors using a conventional 
analysis. A multiple logistic regression (MLR) approach was used as the reference method, and the raw data 
were stratified into a binomial distribution. Variables with a threshold p-value of 0.15 were selected to remain 
in the model according to backward selection, starting with the full model, and all the regression coefficients 
were tested using Wald statistics at α = 0.05. The effects whose p-values were less than 0.05 were regarded as 
significant. The goodness of fitness of the final model was tested using Hosmer–Lemeshow’s method at α = 0.05. 
The identification of significant effects was based on SAS 9.4 (SAS, Inc., NC, USA, https://​www.​sas.​com/), and 
prediction analyses were performed using Python 3.7.5 (https://​www.​python.​org/).

Interpretation of the correlations among the factors.  In addition to the main AI-based risk factor 
analysis, we analyzed the statistical correlations among all the risk factors and outcomes. A correlation matrix 
was calculated using formulas such as Spearman’s rank, point biserial coefficients, and pi coefficients, depending 
on the type of variable (continuous, ordinal, nominal), across the entire study cohort (n = 8369). The correlation 
results were visualized as dendrograms, heatmaps and networks through a hierarchical clustering process using 
the Ward distance method and the Force Atlas function of the gephi 0.9.2 program (https://​gephi.​org/)30–32.

Results
Study population.  A total of 10,390 infants born between January 5, 2013, and November 19, 2017 met the 
KNN’s inclusion/exclusion criteria for the original cohort. Among them, 2,982 (35.6%) patients had sPDA, and 
5,387 (64.4%) patients did not. Among those with sPDA, 2465 (82.7%) were treated, and 517 (17.3%) were not 
treated (Table 1). The same variables were collected for these two study populations.

Prediction Performance (AI versus MLR).  We compared the prediction performance of the MLR, RF, 
L-GBM, MLP, SVM and k-NN. The performances of predicting sPDA/nPDA and sPDA_tx/sPDA_nontx were 
separately measured. The sensitivity, specificity, accuracy and AUC of the MLR and each AA are presented 
in Table  2. L-GBM achieved the highest performance at predicting sPDA/nPDA in terms of accuracy (0.77 
[95% CI, 0.75–0.79]), AUC (0.82 [95% CI, 0.80–0.84]) and specificity (0.84 [95% CI, 0.81–0.86]), and MLR 
performed best with sensitivity (0.85 [95% CI, 0.83–0.87]). The RF model achieved the best accuracy (0.85 
[95% CI, 0.82–0.88]), AUC (0.82 [95% CI, 0.77–0.86]) and sensitivity (0.97 [95% CI, 0.96–0.99]) in determin-
ing sPDA_tx and the next best results achieved by the L-GBM and MLR models. The worst model in predicting 
sPDA and sPDA_tx was the k-NN with all the metrics. The receiver operating characteristic curves are shown 
in Supplementary Fig. 1.

Variable rankings.  The important factors for the AI classifiers were ranked by the average absolute SHAP 
values​​, and Fig. 2 lists up to 10 important risk factors for each model. We considered factors with SHAP values 

Table 1.   Demographic Characteristics of the Study Population (N = 8369). SD, standard deviation; PDA, 
patent ductus arteriosus. a  Treatments for PDA included medications, such as indomethacin and ibuprofen, as 
well as ligation surgery.

Characteristic N (%) Mean ± SD

Gestational age (weeks) 29.1 ± 2.9

< 26 1258 (15.0)

26–29 2870 (34.3)

30–33 2381 (28.5)

34–37 530 (6.3)

 ≥ 37 1330 (15.9)

Birth weight (g) 1105.1 ± 276.6

< 500 131 (1.6)

500–999 g 2736 (32.7)

1000–1500 g 5502 (65.7)

Birth height (cm) 36.7 ± 3.6

Birth head circumference (cm) 26.1 ± 2.4

Male sex 4232 (50.6)

Multiple births (≥ 2) 2935 (35.1)

Cesarean section 1798 (21.5)

Grouping by PDA status

Symptomatic PDA (sPDA) 2982 (35.6)

With any treatmenta (sPDA_tx) 2465 (82.7)

Without treatment (sPDA_nontx) 517 (17.3)

Asymptomatic PDA or spontaneously closed PDA (nPDA) 5387 (64.4)

https://www.sas.com/
https://www.python.org/
https://gephi.org/
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greater than 0.20 as important factors and presented those risk factors for each model in Table 3. These proce-
dures were performed separately for sPDA and sPDA_tx. The full rankings of the variables in the AI analysis are 
shown in Supplementary Table 2.

Positive/negative correlation analysis.  The summary plot of SHAP in Supplementary Fig. 2 shows the 
quantitative contributions of the top 10 factors for sPDA/nPDA and sPDA_tx/sPDA_nontx) in the AI analy-
sis. For example, we found that invasive mechanical ventilator treatment and the number of administered sur-
factants were positively associated with sPDA, and gestational age, sepsis, birth weight and birth height were 
negatively correlated. For sPDA_tx, supplemental oxygen, the need for oxygen supplementation at birth, and 
noninvasive mechanical ventilator treatment were positively associated with sepsis. Antenatal steroid use was 
negatively correlated.

Relationships among risk factors.  Hierarchical clustering was used to cluster highly correlated factors 
in a dendrogram (Fig. 3a). sPDA was clustered with the gestational period, birth height, birth weight, and birth 
head circumference. sPDA_tx was clustered with sepsis and fungal infections, and its cluster was closest to the 
cluster comprising noninvasive mechanical ventilation, oxygen inhalation, and birth temperature, among others.

According to the heatmap (Fig. 3b), sPDA was negatively correlated with the gestational period, birth height, 
birth weight, Apgar score, and head circumference. By contrast, sPDA was positively correlated with surfactant 
administration, positive airway pressure, and endotracheal intubation. sPDA_tx showed a negative correlation 
with sepsis and fungal infection and a positive correlation with noninvasive mechanical ventilation and oxygen 
inhalation.

sPDA was relatively close to the Apgar score, physical measurement, resuscitation, and ventilator treatment 
factors (Fig. 3c). Thus, whether those factors were positively or negatively correlated, they were highly correlated. 
However, parental factors were far from sPDA, indicating that they were not correlated with sPDA. sPDA_tx 
was located near sepsis and oxygen supplementation. The factors that were highly correlated with sPDA or 
sPDA_tx are also shown as important factors in Table 3. Therefore, the important factors derived from the AAs 
were somewhat consistent.

Discussion
The analysis of risk factors for symptomatic PDA and determination of PDA treatment in VLBW infants using 
AI showed higher accuracy and better performance than the conventional analysis. The ensemble model showed 
a better prediction accuracy and AUC than the other methods when the performances of the models were evalu-
ated. Ultimately, conventional analysis and AI analysis were incorporated to create a new diagram containing 
the relationships between each factor and sPDA to allow medical staff to intuitively apply these results in actual 
clinical practice.

According to a relatively recent large-scale study conducted in another country, RDS, birth weight, female 
sex, gestational age, and the 5-min Apgar score were suggested as risk factors for sPDA in preterm infants17. In 
a study that analyzed 18 factors for hemodynamically significant PDA in preterm infants within 22–29 weeks of 
gestational age, a lower gestational age, pregnancy-induced hypertension (PIH), and surfactant use were analyzed 
as risk factors18. In the present study, a very low gestational age, a low birth weight and height, and the number of 
administered surfactants showed close correlations with sPDA. However, the presence of RDS and PIH did not 
significantly affect the prediction of sPDA. Instead, in the case of invasive ventilator care, a clear prediction of 
sPDA was shown. In the case of sepsis, the opposite result was obtained with MLR and other AAs. Regarding the 
national data used in this study, the definition of sepsis was limited to patients who had positive blood cultures 

Table 2.   Performance Metrics of the Algorithms for Predicting sPDA and sPDA_tx, mean values (95% 
CI). sPDA, symptomatic patent ductus arteriosus; sPDA_tx, symptomatic patent ductus arteriosus with 
any treatment; CI, confidence interval; AUC, area under the receiver operating characteristic curve; MLR, 
multilinear regression; RF, random forest; L-GBM, light gradient boosting machine; MLP, multilayer 
perceptron; SVM, support vector machine; k-NN, k-nearest neighbors. The underlined values denote the 
highest accuracy and AUC results.

sPDA sPDA_tx

Accuracy AUC​ Sensitivity Specificity Accuracy AUC​ Sensitivity Specificity

MLR 0.76 
(0.74–0.78)

0.81 
(0.79–0.83)

0.85 
(0.83–0.87)

0.60 
(0.58–0.62)

0.85 
(0.82–0.87)

0.78 
(0.74–0.81)

0.85 
(0.28–0.32)

0.98 
(0.97–0.99)

RF 0.76 
(0.74–0.78)

0.81 
(0.79–0.84)

0.64 
(0.60–0.68)

0.83 
(0.81–0.85)

0.85 
(0.82–0.88)

0.82 
(0.77–0.86)

0.97 
(0.96–0.99)

0.36 
(0.28–0.45)

L-GBM 0.77 
(0.75–0.79)

0.82 
(0.80–0.84)

0.65 
(0.61–0.69)

0.84 
(0.81–0.86)

0.85 
(0.82–0.87)

0.80 
(0.76–0.85)

0.93 
(0.90–0.95)

0.34 
(0.26–0.41)

MLP 0.75 
(0.73–0.77)

0.81 
(0.79–0.83)

0.75 
(0.72–0.78)

0.74 
(0.72–0.77)

0.77 
(0.73–0.80)

0.72 
(0.66–0.77)

0.83 
(0.80–0.86)

0.52 
(0.44–0.61)

SVM 0.75 
(0.73–0.78)

0.81 
(0.79–0.84)

0.76 
(0.73–0.79)

0.75 
(0.73–0.78)

0.77 
(0.74–0.81)

0.77 
(0.72–0.82)

0.82 
(0.79–0.86)

0.57 
(0.48–0.66)

k-NN 0.66 
(0.64–0.69)

0.74 
(0.72–0.77)

0.73 
(0.70–0.76)

0.63 
(0.60–0.66)

0.67 
(0.63–0.71)

0.67 
(0.61–0.72)

0.71 
(0.67–0.75)

0.49 
(0.40–0.58)
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or had received more than 5 days of systemic antibiotic treatment. Therefore, the definition of neonatal sepsis is 
unclear33, and the inability to include culture-negative sepsis in particular led to the creation of statistical bias.

For the prediction of sPDA treatment, AI showed very high accuracy and good performance. Because no 
study has determined the presence or absence of treatment for sPDA, knowing exactly which model selects the 
most accurate factors is impossible. Generally, a relatively high probability exists that PDA will be treated with 
absent sepsis when supplemental oxygen is provided during hospitalization (O2) or is needed at birth (O2_R) 
and when noninvasive ventilator care is required (NI_VENT). When examining each analysis method in detail, 
some differences were found. These differences were considered due to differences in the strategies used at vari-
ous hospitals, even in cases in which the sPDA situations were the same and when the time point of sPDA and 
that at which treatment was started were different.

Figure 2.   Top 10 factor contributions for sPDA and sPDA_tx prediction derived from each AA and MLR. (a) 
Risk factors for sPDA and sPDA_tx prediction according to the RF. (b) Risk factors for sPDA and sPDA_tx 
prediction according to the L-GBM. (c) Risk factors for sPDA and PDA_tx prediction according to the MLP. (d) 
Risk factors for sPDA and sPDA_tx prediction according to the SVM. (e) Risk factors for sPDA and sPDA_tx 
prediction according to k-NN. The risk factors are listed in order of the average absolute SHAP values yielded 
by each algorithm in the artificial intelligence analysis and were selected based on a p-value of 0.05 during the 
testing procedure; the selected factors are sorted in descending order according to the absolute values of the 
corresponding regression coefficients in the MLR. Abbreviations: sPDA, symptomatic patent ductus arteriosus; 
nPDA, asymptomatic PDA or spontaneously closed PDA; sPDA_tx, symptomatic patent ductus arteriosus 
with any treatment; sPDA_nontx, symptomatic patent ductus arteriosus without treatment; RF, random forest; 
L-GBM, light gradient boosting machine; MLP, multilayer perceptron; SVM, support vector machine; k-NN, 
k-nearest neighbors; MLR, multiple logistic regression. The abbreviations for all the factors are shown in 
Supplementary Table 1.
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In recent years, AI has been applied and used in various fields beyond simple engineering domains, and 
advances in machine learning have begun to affect real-world decisions in many areas, including politics, eco-
nomics, finance, and medicine34,35. The applications of AI in health care include image analysis, treatment, the 
diagnosis and prognosis of diseases, health care, the improvement of medical administration and management 
systems, and drug development. In some studies, AI has shown sufficient or rather high disease risk prediction 
ability compared with existing models20,36.

To our best knowledge, this study is the first to use AAs to predict sPDA and sPDA_tx and to analyze the 
main risk factors for sPDA using large-scale cohort data comprising only electronic records and structured 
factors (excluding images). The proposed AI classifiers can classify patients well, even when nonlinear relation-
ships exist in the data. This nonlinear characteristic makes it difficult to interpret the prediction processes of AI 
classifiers. However, by introducing a game-theoretical contribution-based explanation algorithm (SHAP), we 
identified the main factors. That the AI models’ performances exceeded AUCs of 0.8 and that the main factors 
were identified using a mathematically fair explanation method support the study’s validity. Additionally, the 
main factors derived from AI and those that were statistically highly correlated with the outcomes coincided, 
enhancing the consistency of the AI and correlation analysis results.

According to the SHAP interpretation, too many factors were considered in the case of analysis other than the 
ensemble models, indicating that these models overfitted trivial factors and had lower performances (Table 3). 
However, the tree-based ensemble models achieved the highest performances because they are designed to 
overcome overfitting. Ensemble learning has been demonstrated as a solution to construct balanced datasets to 
enhance prediction performance.

However, AI analysis still has some limitations, such as representation, accuracy, and homogeneity, which 
occur during the data collection process37, and the nature of self-extracting data from large datasets makes it 
difficult to determine how an AI method produces results and why errors occur38,39. Overreliance on AI models 
when making decisions or analyzing images may lead to automation bias, and it is difficult to analyze the basis of 
a given judgment40. Furthermore, because an SHAP value is a measure of the corresponding factor’s contribution 
to the model result, predict the amount of change induced in a model’s prediction based on a change in factor 
value is impossible. Additionally, the data collected by the KNN are not focused on PDA; thus, limited factors 
are included. The lack of information, including vital signs, may reduce the performance of AI. In addition to the 
variables studied in this study, better results will be obtained if more individual data, such as chest radiographs 

Table 3.   Top significant variables for sPDA and sPDA_tx Prediction. sPDA, symptomatic patent ductus 
arteriosus; nPDA, asymptomatic PDA or spontaneously closed PDA; sPDA_tx, symptomatic patent ductus 
arteriosus with any treatment; sPDA_nontx, symptomatic patent ductus arteriosus without treatment; 
RF, random forest; L-GBM, light gradient boosting machine; MLP, multilayer perceptron; SVM, support 
vector machine; k-NN, k-nearest neighbors. The abbreviations for all factors are shown in Supplementary 
Table 1. Feature importance describes how relevant a factor is to the model’s predictions. In MLR, the feature 
importance values were selected according to a p-value of 0.05 during the testing procedure. These are listed 
in descending order as the absolute values of the coefficients for the MLR and as the average absolute SHAP 
values ​​for the AAs. The variables in italics indicate positive associations between the selected factors and sPDA 
or sPDA_tx. a  The factor analysis with MLR as the standard reference method. 

Standard Artificial intelligence algorithms

MLRa RF L-GBM MLP SVM k-NN

sPDA vs. nPDA

SEPS I_VENT I_VENT GA GA GA

pH GA GA I_VENT I_VENT WT

I_VENT SEPS SEPS WT WT I_VENT

BPL WT WT SEPS SFT (n) SFT (n)

POLY SFT (n) SFT (n) SFT (n) SEPS HT

SFT (n) HT HT PROM HT ANS

EPI_R PARITY PROM HC

GA HT

PROM HC

NI_VENT GRAV

sPDA_tx vs. sPDA_nontx

pH SEPS SEPS SEPS SEPS O2

SEPS O2 O2 PROM O2 SFT (n)

CPR_R O2_R O2_R O2 O2_R ANS

O2_R NI_VENT TEMP TEMP NI_VENT TEMP

NI_VENT O2_R TEMP MULTI

BPL GRAV GRAV GRAV

TEMP MULTI F_EDU SEPS

RDS HC PARITY MULTI (th)

O2 MULTI (th) SFT (n) WT

OLIGO 5_AS WT 5_AS
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and echocardiographs, are collected for future studies. Thus, AI remains indispensable for use by medical staff 
who treat patients directly in clinical practice.

To overcome the abovementioned limitations, this study attempted to enhance objectivity by conducting inte-
grated analysis of MLR, which has been widely used, and AAs. To consider the effects of multicollinearity, Fig. 2c 
was used to understand the interrelationships among the factors so that the factors most strongly correlated with 
PDA could recognize the influence of one another more readily than they recognize their influence on PDA.

Using the present study, a follow-up study is planned that prospectively analyzes risk factors and applies 
management for PDA. Additionally, although this study used existing AAs, in future studies, we will try to 
study more advanced techniques to improve generalization performance, analyze risk factors by developing a 

Figure 3.   Relationships among the risk factors. (a) Dendrogram visualizing hierarchical clustering based on the 
obtained correlation coefficients. The dendrogram’s x-axis comprises sPDA, sPDA_tx and all risk factors, and 
highly correlated factors are forced to be adjacent through hierarchical clustering. Each horizontal line indicates 
that the two associated subclusters are merged into one cluster, and the y-height indicates the distance between 
the two subclusters. We divided the factors into 9 clusters with a threshold of 1.15 and marked each cluster by 
color. (b) Heatmap of the correlation matrix. The x-axis and y-axis of the heatmap follow the arrangement of 
factors generated by hierarchical clustering, and the correlation coefficients are depicted in red or blue at the 
intersection of the factors. According to the color bar on the right, red represents a positive correlation, and blue 
represents a negative correlation. A darker color indicates a higher correlation, while a lighter color indicates a 
lower correlation. (c) Schematic diagram of the relationships among the factors. The circles (nodes) represent 
the risk factors, connected by the absolute value of the correlation coefficients (edges). In this network, the edges 
act as attraction forces, bringing highly correlated nodes closer together and pushing less-correlated nodes away 
from each other. The color of each cluster is the same as that in the dendrogram in (a). Abbreviations: sPDA, 
symptomatic patent ductus arteriosus; sPDA_tx, symptomatic patent ductus arteriosus with any treatment. The 
abbreviations for all the factors are shown in Supplementary Table 1.
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new model explanation method that detects the amounts of changes in risk factors, analyze the relationships 
between treatment methods and long-term prognosis according to the timing of a given treatment and propose 
the best treatment policy.

This AI analysis using a nationwide cohort registry is the first study of VLBW infants in the NICU. We evalu-
ated risk factor variables associated with and potentially causally linked to sPDA and sPDA_tx and showed that 
the ensemble models (RF and L-GBM) were the best among the examined AAs at predicting specific disease 
development trends, yielding higher accuracy than that of an established risk prediction approach. The use of 
these readily available online AAs underlined their applicability as an auxiliary means of risk prediction and 
therapy selection.

Data availability
According to the Korean Neonatal Network (KNN) Publication Ethics Policy, all information about patients 
is confidential. The information contained in the data must be protected as confidential, and only available to 
individuals who have access for the permitted research activity.
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