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ABSTRACT

We construct an optimal investment portfolio model for an individual investor saving in a retirement
plan. The investor earns stochastic labour income with both permanent and temporary shocks, and has
access to equity, conventional bond, inflation-indexed bond and cash, as well as two types of deferred
annuities: nominal and inflation-protected. The objective function consists of power utility in terms of
real retirement income from the annuities as well as bequest from remaining wealth in tradable securi-
ties. Asset returns are represented by a vector autoregressive model underpinned by Nelson-Siegel real
and nominal yield curves. The optimization problem is solved numerically using multi-stage stochastic
programming with a hybrid scenario structure combining a scenario tree with scenario fans. Our numer-
ical results show that deferred annuities are bought early and in increasing amounts during the working
lifetime of the investor, with portfolio risk declining with age. Welfare is diminished by 40% if deferred
annuities are not available. Inflation-protected deferred annuities are marginally more important in the
presence of real labour income risk, but nominal deferred annuities are bought as a cheaper alternative
if real yields are low or negative. Portfolio composition and annuity allocation vary depending on finan-
cial market expectations, but our central result about the importance of deferred annuities is robust to a

variety of financial market conditions.

© 2021 Elsevier B.V. All rights reserved.

1. Introduction

A life annuity is a product which is sold by life insurers to in-
dividuals and which makes a regular stream of payments to the
annuity-holder while alive. An annuity is termed an “immediate
annuity” if it starts paying out from the time that it is purchased.
The insurer can also design an annuity which has a deferment pe-
riod between the time that the annuity is purchased and its first
payout date, and this is known as a “deferred annuity” (or deferred
income annuity). Annuities are a key product in retirement plan-
ning since retirees face longevity risk, i.e. the risk that they will
outlive their savings. By purchasing an annuity, individuals transfer
longevity risk to life insurers, which can pool this risk by writing
a large portfolio of annuities. Unsurprisingly, the annuity market is
very large. In 2017 in the U.S,, sales of annuities totaled $203.5 bil-
lion, of which deferred annuities accounted for $2.2 billion (Chen,
Haberman, & Thomas, 2019). In addition to the retail market, a
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type of deferred annuity is also provided by social security and
defined benefit pension plans, in which case governments and em-
ployers, rather than insurers, back the retirement benefits.

All life annuities help individuals by removing longevity risk,
but deferred annuities have a specific role in reducing longevity
risk at very old ages for retirees (Ezra, 2016; Scott, 2008). Deferred
annuities are also useful for younger working individuals as they
can be used to secure retirement income well before retirement
(Horneff, Maurer, & Rogalla, 2010; Maurer, Mitchell, Rogalla, & Kar-
tashov, 2013). Annuity payments may be fixed in nominal terms or
may be linked to a specific index, for example an index of inflation.
Inflation-indexed (or inflation-protected) deferred annuities can be
particularly useful since payments may continue for a long time
in the future, and retirees’ purchasing power should be protected
(Merton, 2014).

Although deferred annuities are potentially very useful in re-
tirement, there is little research on optimal retirement planning
with these annuities. Target-date funds in the U.S. are authorised
to include deferred annuities in 401(k) pension plans (U.S. Trea-
sury Department, 2014), but in practice many pension plans im-
plement simple so-called glide-path strategies (Donaldson, Kinniry,
Maciulis, Patterson, & Dijoseph, 2015) which disregard deferred an-
nuities. Glide paths reduce equity allocation and increase bond
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allocation as retirement draws nearer, but such a strategy does
not maximize utility in terms of retirement income in real terms
(Merton, 2014).

Only a few studies look at optimal investment with deferred
annuities prior to retirement. Horneff et al. (2010) and Maurer
et al. (2013) find that it is optimal to start purchasing deferred
annuities from about age 40 with continual purchase of up to
about 80% of wealth at retirement. They assume one risk-free asset
with constant interest rate, one risky asset, and stochastic labour
income. A similar conclusion is reached by Konicz and Mulvey
(2013) in a different setting with full consumption of annuity in-
come during retirement. Huang, Milevsky, and Young (2017) seek
the conditions for purchase of deferred annuities when interest
rates are mean-reverting but their analysis is limited because there
is neither investment portfolio optimization nor labour income.

Unlike the sparse research on the use of deferred annuities
in optimal investment prior to retirement, there is considerably
more research on immediate annuities on and after retirement.
Koijen, Nijman, and Werker (2011) calculate the optimal alloca-
tion to three types of immediate annuities (nominal, inflation-
protected and variable) when wealth is fully annuitized at retire-
ment. They also find the optimal pre-retirement consumption and
investment to hedge the optimal annuity portfolio at retirement.
Another strand of annuity research concerns the timing of pur-
chase of immediate annuities. Horneff, Maurer, Mitchell, and Dus
(2008) and Horneff, Maurer, Mitchell, and Stamos (2009) solve nu-
merically for the optimal annuitization and investment decisions
when nominal immediate annuities are available in retirement and
variable immediate annuities, stocks and bonds are available before
retirement. They find that annuity holdings increase over an indi-
vidual’s lifetime. They also obtain the typical life-cycle result that
equity allocation falls while bond allocation increases over time.

An important aspect of retirement planning is labour income.
Most occupational retirement plans require employees to make a
pension contribution which is a fixed proportion of their income.
Viceira (2001), Cocco, Gomes, and Maenhout (2005) and Benzoni,
Collin-Dufresne, and Goldstein (2007) examine how risks to labour
income influence optimal investment choices over an individual’s
lifetime. An individual, whose labour income stream is determinis-
tic and non-tradable during her working lifetime, can be regarded
as holding a risk-free coupon bond. Therefore, the investor’s opti-
mal allocation to a risky asset is higher than if she had an uncer-
tain labour income, and it decreases over time. On the other hand,
if labour income is volatile and positively correlated with the risky
asset return, the fraction of wealth invested in the risky asset de-
creases (Cocco et al.,, 2005). A similar result is found by Benzoni
et al. (2007) who show that cointegration between labour income
and stock dividends can lead the investor to take a short position
in the risky assets. However, if labour income risk is idiosyncratic,
risky asset allocation can be larger than in the absence of labour
income (Viceira, 2001).

Our main contributions in this article are five-fold. First, we em-
ploy a rich and realistic model of financial markets which means
that our results can be implemented by pension and financial plan-
ners. Previous studies on deferred annuities in individual portfo-
lio optimization, such as by Horneff et al. (2009, 2010), Maurer
et al. (2013), and Konicz and Mulvey (2013), use only a constant
risk-free rate and a geometric Brownian motion-driven risky as-
set. Koijen et al. (2011) employ a model with time-varying equity
return and a full term structure, which they argue is critical to
long-term portfolio allocation. In this paper, we use a vector au-
toregressive model underpinned by a Nelson-Siegel model of the
term structure of nominal and real interest rates, similar to Konicz,
Pisinger, and Weissensteiner (2015). However, we go further than
Koijen et al. (2011) and Konicz et al. (2015) in that we include de-
ferred annuities whereas they do not.
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Second, we model a richer set of instruments and features,
again making our model implementable by retirement planners.
In particular, we have inflation-indexed bonds as well as inflation-
indexed annuities, both immediate and deferred. We assume that
pension savers have stochastic labour income, with an inflation
component, as would be the case in the real world. It is espe-
cially important to include inflation given the long-term nature of
retirement planning. To our knowledge, no other study on deferred
annuitization incorporates all these features. Further, short-selling
is not allowed in our model. Koijen et al. (2011) find that large
amounts of short-selling occur in their optimal solution (with im-
mediate annuities only), but this cannot be implemented as indi-
vidual investors do not have access to short positions within their
long-only retirement funds.

Third, we use multi-stage stochastic programming (MSP) to
contend with the numerous state variables that our more realis-
tic setting imposes. Numerical dynamic programming is used by
Koijen et al. (2011) but they fail to incorporate realistic features
and constraints such as deferred annuities and no short sales. MSP
is also used by Consigli, laquinta, Moriggia, di Tria, and Musitelli
(2012), Dempster and Medova (2011), Konicz and Mulvey (2013,
2015) and Konicz et al. (2015) in individual retirement planning,
but we extend these works either with a richer financial market
model or with a richer set of instruments or both. MSP requires
the use of scenarios, and we generate several scenario trees that
are arbitrage-free. Furthermore, we introduce a new scenario struc-
ture which combines a scenario tree with scenario fans in order to
track inflation scenarios which are used for projecting annuity in-
come in retirement. We also devise an optimization model to con-
struct scenarios of labour income shocks which are independent of
the financial market scenarios.

Our fourth contribution in this article is to evaluate explicitly
the welfare gains when individuals have immediate and deferred
annuities at their disposal, in both nominally-fixed and inflation-
indexed varieties. This is important because it enables individual
investors as well as their financial advisers to observe in monetary
terms the advantage of including these instruments in their pen-
sion planning.

The fifth and final contribution of our paper is that we carry out
sensitivity analyses over different historical periods. Financial mar-
ket conditions change, particularly after momentous events such
as the 2008 financial crisis, and we generate new scenario trees
and find the optimal investment over different periods. This should
reinforce financial planners’ confidence in the model, and provide
them with a robust tool with which to advise investors saving for
retirement.

2. Investment problem for a retirement plan

Assume that there is an individual, aged § years old at time 0,
who makes regular contributions to a personal retirement plan un-
til his retirement at time T. He lives to a maximum age w (the
last age in an actuarial life table), so he cannot live beyond time
T = w — 6. The amount of the contributions is a fixed proportion ¢
of his uncertain nominal labour income L; (at time t) during in the
pre-retirement period [0, T).

In the retirement fund, the individual can hold equity, nominal
bond, inflation-linked bond, and cash. In the remainder of the pa-
per, these financial assets are denoted using subscripts E, B, B and
C respectively, with the set of financial assets being F = {E, B, B, c}.

Withdrawals from the retirement fund are allowed but only to
buy deferred annuities (DAs) which will pay out, if he is alive at
retirement time T, every year from time T until he dies. Two types
of annuities can be purchased: nominal and inflation-protected an-
nuities, denoted by the subscripts A and A respectively. The set of
annuity products is A = {A, A}. Both types of annuities are irre-



I. Owadally, C. Jang and A. Clare

versible contracts, so the individual can buy them from insurers,
but not sell them back to insurers or on a secondary market.

There is no payout from the annuities if the individual dies be-
fore retirement. However, any remaining wealth in his retirement
fund is bequeathed to his heirs. If the individual survives till re-
tirement, then all of his accumulated wealth in the fund is used
to purchase nominal and inflation-protected immediate annuities
which pay out from the retirement date until death. An immediate
annuity is merely a deferred annuity with a zero deferment period,
so in the following we do not distinguish between immediate and
deferred annuities.

We assume that the investor exhibits constant relative
risk aversion (CRRA) with a power utility function u(t,x) =
e Pt(x17)/(1 - y), at time t, with y > 0 being a risk aversion co-
efficient, 0 < p <1 being a time preference coefficient, and x rep-
resenting either annuity income or wealth bequest, both of the lat-
ter being in real terms.

If the individual survives to retirement at time T, then utility
is gained by retirement income in real terms (i.e. net of inflation),
following the policy prescription of Merton (2014). Real income in
retirement is denoted by I; for t € [T, t) and it is the nominal in-
come from annuities deflated back to time O at the realized log-
rates of price inflation {I1;,t € (0, 7]}. We assume implicitly that
all income from the retirement plan is used for consumption, so
utility u(t,I;) is gained for annuity income, in real terms, every
year in retirement.

If the individual dies before time T, then his wealth in the re-
tirement plan (minus the value of deferred annuities purchased) is
bequeathed to his estate, and utility is gained by the amount, in
real terms, that is bequeathed. Real wealth bequeathed is W; for
t € (0,T], and it is the nominal value of wealth deflated back to
time 0. A bequest parameter «, to be introduced shortly, captures
the relative importance of the bequest to retirement income.

During the pre-retirement period [0, T), the investor can dy-
namically adjust his investment portfolio and purchase deferred
annuities in order to maximize the expected utility of real annu-
ity income in retirement and of real bequest before retirement.
Let the total number of units of nominal deferred annuity pur-
chased by time t be X, ; and, similarly, the total number of units of
inflation-protected deferred annuity be Xie (Recall that the sub-

script A stands for nominal annuity and A for inflation-protected
annuity.)

One unit of nominal annuity guarantees a nominal income of £1
annually in retirement until death. One unit of inflation-protected
annuity also guarantees a nominal income of £1 annually in re-
tirement until death, but the number of units is increased in line
with price inflation every year. Thus, income from the inflation-
protected annuity is perfectly correlated with price inflation. Let
the prices of one unit of nominal and inflation-protected annu-
ities be Sy and Sy, respectively at time t € [0, T]. Then, at time ¢,
the investor pays Sa;(Xa¢ — Xa 1) to buy the nominal annuity and
Si . Xa —X;Y[_]e“r) to buy the inflation-protected annuity, where
I1; is the log-rate of price inflation in year (t — 1, t). (In both cases,
Xa1=Xz = 0.)

The investor can also buy and sell units of a cash fund, equity
fund, nominal bond fund and inflation-linked bond fund. (Recall
that these are denoted by C, E, B and B respectively.) Let Xg, be
the number of units of the equity fund held in the retirement plan
at time ¢, and Sg; be the price of equity units at time t. A corre-
sponding notation holds for the cash, nominal bond and inflation-
linked bond funds. Note that we assume perfect divisibility of as-
sets and that fractional units can be held.

At time ¢t € [0, T), the individual can adjust asset allocations of
the retirement plan by deciding how much to hold in cash, eq-
uity, and bonds, and how many annuity units to buy. At the re-
tirement date T, all financial wealth is sold and the investor de-
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cides how many units of nominal and inflation-protected annuities
to buy. The decision variable for the individual at time t < [0, T] is
therefore X; = [Xc¢, Xp.t» Xger X5, Xar» X5,

3. Formulation for multi-stage stochastic programming
3.1. Preliminary notation and definitions

Stochastic programming is a mathematical framework for op-
timization problems with uncertain scenarios. The scenarios can
be economic, financial, and demographic. Both the state space and
time are discretized in multi-stage stochastic programming (MSP).
The multiple discrete-time points are known as stages. An MSP
model is constructed in a nodal form by using state variables gen-
erated in a scenario tree. The scenario tree starts at the initial
stage from a unique root node and it ends at the terminal stage
with multiple leaf nodes. The root node branches out to a num-
ber of children nodes at the second time stage. Each child node
itself branches out to further nodes at the third time stage, and so
on, until the leaf nodes are reached. Every node, except the root
node, has a unique parent node. A scenario is the connected path
through a series of parent nodes from a leaf node to the root node.
In general, the scenario tree is non-recombining.

We set out here some notation pertaining to the scenario tree.
For convenience, this notation is summarized in Table 1. The sce-
nario tree is depicted in schematic form in Fig. 1. The root node
is located at the first stage and is denoted by ng. The set of all
nodes in the scenario structure is A, and MN; is the set of nodes
at time t. Thus, Ny = {ng} contains the root node only, N7 is the
set of leaf nodes, and N = i¢jg -] Vi- A node n # ng branches off
a parent node, denoted by n~, which may itself have its own par-
ent node n~—, etc. It is convenient to denote by s, the set of all
predecessor nodes of node n, i.e. s ={n,n",n"—,...,ng}. A node
n ¢ Ny forks into a set of children nodes, denoted by {n*} at the
next stage, and these children nodes may themselves have their
own children nodes {n**} at the following stage, etc. The time be-
tween each stage may vary, in general, but it is fixed in our model
and is denoted by At. The unconditional probability that a node n
occurs is pr, and the conditional probability that a node n occurs
given its parent node n~ is pr,.

We make use of a hybrid structure of scenario tree followed by
scenario fans, as illustrated in Fig. 1. The scenario tree consists of
multiple branches from every node and it spans the decision pe-
riod [0, T], i.e. the period up to retirement during which invest-
ment and annuitization decisions are made. The scenario fans con-
sist of only two branches from every node at retirement, and they
span the projection period (T, 7], i.e. the post-retirement period.
It is important to highlight that decisions are only made up to re-
tirement, and the relevant scenarios are captured in the scenario
tree. The scenario fans after retirement are only used to project
inflation forward. They are required because income is received
during retirement but it is the utility of retirement income in real
terms (i.e. net of inflation) that must be evaluated. As explained by
Dupacova, Consigli, and Wallace (2000), the scenario fan structure
can be used in the special case in which the probability distribu-
tions of supporting variables are only affected by decisions made
before the scenarios.!

In the following, survival and death probabilities are repre-
sented using standard actuarial notation. The probability that a
8-year old person survives until age § +t is denoted by (p;s. The
probability that a (§ 4+ t)-year old person dies over the following

1 The combined structure of the scenario tree and scenario fans, depicted in
Fig. 1, still satisfies the non-anticipative condition. Here, the supporting variable is
the inflation process to project annuity income, and decisions are all made before
starting the scenario fan.
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Table 1
Variables and parameters for the MSP optimization problem.
Sets
N =Ureo.n) M All nodes in the hybrid scenario structure
N All nodes at time t
A= {A,Z} Set of annuities guaranteeing fixed-nominal (A) and inflation-protected (K) payments
F={CB, B, E} Set of financial assets: cash (C), conventional bond (B), inflation-linked bond (E), equity (E)
sp={n,n",n"",...,ng} All predecessor nodes of node n, including itself, up to root node ng
{n,n* nt+ ..} All successor nodes of node n, including itself
Decision variables
Xi‘.Jrl:y‘ ice AUF The unit number of asset i to buy at node n
Xl ieF The unit number of asset i to sell at node n
Xn Vector collecting all the buy and sell decision variables at node n
Xin, ic AUF The unit number of asset i held at node n after rebalancing
Other main variables
In Real retirement income at node n
A Real financial wealth at node n (excludes the value of annuities)
Parameters
tDs Probability that a §-year old person survives until age § +t
Atds it Probability that a (8 + t)-year old person dies over the following At years
pr, Unconditional probability that a node n occurs
Sin. i€ AUF Nominal price of asset i at node n
L, Nominal labour income per annum at node n
I, Inflation log-rate over a At-long time interval ending at node n
At, T, T Portfolio holding period, retirement date, maximum time respectively (all in years)
) Investor’s starting age at t =0
(y,p. k) Investor’s preference parameters; risk aversion, time preference, and bequest motive respectively
Wo Current nominal wealth in cash at the root node ny before contribution and rebalancing
¢ Fixed contribution rate, as a proportion of nominal labour income L, to the retirement plan
0 T T
{ + — n + i - - -+
decision period projection period
{n € N;}
..................... .

Fig. 1. A hybrid structure of a scenario tree (from time O to T) and scenario fans (from T +1 to 7).

At years is denoted by a¢qs,¢ (typically abbreviated to qs,, when
At =1).

3.2. Optimization problem

The optimization problem for the investor in a retirement plan
can be formulated on the scenario structure as a multi-stage
stochastic programming (MSP) problem as follows. Let X;, be the
number of units of asset i € AU F held at node n in the scenario
structure. We separate buy and sell decisions: Xif’;‘y is the number
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of units of asset i to buy at node n, and Xﬁ;” is the number of units
of asset i to sell at node n. Annuities cannot be sold, so the deci-

H i ; _ buy yesell ybuy yosell ybuy yesell
sion variable at node n is X, = [XC,n , chn, XB‘n, XB,n’ XE.n, XE,n’

’
X X X X |-

The objective function, budget constraints, and variable con-
straints for the retirement planning problem are given in nodal
form suitable for MSP by the equations below (the equations in
the usual time representation are reproduced in the online supple-
mentary appendix, section S-1):
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D > s ut,In) pry

max
unelicloh) | S L

+ D D tPs acdsek VUt + AL, Wy) pr, |, (1a)

te[0,T) neNeiar

st I = [ D Xin | €xp(—= X pes, ) for ne (M.t € [T, 1)},
ieA
(1b)
Wi = > Xin- - Sin€XP (=X nes, [Im) for n e {A:,t e (0, T]},
ieF
(1c)
Il{n ng}WO + ]1 {ngNT} d’ Ly At + szell
ieF
> XMW S, forne (Nt el0,TI} (1d)
icAUF
Xin = LingnXin + Xin' = X52!
forie Fandn e {M,t [0, T]}, (1e)
Xan = Yz Xan- + Linein.tefo, T]}}X y
forne {N, t [0, 1)}, (1)
M, buy
Xin = Lingng)Xin- € " + Linenitelo T X5
forne {N;, te[0, 1)}, (1g)
Xin = X} = 0 forieFandneAr, (1h)
Xin X)W, XS > 0 forie Fandne (M.te[0,T]}, (1i)
Xil_’;’y >0 forieAandne {M,te[0,T]). (1))

In Eq. (1a) above, the decision variables over which the ex-
pected utility is maximized are the portfolio and annuity purchase
decisions over the planning horizon [0, T]. It is implicit in the ob-
jective function in Eq. (1a) that summations occur over the time
stages in the scenario tree during the investor’s lifetime t € [0, T).
The decision variable must be chosen at every node n in the
scenario tree component of the scenario structure, {\;,t € [0, T]}.
Eq. (1b) shows the real retirement income I, at time t < [T, 1)
during retirement, this being the nominal income from annu-
ities deflated back to time 0. Recall that the number Xz, of
inflation-protected annuity units increases in line with price mﬂa—
tion, whereas the corresponding number for nominal units does
not. Wealth W, in Eq. (1c) is evaluated in real terms and does not
include the value of annuities, so it is the inflation-adjusted total
value of financial assets before rebalancing the portfolio at node n.

The cash balance constraint in Eq. (1d) sets off cash inflows
against outflows. At the root node, wealth is initialized at the non-
random amount wy specified on the Lh.s. of Eq. (1d). The inci-
dence of cash flows in our model is such that contributions occur
in advance every At years. A financial asset inventory constraint
appears in Eq. (1e) and tracks the number of units of cash, eq-
uity, nominal and inflation-indexed bond funds held at node n. The
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annuity inventory constraints in Eqs. (1f) and (1g) allow the in-
vestor to buy the two types of annuities during the pre-retirement
planning period as well as at retirement, and they track the num-
ber of units of annuities for the whole lifetime [0, 7). Notice that
the number of units of inflation-protected annuities in Eq. (1g) in-
creases in line with inflation every year. At retirement time T, all
assets are sold to purchase nominal and inflation-protected imme-
diate annuities, and constraint Eq. (1h) guarantees this full annu-
itization. Eq. (1i) represents the no short-sales constraint, while Eq.
(1j) ensures that annuities can only be bought and not sold.

3.3. Scenario generation for financial and annuity markets

There are two related features of the scenario tree which call
for a modelling decision: the number of stages in the tree and
the branching factor at every stage. (The branching factor is the
number of children nodes that each node has.) A “curse of di-
mensionality” occurs in MSP as the number of stages increases
and the scenario tree becomes ‘denser’ (Dupacova et al., 2000;
Shapiro, Dentcheva, & Ruszczynski, 2009). This corresponds to a
similar curse in numerical dynamic programming when the num-
ber of state variables increases. In MSP, there is a computational
limit to the number of stages and branching factors in the scenario
tree.

A common strategy is to use stages of increasing lengths with
decreasing branching factors along the tree, as used for example
by Consigli et al. (2012). We do not employ this strategy here for
two reasons. First, branching factors cannot decrease beyond the
minimum number of branches required to avoid arbitrage (Geyer,
Hanke, & Weissensteiner, 2010) and to match the required mo-
ments of the conditional distributions of the variables stored at ev-
ery node in our optimization problem (Hgyland & Wallace, 2001).
Second, we use a regular time interval between stages to repli-
cate the regular financial reviews that an individual may have with
a financial planner during their financial lifecycle, and the reg-
ular portfolio rebalancing that then occurs. The optimal invest-
ment solution that we obtain is then an approximation to opti-
mal intertemporal investment without the distortion that would be
caused by an uneven time-interval effect.?

To generate scenario trees for a portfolio optimization problem,
scenario reduction and state aggregation are not suitable meth-
ods (Geyer et al., 2010). Scenario reduction methods do not admit
no-arbitrage conditions explicitly, while state aggregation involves
only the risk-neutral measure, not the real-world measure which
should be used in a portfolio optimization problem. To generate
the scenario tree, we combine the sequential approach of Hayland
and Wallace (2001) with the moment matching method (Klaassen,
2002).

Details of the scenario generation procedure are given in Sec-
tion S-2 of the online supplementary appendix. In brief, we have
10 state variables at every node, we use a regular stage interval of
At =5 years and we have 6 stages (5 periods), so that the sce-
nario tree spans 25 years in the decision period up to retirement
(this is the period [0, T] with T =25 in Fig. 1). Given the values
of the variables on any particular node n, the moments of the
conditional distribution of these state variables after At =5 years
can be calculated using a suitable financial model fitted to mar-
ket data. (The model will be described in Section 4.) The values of
the state variables on the children nodes {n*} are then determined

2 We thank a reviewer for suggesting that stages of increasing lengths, with a
short period of 1 year between the first two stages, could be useful in a practical
setting. For example, the model could be used in a receding horizon control fashion
where it is fully solved but only the first step is implemented. It is then solved
again the following year, when the individual is one year older, and again only the
first step is implemented, etc. until retirement.



I. Owadally, C. Jang and A. Clare

by matching the first 4 moments of the conditional distribution.
There are 85 moment specifications (10 x 4 central moments and
10(10 — 1)/2 = 45 covariances). Based on this, Hgyland and Wal-
lace (2001) suggest that there should be a minimum of 8 branch-
ing factors. Starting from the root node, we can evaluate the state
variables at each node sequentially throughout the scenario tree.
This procedure gives a close fit to market data as is demonstrated
in Section S-2 of the online supplementary appendix.

Another consideration relevant to scenario generation is that
the scenarios are arbitrage-free. The following procedure is used
to preclude arbitrage:?

Step 1. Given a node n e {\;,t € [0,T)}, calibrate the first four
conditional moments of the subtree branching from this
node.

Check if the generated scenarios preclude arbitrage oppor-
tunities among cash, nominal bond, inflation-linked bond,
and equity funds: see Klaassen (2002). Return to Step 1 if
any arbitrage opportunity is found.

Check if each of the generated scenarios has conditional
moments over the next stage that are within no-arbitrage
bounds: see Geyer, Hanke, and Weissensteiner (2014).
Repeat Step 1 to Step 3, if Step 3 meets the always-
arbitrage bound.

Step 2.

Step 3.

Step 4.

Step 2 can be subsumed within Step 1. We proceed in a se-
quential way and apply the above procedure from the first to the
penultimate stage. To identify arbitrage opportunities among the
four financial assets (cash, nominal bond, inflation-linked bond,
and equity) in Steps 2 and 3, we use the two methods of Klaassen
(2002) for two arbitrage types ex-post and the method of Geyer
et al. (2014) for no-arbitrage bounds ex-ante.

3.4. Scenarios for pre-retirement labour income and post-retirement
inflation

In the pre-retirement period (this is the period [0, T) in Fig. 1),
labour income is earned by the individual. In order to incorporate
the effects of stochastic labour income into the retirement plan-
ning problem, we generate labour income scenarios superposed
upon the financial market scenarios described in the previous sec-
tion. We can generate real labour income scenarios which are in-
dependent of the asset return scenarios during the individual in-
vestor’s working lifetime [0, T) because there are enough degrees
of freedom in the eight branches of each node within the finan-
cial market scenarios, when the ten state variables are reduced
to four financial assets returns for cash, equity, nominal bond and
inflation-linked bond funds. Visiting each node in the working pe-
riod of the scenario structure, we generate permanent real labour
income shocks and temporary real labour income shocks on the
eight children nodes. Details of the labour income model are given
in Section 4.4 below and the relevant scenario generation is dis-
cussed in Section S-3 of the online supplementary appendix.

In the post-retirement period (this is the period [T, t] in Fig. 1),
there is no labour income, of course, but annuity income is earned.
This income must be evaluated in real terms, i.e. deflated back
to the root node ny at time 0. We use scenario fans to project
inflation forward during retirement. We emphasize again that no
decision is made in the post-retirement period. Log-rates of infla-
tion are Normally distributed in our model (see Section 4.3 below),
consequently only two moments need to be matched to create
scenario fans. For the scenario fans, we have an initial branching
factor of 2 and we choose two points at one conditional standard

3 We are grateful to a reviewer for suggesting the alternative method set out by
Consiglio, Carollo, and Zenios (2016).
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deviation on either side of conditional mean inflation on each
node in A7, i.e. at retirement (Dupacova et al., 2000).

In the scenario tree part of the hybrid scenario structure that
we use, there are eight children nodes for every node over the first
six stages (five periods), giving 8> = 32, 768 scenarios in the sce-
nario tree. This is then doubled to 65,536 in the overall hybrid sce-
nario structure because of the scenario fans. Since post-retirement
inflation is required only for the purpose of deflating retirement
income back to the root node ny at time 0, 65,536 scenarios for
inflation is an ample number to capture Normally distributed log-
rates of inflation, conditioned on the root node. Finally, intervals
of one year are used along the fans, from time T +1 =26 to the
terminal date T =80 in Fig. 1. (As we indicate later, the terminal
date will correspond to a maximum age in a mortality table.)

4. Financial assumptions
4.1. Term structure of interest rates

The Nelson-Siegel model is chosen to model the real and nom-
inal yield curves along with a vector autoregressive (VAR) model
for stochastic cash, bond, equity returns, and inflation rates. The
Nelson-Siegel model is parsimonious and known to avoid the over-
fitting problem and to return better out-of-samples predictions
than affine term structure models (Diebold & Li, 2006). Ferstl and
Weissensteiner (2011) combine the Nelson-Siegel formulation pro-
posed by Boender, Dert, Heemskerk, and Hoek (2008) with the
VAR model. Our model therefore incorporates asset return pre-
dictabilities and produces a seamless yield curve for pricing not
only the cash and nominal and inflation-indexed bond funds, but
also nominal and inflation-protected annuities.

The entire nominal yield curve is determined by a fitted
Nelson-Siegel model with three time-varying parameters?, gr =
[B1.t. Bar. B3] For the real yield curve, we use the notation f, =
[B1.t*32,t’ ,531]/. The Nelson-Siegel model for the s-year nominal
spot rate at time t is as follows:

) — Bsee™,

where the scaling parameter A is a constant. A corresponding
equation holds for the real spot rate.

1-— e—)Ls

AS (2)

y(Bi.s.A) = Bre+ (,32,t+ﬂ3.t)<

4.2. Time-varying investment opportunities

In order to incorporate predictabilities of asset returns and a
pair of three Nelson-Siegel parameters (B, and f,), we use a
VAR(1) model (for details, see Barberis, 2000; Campbell, Chan,
& Viceira, 2003). Specifically, we use the combined approach of
Konicz et al. (2015) to model interest rates, equity returns and in-
flation rates. Here, r; is monthly log-returns on the equity fund.
Monthly inflation log-rates are denoted by m;. Our VAR model is
given by

ze = Og + P1zi1 + 1y, (3)

where z; = [r¢, 7w¢, Bre. Bar. Bat BM, 52’[, 531]/. The accumulated
return Rg; on the equity fund, defined near Eq. (6) as the log-
return from time t — At to t, is simply a sum of the monthly log-
returns. The accumulated inflation IT;, defined near Eq. (8) and
Eq. (12), is a sum of the monthly inflation rates. In Eq. (3), the
intercept term @ is a column vector. The slope term ®; is a 8 x 8

4 In the Nelson-Siegel model, the long interest rate is given by lims_. y(fB,s) =
B and the short interest rate is lims_oy(B;,S) = B1 + Ba. The parameters B,
Bot, and Bs, determine level, slope, and curvature of the yield curve respectively
(Boender et al., 2008).
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Table 2
Estimated parameters and t-statistics for the VAR(1) model.
D D,
Tt1 Tt-1 Bt Bt B Brea Bara B3t
Tt —0.0034 —-0.0013 —0.0584 0.1265 —0.0425 —0.0342 0.1064 —0.0831 —0.0658
(-0.3415)  (-0.0251)  (-0.1051)  (0.4051) (—0.2886)  (-0.3130) (0.2384) (-0.4921)  (—0.4000)
e 0.0021 0.0016 0.0474 0.0288 0.0727 0.0026 —0.0690 —0.0844 -0.0157
(2.2691) (0.3493) (0.9413) (1.0177) (5.4389) (0.2652) (-1.7055)  (-5.5114) (—1.0493)
Bic  0.0031 —0.0021 —0.0402 0.9246 0.0301 0.0046 0.0280 —-0.0155 0.0242
(2.9330) (-0.3987)  (—0.6907) (28.2607) (1.9470) (0.3996) (0.5994) (—0.8773)  (1.4043)
Bae  0.0047 0.0156 0.0264 —0.1462 0.9498 —0.0243 0.1527 —0.0422 —0.0367
(3.2698) (2.1473) (0.3332) (—3.2800)  (45.1243) (-1.5571)  (2.3975) (-1.7493)  (-1.5619)
Bsc  0.0043 —-0.0057 -0.0123 -0.1073 —0.0930 0.8791 0.2206 0.0446 0.0040
(1.3922) (-0.3662) (-0.0719) (-1.1206) (—2.0568) (26.2582) (1.6133) (0.8625) (0.0800)
Bi:  0.0007 0.0003 —0.0105 —-0.0220 0.0028 —0.0047 1.0178 0.0014 0.0169
(1.2741) (0.1043) (-0.3342)  (-1.2418)  (0.3383) (—0.7583)  (40.2434) (0.1499) (1.8160)
B.:  0.0028 —-0.0141 0.3517 —0.1208 —0.0159 —0.0385 0.1352 0.9486 0.0132
(2.2349) (—2.2155)  (5.0743) (-3.1007)  (-0.8665) (—2.8284) (2.4294) (45.0456) (0.6422)
Bse  —0.0002 0.0082 —0.2255 0.0832 0.0234 0.0500 -0.1611 —0.0154 0.8587
(—0.1062)  (0.8469) (—2.1284)  (1.3969) (0.8337) (2.4032) (—1.8940) (-0.4785) (27.3676)

Monthly data of FTSE 100 from Bloomberg, retail price index from Office for ~National Statistics and fitted yield curves from Bank of
England respectively are used from January 1985 to June 2017 (A = 0.1519 and A = 0.2508 for the Nelson-Siegel nominal a~nd real yield
curves model); t-statistics in parentheses. R?: 0.0114 (r¢), 0.1396 (7¢), 0.9484 (B1.), 0.9665 (B2), 0.8431 (B3), 0.9881 (B1,), 0.92626

(B20), 0.8373 (Bsy).

Table 3
Standard deviations and cross correlations of residuals of the VAR(1) model.
Tt TT¢ ,61.[ ﬂz.t ﬂ3.t El.t 52.t ,53.[
Jdiag(¥X;)  0.0442  0.0040 0.0046  0.0063 0.0135 0.0025 0.0055 0.0084
It 1.0000 -0.0192 0.1104 -0.0786 -0.1136  -0.0587  -0.0387  —0.0261
Lt 1.0000 0.0161 0.0191 0.0665 0.0545 -0.0086  —0.0378
Bir 1.0000 -0.3770 -0.3500 0.3960 -0.0562  -0.1534
Bar 1.0000 0.5465 0.2576 0.2980 0.0509
Bsr 1.0000 0.3653 0.0040 0.2172
Bre 1.0000 -0.0936  -0.4195
B 1.0000 -0.3501
Bs. 1.0000
Table 4
Unconditional expected mean i, and standard deviation oz, of the VAR(1) model.
Tt TT¢ Bt Bat Bat 51,: Bz,t BS,t
Mz 0.0022 0.0027 0.0392 -0.0283 0.0135 -0.0012 -0.0191 0.0210
[ 0.0445 0.0043 0.0219 0.0396 0.0341  0.0293 0.0206 0.0231

coefficient matrix of the VAR model. The error term v; is a column
vector of i.i.d. innovations ~ N(0, X,), where X, = E[vV/].

Given fixed values of A and A, if all eigenvalues of ®; have
moduli less than one, the stochastic process in Eq. (3) is stable
with the unconditional expected mean uz and covariance 'z, of
z¢ in the steady state:

Uz = (I— 1) 'c (4)

vec(Tz) = (I— @1 ® @) 'vec(E,), (5)

where [ is an identity matrix and the operator ® is the Kronecker
product and vec is a vectorisation function, which transforms the
8 x 8 matrix ¥, into a 82 x 1 vector.

Using historical nominal and real yield curves from the Bank of
England from January 1985 to June 2017 with 0.5 to 25-year spot
rates, monthly FTSE 100 data from Bloomberg, and retail price in-
dex as an inflation rate measure from the Office for National Statis-
tics over the same period, the VAR model is stable. We choose the
Nelson-Siegel scale parameters of A = 0.1519 and A = 0.2508 such
that the sum of squared errors between the fitted Nelson-Siegel
and historical yields is minimized. Our estimates for &5 and &,
in Eq. (3), along with t-statistics, are collected in Table 2. The level
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of R? for the equity return component is low, so it is difficult to
confirm the existence of return predictability in the UK. equity
market. Table 3 exhibits the standard deviations and correlations
of the residuals. Table 4 presents the unconditional expected mean
Uz and standard deviation o, = \/diag(X;;) of z; at the steady
state. The left hand panel of Fig. 2 displays the nominal term struc-
ture at the steady state, and it is clearly upward sloping and con-
cave (as is the steady-state real term structure, not shown here).
The right hand panel of Fig. 2 shows eight different stochastic re-
alizations of the nominal term structure after 5 years.

4.3. Price dynamics of bonds and annuities

The investor rebalances his portfolio and buys deferred annu-
ities at regular intervals of length At years during his retirement
planning period [0, T]. There are N € N such regular intervals, i.e.
T = NAt. Defining R;; as the accumulated log-return of financial
asset i € F from time t — At to t, the price S;, of financial asset i
is given by:

Sie = Sic—ac-€Xp(Ri¢) forie F, (6)

where S; o = 1 without loss of generality.
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Fig. 2. Left panel (a) shows the initial nominal term structure starting from the steady state. Right panel (b) shows different realizations of the nominal term structure after

5 years (the thicker the line, the likelier the occurrence).

The gross return of the nominal bond fund with a maturity of
M years over a holding period of length At from time t — At to t
is approximated by

Rpe = M-y(B_pe- M. A) — (M= At -y(B. M- At A).  (7)

The function y(B;, M, 1) denotes the M-year nominal spot rate at
time t, determined by the Nelson-Siegel term structure model
with a vector B, of parameters and a scale parameter A to be spec-
ified shortly.

In a similar fashion, the gross return of the inflation-linked
bond fund with a maturity of M years over a holding period of
length At from time t — At to t is approximated by

Rz, = M'J/(ﬂthtﬁM’)‘) - (M- At) 'J’(ﬂpM— At,A) + T1y,
(8)
where I1; denotes the gross rate of inflation between t — At and t.
The M-year real spot rate at time t is also denoted by the function
y, but with parameters f; and .
The gross interest rate on the cash fund from time t — At to t
is defined simply by changing bond maturity M in Eq. (7) to At.
The cash fund return is given by

Rer = At-y(Bi_aes At A). (9)

Naturally, the cash return at time t does not depend on the cur-
rent nominal spot rate y(f;, At,1) at time t, but on the past
spot rate y(B;_;, At, 1). The price dynamics of the cash and bond
funds are obtained by substituting R;; from Eq. (7), Eq. (8) and Eq.
(9) into Eq. (6).

The fair actuarial price of a nominal deferred annuity contract
which pays £1 in nominal terms and in every year of retirement is

Tt

> sPsi-exp (=s-y(Be.s.A)).

s=T—t

Sar (10)
If t=T in Eq. (10) above, then the annuity is of course an im-
mediate annuity. Eq. (10) above holds verbatim for an inflation-
protected deferred annuity, except that A is replaced by A and the
yield is y(B;.s, A). We assume static pricing mortality rates here,
and we also ignore loading factors (expenses).

4.4. Labour income

We model exogenous labour income in accordance with Viceira
(2001), Cocco et al. (2005) and Blake, Cairns, and Dowd (2007).
An individual investor cannot change the amount of labour supply
during his working lifetime [0, T). Real labour income L; at time ¢
is determined by three components: a deterministic growth func-
tion f of age § +t, a permanent shock v and a temporary shock
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&:. The deterministic function f is a polynomial, which can match
the hump shape of the age profile of real wages. The permanent
labour income shock vy can be either independent of, or corre-
lated with, equity returns. Nominal labour income L; at time ¢ is
the real labour income I; inflated by two components: price infla-
tion I; and real wage inflation G;.

The real and nominal labour income processes of the investor
are therefore given, respectively, by:

L= Lncexp(f(S+1) — f(8+t— Ab) + Ut + & — &r_nr),
(11)

L = L exp (X5 (I + Gy)), (12)

for t € (0, T). Here, Ly =Ly w.p. 1, ur ~ iid. N(0,02At) and & ~
iid. N0, 2).

4.5. Prices and yield curves on the scenario tree

The financial model set out above is used to generate the hy-
brid scenario structure as described in Sections 3.3 and 3.4. The
ten state variables stored at each node are [Rn, Iln, rn, 70, Bin.
Bans B3n, B’l,n, 52_,1, Eln], employing the same notation as before
except that we index by node n. Asset prices can be evaluated at
each node of the scenario tree. For example, the asset price in Eq.
(6) is transformed into the nodal form simply by replacing t with
n and t — At with n~ as follows:

Sin = Sin- -exp(Riy), forne{A;,te(0,T]}andie 7,

with S;,, = 1. Pricing formulas for other assets are transformed
similarly.

It is useful to consider the yield curves generated by the sce-
nario tree. Percentiles of the nominal and real spot rates for differ-
ent maturities at retirement date T, as calculated from the gener-
ated scenarios, are shown in Table 5. It is clear that the generated
nominal yield curve is more volatile at the short end, than at the
long end, consistent with empirical evidence. This is also evident
from the right hand panel of Fig. 2, which shows eight different
realizations of the nominal yield curve, with a greater spread at
the short end than at the long end.

5. Numerical results

In this section, we solve the investment and deferred annu-
itization problem for an individual who can invest in equities,
cash, inflation-indexed and nominal bonds, and who can buy both
inflation-protected and nominal annuities. We investigate particu-
larly the welfare enhancement potentially conferred by inflation-
protected deferred annuities in the presence of labour income risk.
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Table 5
Percentiles of the nominal and real spot rates at retirement, for different maturities.
Percentile 5y 10y 15y 20y 25y 30y
0.05 -0.0563  -0.0406  -0.0302  -0.0233  -0.0182  -0.0148
Nominal  0.50 0.0332 0.0381 0.0407 0.0420 0.0426 0.0430
0.95 0.1212 0.1160 0.1109 0.1065 0.1030 0.1002
0.05 —0.0550 —-0.0473  -0.0458 -0.0460 —-0.0464 —0.0468
Real 0.50 0.0003 0.0042 0.0052 0.0054 0.0054 0.0054
0.95 0.0557 0.0556 0.0560 0.0567 0.0573 0.0576

5.1. Numerical example

Consider a 40-year-old individual (6 = 40) who intends to retire
at age 65 (T = 25).° His aim is to maximize and secure his retire-
ment benefits in real terms and to set aside a portion of his port-
folio as a bequest, also in real terms, if he dies before retirement.
His personal retirement plan permits him to invest in an equity
fund, a nominal bond fund (maturity M = 20 years), an inflation-
linked bond fund (maturity M = 20 years), a cash fund (maturity
M =5 years), nominal deferred annuities, and inflation-protected
deferred annuities as described in Section 2.

In the base case, the VAR asset return model with Nelson-Siegel
real and nominal yield curves is based on UK. data from January
1985 to June 2017, as described in Section 4.2. Mean, standard de-
viations and cross-correlations of key variables from the model are
shown in the online supplementary section, Table S-1. A U.K. mor-
tality table based on 2000-2006 experience® is used to price the
deferred annuity.

The individual can rebalance his portfolio and buy deferred an-
nuities every 5 years (At =5) until retirement. There are there-
fore six stages (five periods) in the scenario tree part of the hy-
brid scenario structure. At time 0, the individual has wealth of
wo = £80,000 in his retirement plan. His annual wage starts at
£40,000, so Ly :ZO =40, 000 in Egs. (11) and (12), or equivalently
Lp, =Zn0 =40,000 in Egs. (S.5) and (S.6). He contributes ten per
cent (¢ = 10%) of his nominal labour income to his retirement
plan.

Average real labour income with age typically exhibits a con-
cave shape unless deflation occurs. National statistics show that
the average real wage tends to decline after age 40-50 (Office
for National Statistics, 2015). We employ a deterministic quadratic
function for f in the real labour income mode of Eq. (11), and use
the parameter estimates of Blake et al. (2007)’.

5.2. Optimal annuitization and investment without risk to real labour
income

First, we consider the case where there is no real labour income
uncertainty: there are no stochastic shocks to real labour income,
oy =0 =0in Eq. (11).

Our numerical results show that the optimal strategy to secure
retirement income leads to fairly early and continual purchase of
deferred annuities over the working lifetime of the investor. This

5 In the numerical results that follow, we assume that the individual has a CRRA
(power) utility, as defined in section 2, with representative relative risk aversion
coefficient y of 3 or 5, and time impatience p of 0.02 or 0.04. This is in common
with other long-term portfolio and annuity studies, e.g. Huang et al. (2017), Horneff
et al. (2010), Koijen et al. (2011) and Viceira (2001).

6 Institute and Faculty of Actuaries, SIPML/S1PFL All pensioners (excluding
dependants), male/female lives www.actuaries.org.uk/research-and-resources/
documents/s1pml-all-pensioners-excluding- dependants-male-lives (www.
actuaries.org.uk).

7 The real labour income function scaled to 1 at the final age of 60 is w(y) =
0.5963 + 2.3708y — 1.9671y%, where y = (x —20)/(60 — 20), x =20, 21,.., 60. The
coefficients, estimated from the New Earnings Survey of the Office for National
Statistics in 1998, are for a male all-occupation group. For details, refer to Blake
et al. (2007).
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is illustrated in Fig. 3, which shows average and percentile values
of annual retirement income accumulated in real terms from hold-
ings of nominal deferred annuities (N-DAs) and inflation-protected
deferred annuities (IP-DAs), at various ages. From age 65 onwards,
the annual annuity payouts, in real terms, are shown and these are
constant for the infation-protected annuity but declining for the
nominal annuity. The four panels represents four different individ-
uals with different risk aversion and time preferences. There is no
bequest motive (k = 0.).

It is clear from Fig. 3 that nominal annuities are purchased
at earlier ages than inflation-protected annuities. This is because
a younger investor implicitly holds larger human capital than an
older one ceteris paribus, labour income is perfectly correlated with
inflation here, so the nominal annuity is riskier than the inflation-
protected annuity, and at younger ages more risk can be taken. We
also observe, by comparing the panels on the right to the ones on
the left in Fig. 3, that a more risk-averse investor buys less nomi-
nal annuities and more inflation-protected annuities, the latter be-
ing less risky than the former in real terms. Comparing the bottom
panels to the top ones in Fig. 3, we see that the more impatient
an investor, the more he purchases nominal annuities. This is sen-
sible since cash flows from nominal annuities decline in real terms,
satisfying the more impatient investor.

Average optimal asset allocations over period till retirement are
presented in Fig. 4. The bar graphs in the first and third rows show
average asset allocations including deferred annuities, and those in
the second and fourth rows concentrate on financial assets only,
excluding deferred annuities. At retirement (age 65), only annuities
are held. Comparing the right-hand panels to the left-hand panels,
we find that equity allocation is lower, bond allocation higher, and
annuity allocation marginally higher, the greater the investor’s risk-
aversion is.

A key result from Fig. 4 is the dominance of deferred annuity
holdings over financial asset holdings. This is a function of the his-
torical data, 1985-2017, that we used to parameterize our financial
market model and price annuities. Long-term rates fell during this
period, meaning that annuities were cheap at the start, and our
model rightly favours annuities over financial assets, on average.

We also find that nominal deferred annuities dominate their
inflation-protected cousins, and that nominal bonds dominate
inflation-linked bonds. This initially surprising result follows from
the fact that long-term real yields were on average negative over
this historical period (the mean of B;; in online supplementary
section Table S-1 is —0.12%) so inflation-indexed securities and
products were expensive. Over this historical period, the long-
term nominal yield is highly correlated with the long-term real
yield (the correlation of B;; with B in online supplementary Ta-
ble S-1 is 0.7319.). Investing in the long-term nominal bond fund
thus helps to hedge price changes in not only nominal but also
inflation-protected annuities to secure real retirement income. The
average long-term nominal rate is 3.92% (the mean of §;; in online
supplementary section Table S-1), which is higher than the average
annual equity return (the average of monthly return r; in online
supplementary section Table S-1 is 0.22% accumulating to 2.63%
p.a.), explaining the preference of nominal bonds over equities.


https://www.actuaries.org.uk/research-and-resources/documents/s1pml-all-pensioners-excluding-dependants-male-lives
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Fig. 3. Average and percentiles of optimal secured retirement income (x£1000 p.a.) through either inflation-protected deferred annuities (IP-DAs) or nominal deferred
annuities (N-DAs) for different coefficients of risk aversion y and time preference p, in the absence of labour income risk and bequest motive. All values are presented in

real terms.

5.3. Optimal annuitization and investment with risk to real labour
income

Next, we consider the case where there are risks to real labour
income. We use the parameterization of Cocco et al. (2005), based
on income data for a college-educated worker, for the volatility of
permanent and temporary shocks to real labour income: o2 = 0.02
and o2 = 0.05 in Eq. (11).

Fig. 5 compares secured retirement income without and with
labour income risk. More retirement income is received from
the inflation-protected annuities than from the nominal annuities
when labour income risk is present. Fig. 6 compares the average al-
locations in the two cases. Allocations to inflation-protected annu-
ities and to bonds are marginally higher in the presence of labour
income risk than in its absence. These results are as anticipated:
implicit wealth, including human capital, is riskier if the investor
has risky real labour income than if he does not, so in the first
case he should choose less risky investment and annuity strategies
in terms of achieving real retirement income.

5.4. Investigating the dynamic solution

The optimal investment and annuity strategies are, of course,
dynamic. In this section, we investigate the dynamic strategy by
considering the decisions made on specific scenario nodes. We
demonstrate how the strategy is explained by realized asset prices
on a node and expected asset returns on descendant nodes. The
model parameters and assumptions are the same as in the case
with labour income risk in Section 5.3.

Table 6 shows optimal investment and deferred annuity de-
cisions on the root node at age 40 and on selected nodes at
age 45, so that we can compare different scenarios. Case (a) in
Table 6 shows that, at age 40, the optimal decision is to buy 12.55
units of the bond fund and 20.57 units of nominal deferred annu-

14

ity. The prices of the cash, bond, equity, and inflation-linked bond
fund units are £1000. The prices of the nominal and inflation-
protected deferred annuities are £4251 and £15,105 for £1000 p.a.
of nominal and real retirement income, respectively.

Case (b) in Table 6 displays the scenario at age 45 with the low-
est prices of nominal bond and nominal deferred annuity among
all the scenarios at age 45. The lowest price of the nominal de-
ferred annuity leads the risk-averse investor optimally to buy 9.379
units of this annuity. He also buys 31.653 units of the nominal
bond fund because bond returns will mean-revert and this bond
fund has an expected risk premium over cash of 16.3% over the
next 5 years till age 50. All other financial assets are expected to
have negative risk premiums, and are not purchased.

Case (c) in Table 6 presents the scenario at age 45 where the
most units of nominal deferred annuity are bought. The price of
this annuity has fallen (£3740 compared to £4251 in case (a))
whilst the price of the nominal bond fund fund has increased
(£1172, up from £1000 in case (a)). The investor therefore sells
about two thirds of his original holding of the bond fund at age 40
to buy nominal deferred annuities thereby securing £10,796 p.a. of
nominal retirement income.

Case (d) refers to the scenario where the most units of the
cash fund and inflation-protected deferred annuities are purchased.
Cash is expected to return 37.9% over the next 5 years whereas the
other assets are expected to return less, hence the large investment
in the cash fund. The inflation-protected deferred annuity is cheap,
having more than halved in price from case (a) from £15,105 to
£7108, encouraging the investor to secure real retirement income
of £2659 p.a. Similarly, the largest purchase of nominal bond in
case (e) may be explained by its relatively cheap price and by its
high expected return, with an expected premium of 11.1% over cash
over the next 5 years. On the other hand, equity is the only asset
whose price falls from case (a) to the scenario in case (f), and it
also has the highest expected risk premium among the financial
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Fig. 4. Optimal investment and deferred annuity proportions on average at different ages till retirement for different coefficients of risk aversion y and time preference p,
in the absence of labour income risk and bequest motive. The second and fourth rows show proportions of financial assets only. IL-Bond is inflation-linked bond, IP-DA is
inflation-protected deferred annuity, N-DA is nominal deferred annuity.

assets. Unsurprisingly, case (f) is the scenario at age 45 with the model, and the optimal strategy dynamically responds to market
largest equity purchase. changes.
The dynamic optimal annuity and investment strategy is there-
fore explained by current asset prices and expected returns. The 55 Availability of deferred annuities
predictability of asset returns, in the VAR model fitted to data in

Section 4, is exploited by the multi-stage stochastic programming We wish to compare the situations where the availability of
different types of annuities is restricted. We consider six possible
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Fig. 5. Average and percentiles of optimal secured retirement income (x£1000 p.a.) through either inflation-protected deferred annuities (IP-DAs) or nominal deferred
annuities (N-DAs) in the absence of labour income risk (left panel) and with labour income risk (right panel). Risk aversion y =5 and time preference p = 0.02 are the

same. All values are presented in real terms. There is no bequest motive.
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Fig. 6. Optimal investment and deferred annuity proportions on average at different ages till retirement in the absence of labour income risk (left panel) and with labour
income risk (right panel). Risk aversion y =5 and time preference p = 0.02 are the same. There is no bequest motive. IL-Bond is inflation-linked bond, IP-DA is inflation-

protected deferred annuity, N-DA is nominal deferred annuity.

Table 6

Optimal investment and deferred annuity choices with labour income risk at ages 40 and 45 under different scenarios. Risk aversion and time preference

are y =5 and p = 0.02. No bequest motive.

Age  Node Conditional expected 5-year returns Net purchases of units?
[risk premium in brackets] (prices in parentheses)
Cash Bond Equity IL-Bond Cash Bond Equity  IL-Bond  IP-DAP N-DAP
40 (a) Root node 0.113 0.266 0.134 0.199 0.000 12.555 0.000 0.000 0.000 20.570
[0.153] [0.021] [0.086] (1000) (1000) (1000)  (1000) (15,105)  (4251)
45 (b) The lowest bond 0.394 0.556 0.369 0.351 0.000 31.653 0.000 0.000 0.000 9.379
and N-DA prices [0.163] [-0.025] [-0.043] (1,113)  (596) (2485)  (889) (6703) (1816)
(c) The largest 0.111 0.330 0.273 0.217 0.000 —8.360 0.000 0.000 0.000 10.796
N-DA purchase [0.219] [0.162] [0.106] (1113) (1172) (800) (1310) (12,644)  (3740)
(d) The largest cash 0.379 0.285 0.214 0.302 8.218 —12.555  0.000 0.000 2.659 0.000
and IP-DA purchases [-0.094] [-0.165] [-0.077] (1,113) (709) (519) (774) (7108) (2896)
(e) The largest 0.129 0.239 0.125 0.205 0.000 34.029 0.000 0.000 0.000 0.000
bond purchase [0.111] [-0.004]  [0.076] (1113) (1184) (949) (1149) (14,143)  (5262)
(f) The largest -0.194  -0.203 -0.139 —-0.140 0.000 —12.555 38.409  8.743 0.000 0.000
equity purchase [-0.009]  [0.055] [0.054] (1,113)  (2412) (800) (1959) (44,020) (16,742)

3 Units in funds, or units of deferred annuities. A negative number means that there is a net sale.
b N-DA (IP-DA) = nominal (inflation-protected) deferred annuity. One unit of N-DA (IP-DA) is equivalent to £1000 p.a. of secured nominal (real) retirement

income.

situations depending upon which feature is unavailable: nominal
or inflation-protected payments, deferred or immediate payout. To
compare these situations, we calculate a certainty equivalent (CE)
value, which is the level of constant real retirement income which
generates a utility equal to the maximized expected utility, in each
of these situations. We use the numerical example in Section 5.3,
i.e. with labour income risk.
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The results are tabulated in Table 7. The worst CE value is
recorded when only nominal immediate annuities are available ir-
respective of the investor’s risk and time preferences (last column
of Table 7 labelled N/IA). Unsurprisingly, when there is utmost flex-
ibility and all types of annuities are available, the highest CE value
is recorded (third column of Table 7 labelled IP+N/DA+IA), but this
is about 60% better in terms of equivalent real retirement income
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Fig. 7. Optimal investment and deferred annuity allocations of overall wealth on average over the planning horizon and for different datasets. Constant relative risk aversion
(y), time preference (p), and bequest (k) coefficients are ¥ =5, p = 0.02, and « = 0.0 respectively. Volatilities of the permanent and temporary shocks are 0.02 and 0.05

respectively.
Table 7

Certainty equivalent values (£ p.a.) when the availability of different types of annuity is restricted,
for different coefficients of risk aversion y and time preference p.

Preferences  Availability
Y p IP+N P N IP+N IP N
DA+IA DA+IA DA-+IA 1A 1A 1A
3 0.02 14396.83  9316.08 13801.32  12567.78 8911.84 8424.12
(0.00%) (—35.29%) (—-4.14%)  (-12.70%) (—38.10%) (—41.49%)
3 0.04 20551.62  13025.18 20003.43  17751.67 12459.99 12206.63
(0.00%) (-36.62%) (-2.67%)  (-13.62%) (-39.37%) (—40.60%)
5 0.02 13227.98  10180.07 11990.06  11250.87 9458.91 8250.79
(0.00%) (—23.04%) (-9.36%)  (—14.95%) (—28.49%) (—37.63%)
5 0.04 15976.37  12037.21 14785.08  13391.44 11184.49 10167.68
(0.00%) (-24.66%) (-7.46%) (-16.18%) (—29.99%) (—36.36%)

IP+N/DA+IA: both inflation-protected and nominal annuities are available, in both deferred and
immediate versions; IP/DA+IA: only inflation-protected annuities are available, both deferred and
immediate; N/DA+IA: only nominal annuities are available, both deferred and immediate; IP+N/IA:
both nominal and inflation-protected annuities are available, but only immediate annuities; IP/IA:
only inflation-protected immediate annuities are available; N/IA: only nominal immediate annuities

are available.

than the worst case. This suggests that individual investors’ welfare
is severely impaired in the current UK. markets where the most
common distribution strategies offered are nominal immediate an-
nuities and income drawdown.

An interesting finding is that inflation-protected immediate an-
nuities enhance welfare compared to their nominal cousins (com-
pare the last two columns of Table 7) but that, when deferment
is available, access to a nominal annuity is better than access
to an inflation-protected annuity (compare the columns labelled
IP/DA+IA and N/DA+IA). As we saw in Section 5.2, the average long-
term real interest rate was slightly negative in the historical period
(1985-2017) on which our model is calibrated, making inflation-
protected deferred annuities very expensive.

These results show the importance of the availability of de-
ferred annuities and also that, for long deferment periods, provid-
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ing a nominal deferred annuity may be better than an expensive
inflation-protected deferred annuity.

5.6. Model validation and results over different historical periods

In order to validate our results, we generate several scenario
structures to verify that our optimal solutions do not vary signif-
icantly both qualitatively and quantitatively. For any given histori-
cal period over which our model is parameterized, we only show
the results on one scenario structure so that comparisons do not
involve sampling error.® However, we also calibrate the scenario

8 We thank a reviewer for suggesting that a number of scenario trees can be
generated and used for formal validation purposes. For robustness, results can also
be averaged over several scenario trees.
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structure over different historical periods in order to test that our
central conclusions hold, and we describe this here.

In the earlier sections, our financial market model was param-
eterized on UK. data in the period 1985-2017. Because of the neg-
ative average long-term real yield, and the steep upward sloping
nominal yield curve, nominal bonds and nominal deferred annu-
ities played a significant role in the average asset allocation. In this
section, we calibrate our model on different historical sub-periods
to examine if investment and annuity decisions change. Average al-
locations are shown in Fig. 7 for four different periods: the original
Jan. 1985-Jun. 2017 period, Jan. 1985-Dec. 1997 (before the Asian
financial crisis), Jan. 1997-Dec. 2007 (between the Asian and the
global financial crisis), and Jan. 2008-Jun. 2017 (after the global fi-
nancial crisis).

Average allocations are strikingly different over these different
periods. First, this reminds us that our model produces dynamic
asset allocation and annuitization decisions, but that only averages
are shown in Fig. 7. Second, optimal portfolio decisions are sensi-
tive to model calibration. Third, deferred annuities are bought early
and in increasing amounts, on average, in all four periods in Fig. 7,
and thus have a signficant role to play in retirement planning, ir-
respective of the economic cycle.

We note that our model produces sensible results in each sub-
period considered. For example, in the 2008-17 sub-period (bot-
tom right panel of Fig. 7), negative long-term real yields and near-
zero nominal yields make deferred annuities and bonds expensive
and unappealing, and the model takes advantage of the rising stock
market with a large and falling equity allocation. In the 1985-97
sub-period (top right panel of Fig. 7), high short rates to combat
inflation make cash attractive in the earlier years. This is discussed
further in online supplementary appendix Section S-4.

6. Conclusion

We construct an optimal investment model with deferred an-
nuities for an individual investor who is saving for retirement. The
individual’s labour income is uncertain and is subject to exogenous
permanent and temporary shocks in addition to price inflation. Our
results show that buying nominal and inflation-protected deferred
annuities, continually and from an early age, is an optimal strat-
egy when the objective is to maximize the expected utility of real
retirement income and when the retirement income is secured by
annuitization. The balance between inflation-protected and nom-
inal deferred annuities depends on expectations of long-term real
and nominal rates. In the presence of shocks to real labour income,
inflation-protected deferred annuities are marginally preferred to
nominal deferred annuities.

Optimal investment in financial assets (cash, nominal bond,
inflation-linked bond and equity) also depends on financial mar-
ket expectations, but portfolio riskiness typically declines with age,
consistent with life-cycle models. If welfare is measured in terms
of a certainty equivalent of real retirement income, we find that
welfare falls by about 40% if deferred annuities are not available
and only nominal immediate annuities are available at retirement.
When we calibrate our model on different historical sub-periods,
we find that our key result about the importance of early pur-
chases of deferred annuities appears to be robust to different fi-
nancial market expectations. The actual portfolio composition and
annuity allocation vary, but the investment portfolio becomes less
risky as retirement approaches.

Besides the results that we obtain in the context of retirement
planning, we make some contributions in terms of modelling
using multi-stage stochastic programming. We suggest a new
hybrid scenario structure which combines a scenario tree in the
pre-retirement phase with scenario fans in the post-retirement
phase. We also implement an unconstrained non-linear program
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to generate shocks to real labour income which are independent
of financial market scenarios. We also implement a scenario
generation procedure that avoids arbitrage, using the methods of
Klaassen (2002) and Geyer et al. (2014).

Future work will address some of the limitations of our model.
Jurisdiction-specific taxes and transaction costs can be imple-
mented in the model to enhance its practical usefulness. Retire-
ment provision also takes place through employer-sponsored in-
stitutional vehicles, which deserve further investigation (Consiglio,
Tumminello, & Zenios, 2015). Flexibility in the labour supply, i.e.
hours worked, affects contributions to the retirement plan and is
not considered here. The effects of housing and mortgage costs,
and different mortality rates for impaired lives or different pop-
ulation groups, are also ignored. Power utility does not capture
the elasticity of intertemporal substitution in consumption and an
Epstein-Zin utility may be implemented. Other rational and be-
havioural factors such as habit formation and hyperbolic discount-
ing can also be considered. Annuity products such as variable an-
nuities can be added to the portfolio of annuities available. Life and
health insurance can also affect optimal retirement planning. These
extensions will be studied in subsequent work.

Supplementary material

Supplementary material associated with this article can be
found, in the online version, at doi:10.1016/j.ejor.2021.03.052.
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