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Abstract: The reaction of bidentate N-S-thione-Schiff base, (E)-benzyl 2-(1-(4-chlorophenyl)-
ethylidene)hydrazinecarbodithioate, with Cu(NO3)2·3H2O produced a cis-Cu(II) complex. The
molecular structure was confirmed and characterized by CHN-EA, FAB-MS, IR, and UV-Vis analyses.
The XRD supported cis-isomer of the bis anionic bidentate N (azomethine) and S (thiol) ligand
coordination mode in tetrahedrally distorted square planar, rarely reported in the literature. The
results of the XRD-bond lengths were in perfect agreement with the density functional theory (DFT)
calculation. DFT-calculated angles around the Cu(II) center displayed slightly less distortion around
the metal center from those of XRD. Additionally, the thermal stability of the complex was evaluated
via thermal gravimetric analysis (TGA). Two-dimensional fingerprint (2D-FP), Hirshfeld surface
analysis (HSA), and molecular electrostatic potential (MEP) support the XRD-packing results with
the existence of the H· · ·Cl and CH· · ·π bonds as the main interactions in the crystal lattice of the
desired complex.

Keywords: Copper(II); DFT; hydrazonodithioate; tetrahedrally distorted square planar; Hirshfeld
surface analysis

1. Introduction

Recently, a wide spectrum of nitrogen- and sulfur-including ligands like dithiocar-
bazates, thiosemicarbazones, and dithiocarbamates with their metal ion complexes have
experienced supplementary interest in the field of medicine and pharmacology due to their
potent applications, such as antibacterial, antiviral, antitumor, antifungal, and antiparasitic
activities [1–8]. The structural variation on hydrazinecarbodithioate Schiff base derivatives,
R–CH=N–NH–C(=S)–S–NHR, can be easily modified through the replacement of R groups
in the synthetic steps. Therefore, a broad selection of N,N or N,S and N,N,S or N,N,N
as bidentate, tridentate, and even polydentate ligands has been prepared for medicinal
and industrial application as well as for evaluating the coordination modes with transition
metals [9–20]. The hydrazinecarbodithioate Schiff bases derived from S-acetyl, S-alkyl,
S-methyl dithiocarbazates, and dithiocarbazate represent the preponderance of advanced
reports available on the Cambridge Structural Database. However, only a limited number
are accessible on hydrazinecarbodithioate with substituted S-benzyl moiety along with
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their organometallic complexes [8–14]. Despite the fact that coordinated hydrazinecar-
bodithioate Schiff bases to transition metals are scarcely reported and demonstrated on
compared to the free ligands, full characterization by XRD analysis is highly demanded in
order to obtain a real structural vision.

The spatial arrangement of four coordinated groups around the metal center offers
several geometries, mostly regular tetrahedral, occasionally square planar, and rarely
tetrahedrally distorted square planar, resulting in either increasing the bond angles (elon-
gated tetrahedron) or decreasing the angles (flattened tetrahedron) [21–23]. Furthermore, a
square planar molecular geometry could be created once the four groups are located at the
corners of a square in the same plane of the central metal, with the possibility of possessing
cis or trans conformation, e.g., M(N,S)2, in which N,S is a bidentate ligand. Quite rarely, a
hybrid molecular geometry, namely, a tetrahedrally distorted square planar shape, can be
formed due to the distorted coordinated ligand moieties to the metal center [22,23]. Thus,
structural elucidation by XRD analysis offers an excellent level of characterization of the
geometry around metal complexes.

Herein, we depict the synthesis of tetrahedrally distorted square planar complexes,
rising from the in situ tautomerization of hydrazine-1-carbodithioate derivative and subse-
quent coordination with Cu(NO3)2·3H2O after deprotonating the thiol group in the absence
of base. The new Cu(II) complex was fully described by XRD, revealing a cis conformation
of the two coordinated ligands to the metal ion. Furthermore, the thermal behavior, physic-
ochemical properties, Hirshfeld surface analysis (HSA), and density functional theory
(DFT) simulations were investigated and demonstrated.

2. Experimental
2.1. Computational

HSA was executed using the CrystalExplorer software, version 17 (version 17, Univer-
sity of Western Australia, Perth, Australia) [24]. Gaussian W09 Revision E.01 software [25]
was employed for all DFT operations. Optimization and frequency calculations were per-
formed in gaseous state using LanL2DZ basis set for the copper metal, whereas 6-311G(d,p)
was designated for all other atoms.

2.2. Materials and Synthesis

Fine chemicals and solvents were received from the supplier of reagent grade and used
directly without further purification. Hydrazine hydrate (90%), carbon disulphide, Cu(II)
nitrate trihydrate, and potassium hydroxide were procured from Honeywell FlukaTM,
while benzyl chloride and 4-chloroacetophenone were acquired from Manchester Salt and
Catalysis Ltd. PerkinElmer Spectrum 1000 FT-IR Spectrometer (PerkinElmer Inc., Waltham,
MA, USA) was employed to record the infrared absorption in the wavenumber range of
4000–200 cm−1 in solid state. The UV-Vis measurements were accomplished in methanol
solvent using TU-1901 (Purkinje General Instrument Co., Ltd., Beijing, China) double-beam
spectrophotometer. The CHN analysis was measured using an Elementar Analyzer Varrio
EL (Elementar Analysensysteme GmbH, Langenselbold, Germany).

2.3. Synthesis of Copper(II) Complex

First, 0.483 g (2 mmol) of Cu(NO3)2·3H2O in ethanol (20 mL) solution was added to a
hot solution of 1.340 g (4 mmol), benzyl (E)-2-(1-(4-chlorophenyl)ethylidene)-hydrazine-1-
carbodithioate ligand in 40 mL of ethanol, where the resulting solution was stirred for one
hour. Subsequently, the volume was reduced by one-half and cooled in a refrigerator for
about 24 h. The brownish precipitate was separated, washed with ethanol, and dried. The
required crystals for XRD were obtained by crystallization from chloroform (25 mL) in the
presence of a few drops of n-hexane at room temperature for 3 weeks. The deep-brown
solid decomposed at 190 ◦C and its yield was 86%. Anal. Calcd as C32H28Cl2CuN4S4:
C, 52.56; H, 3.86; N, 7.66. Found: C, 52.71; H, 3.77; N, 7.53. FAB-MS: m/z (%) = 730.9,
theoretically: 731.3. Selected IR data (KBr disk, cm−1): v(C-H, Ph) 3060, v(C=N) 1406,
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v(N-N) 1117, v(CSS) 825, v(Cu-N) 619. UV-Vis: Ligand bands such as π to π* at 238, 290,
318, and 397 nm, and ligand-to-metal charge transfer (LMCT) band at 455 nm.

2.4. XRD-Structure

A single crystal was fixed on a glass fiber for measurement, in which all crystallo-
graphic data were accomplished on a Bruker–AXS–SMART APEX CCD diffractometer
(Bruker GmbH, Berlin, Germany). by means of Mo-Kα radiation (λ = 0.71073 A◦) and the
data were gathered at a temp. of 130 ± 2 K using the scanning technique to a maximum of
θ = 27.87◦. The structures were resolved by direct technique using SIR-92 and refined by
full-matrix least squares [26]. Non-hydrogen bond atoms were refined anisotropically via
SHELXL [27]. Hydrogen atoms were positioned geometrically and refined isotropically.
Detailed crystal data and refinement of the structure are reported and depicted in Table 1.

Table 1. Structure refinement and crystal data and of Cu(II) complex.

Chemical Formula C32H28Cl2CuN4S4

CCDC No. 1,503,558
Mr 731.26

Crystal system, space group Triclinic, P-1
Temperature K 130

a, b, c (Å) 9.5051 (11), 13.7130 (16), 14.3488 (16)
α, β, γ (◦) 63.012 (2), 75.674 (2), 89.656 (2)

V (Å3) 1602.5 (3)
Z 2

µ (mm−1) 1.14
Radiation type Mo-Kα

Crystal size (mm) 0.41 × 0.20 × 0.18
No. of measured, independent and observed [I > 2.0 σ(I)]

reflections 15,300, 7589, 6391

Rint 0.023
Tmin, Tmax 0.652, 0.821

(sin θ/λ)max (Å−1) 0.658
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.087, 1.04

No. of reflections, No. of parameters 7589, 390
∆ρmax, ∆ρmin (e Å−3) 0.62, −0.34

3. Results and Discussion
3.1. Synthesis of Copper(II) Complex

The Cu(II) complex was prepared by combining two equivalents of free ligand,
benzyl (E)-2-(1-(4-chlorophenyl)ethylidene)hydrazine-1-carbodithioate, with one equiv-
alent of Cu(NO3)2·3H2O in ethanolic solution [28]. The free thione form of the ligand
was subjected to tautomerization to a thiol form [29], (1E,1E)-benzyl hydrogen (1-(4-
chlorophenyl)ethylidene)carbonhydrazonodithioate, in the solution prior to coordination
to the copper metal center. Remarkably, the thione form was an additional stable structure
in the solid state [30]. Copper(II) complex was isolated as brown powder and recrystallized
from chloroform in the presence of trace amounts of hexane, yielding X-ray quality crystals,
the bis[(1E,1E)-benzyl(1-(4-chlorophenyl)ethylidene)-carbonhydrazonodithioate]copper(II)
in cis conformation, as in Scheme 1. The XRD analysis reflected a bidentate ligand coor-
dinated through N (azomethine) and S (thiol) to the metal center, giving a solely neutral
water-soluble complex.

The new copper complex was characterized by elemental analysis, revealing strong
agreement with the expected C32H28Cl2CuN4S4 formula. On the other hand, fast atom
bombardment mass spectroscopy (FAB-MS) was used to pursue the molecular weight of
the desired complex (Figure 1), giving a value of 730.9 m/z which was quite close to the
theoretical assessment (731.3 m/z). These analyses support the general molecular formula
of the anticipated Cu(II) complex.
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Figure 1. FAB-MS of the desired Cu(II) complex.

3.2. Infrared and Electronic Absorption Spectra

The solid-state FTIR data of the desired complex displayed few sets of absorption
bands for the typical functional groups present in the structure (Figure 2a). The exper-
imental absorption bands in the range of 3015–3110 cm−1 were assigned to aromatic
CH-stretching vibrations, while the stretching mode at 2980 cm−1 were attributed to
aliphatic CH vibration. The absence of free NH and SH absorptions in the region of ~3350
and 2600 cm−1, respectively, indicates the coordination of the free ligand to the copper
metal center in a deprotonated form. A weak-stretching vibration at 1605 cm−1 was as-
signed to a conjugated C=N. Further absorption bands included C–C, C=C, C–N, and C–S.
On the other hand, the simulated DFT-FTIR (Figure 2b) of the new complex revealed a
sophisticated level of agreement with experimental results; the graphical correlation value
(R2) was found to be 0.998, as seen in Figure 2c.
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The experimental and time-dependent TD-DFT electronic absorption spectra of the
synthesized copper complex was acquired in a spectral range of 200–800 nm. A solution
of the complex in methanol displayed two bands in the UV area at λmax = 260 nm and
315 nm (resulting from π-π* electron transfer) and a single band at λmax = 360 nm, which
could be attributed to the n-π* electron transfer. Furthermore, a broad band possessing
λmax = 515 nm verified in the visible area can be ascribed to the ligand-to-metal charge
transfer as seen in Figure 3a. The simulated electronic spectrum was accomplished using a
TD-SCF/DFT/CAM-B3LYP method and 6–31G as basis set in methanol (Figure 3b) [31,32].
A wide band appeared at λmax = 330 nm with three electron transition lines at 262 nm,
330 nm, and 375 nm, almost covering the three experimental absorptions. A very broad
band was estimated at λmax = 560 nm with ∆λ = 45 nm of bathochromic shift compared to
the same experimental band.
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3.3. XRD and DFT

The ORTEP- and DFT-optimized structure diagrams of the cis-Cu(II) complex together
with selected structural parameters are illustrated in Figure 4 and Table 2. The crystal
structure of C32H28Cl2CuN4S4 is a triclinic system with P-1 space group. The full crystallo-
graphic data of the desired complex have been reported [33]. The two ligands coordinated
to the Cu(II) metal center via N,S provided by two anionic S- and two unsaturated N groups
to form the neutral bis[(1E,1E)–benzyl(1–(4–chlorophenyl)ethylidene)carbonhydrazono-
dithioate]copper(II) complex in cis isomer with two metal five-membered Cu(S,N)2 rings
(Figure 4b). It should be noted as well that the trans isomer was not detected at all.

The angles and bond lengths of the desired complex were in a good agreement with
similar structures reported previously [9–20]. The geometry around the Cu(II) center
featured a tetrahedrally distorted square planar with a torsional angle, τ(N1–N3–S3–S1) =
40.7◦ (Figure 4b). Based on the DFT optimization of the anticipated complex, the free
ligand was coordinated in a deprotonated form, reflecting a neutral structure (Figure 4c,d)
with slightly less distortion around (τ = 37.5◦) around the Cu(II) complex. The level of
distortion in DFT calculations were anticipated as geometry optimization performed in a
gaseous phase with the absence of intermolecular forces. However, the experimental XRD
was performed in solid state in the presence of several types of molecular interactions in
the complex lattice. Thus, we highly expected the geometry to be a tetrahedrally distorted
square planar, or in other words, the geometry around the copper center could be superiorly
described as a square-planar arrangement, exhibiting a tenuous tetrahedral distortion. The
DFT calculation additionally showed that the cis-Cu(II) isomer is a stable isomer, since
this conformation is kinetically favored and its global energy of formation is less than the
thermodynamically favored isomer, trans-form [34].
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The DFT-optimized bond lengths and angles were set in a relation with the values
resulting from the experimental XRD (Figure 5). A high level of consistency between
the values of DFT and XRD in terms of bond lengths were observed (Figure 5a) with
graphical correlation R2 = 0.995 (Figure 5b). However, bond angles obtained from these two
approaches were clearly not in a very good harmonization, in which R2 = 0.987 (Figure 5c,d).
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This difference in angle values is due to the difference in the level of distortion around the
Cu(II) center, optimized by DFT and measured by XRD.
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Table 2. Designated XRD/DFT bond lengths and angles.

No. Bond Type Bond Length [Å] Angle Type Angle Value (◦)
XRD DFT XRD DFT

1 Cu1 S1 2.235 2.320 S1 Cu1 S3 100.7 99.7
2 Cu1 S3 2.239 2.320 S1 Cu1 N1 86.4 84.1
3 Cu1 N1 2.025 2.093 S1 Cu1 N3 147.2 147.6
4 Cu1 N3 1.999 2.093 S3 Cu1 N1 142.9 147.6
5 Cl1 C6 1.738 1.757 S3 Cu1 N3 86.8 84.1
6 Cl2 C23 1.739 1.757 N1 Cu1 N3 106.9 109.9
7 S1 C10 1.742 1.750 Cu1 S1 C10 93.0 92.8
8 S2 C10 1.756 1.769 C10 S2 C11 101.8 102.5
9 S2 C11 1.829 1.855 Cu1 S3 C27 92.8 92.8

10 S3 C27 1.744 1.750 C27 S4 C28 102.2 102.5
11 S4 C27 1.752 1.769 Cu1 N1 N2 116.7 116.7
12 S4 C28 1.836 1.855 Cu1 N1 C1 129.6 127.9
13 N1 N2 1.407 1.381 N2 N1 C1 113.3 115.3
14 N1 C1 1.302 1.299 N1 N2 C10 113.1 114.7
15 N2 C10 1.293 1.300 Cu1 N3 N4 117.2 116.7
16 N3 N4 1.403 1.381 Cu1 N3 C18 129.5 127.9
17 N3 C18 1.295 1.299 N4 N3 C18 113.2 115.2
18 N4 C27 1.292 1.300 N3 N4 C27 113.6 114.7
19 C1 C2 1.498 1.505 N1 C1 C2 122.0 121.5
20 C1 C3 1.481 1.478 N1 C1 C3 118.3 118.8

3.4. XRD Packing, HSA, and Molecular Electrostatic Potential (MEP) Investigation

Five types of short contacts were detected in the lattice of the cis-Cu(II) complex; all
interactions are packed together with cell axes as illustrated in Figure 6a. No classical
hydrogen bonding could be found; the shorter hydrogen bond of the type CPh-H· · ·Cl with
2.842 Å reflected a one-dimensional supramolecular chain formation (Figure 6b). However,
an R(38) motif was constructed by two Cph–H· · ·πPh with a value of 2.860 Å (Figure 6c)



Crystals 2021, 11, 1179 8 of 13

and an R(8) motif was detected via –CH· · ·πC=N with 2.811 Å (Figure 6d). Two different
classical CH· · ·π bonds were stabilized by the same phenyl ring via Cph–H· · ·πPh with
2.828 Å (Figure 6e), another interaction was categorized as a classical Cph–H· · ·πPh with
2.884 Å (Figure 6f), and the last type of interaction was π . . . . π stack interaction in C3-C8
with 3.72 Å bond length as seen in Figure 6g.
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To gain more information about molecules interacting together in the lattices of
cis-Cu(II) complex, HSA and 2D-FP were performed employing the crystallographic in-
formation file (CIF) data through CrystalExplorer software [35–40]. The simulated results
are demonstrated in Figure 7 with declarations of the dnorm, shape index, and 2D-FP es-
tablished in the range of −0.672 to 1.776 a.u. The presence of heteroatoms and aromatic
rings with free lone/pi pair of electrons like S, Cl, and Ph in addition to polar hydro-
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gens in the backbone of the computed complex enhances the formation of many short
contacts (Figure 7a). Generally, the surface structure of the cis-Cu(II) complex reflected
the existence of ten red spots. The large red spot reflects the consistence of H· · ·Cl (H-
bond) and CH· · ·πC=N interactions, whereas the small spots are due to the formation of
Cph-H· · ·πPh interactions. The shape index indicates the presence of both nucleophilic
(shown in red) and electrophilic (shown in blue) functional groups on the surface of the
molecule (Figure 7b). This supports the formation of C-H· · ·π Ph interactions as revealed
by XRD results. Moreover, the atom-to-atom 2D-FP intermolecular contacts percentage
plot reveals the H· · ·H interaction with the largest percentage of contribution, while the
H· · ·Cu demonstrates the smallest percentage of contribution of 0.1% (Figure 7c). The total
2D-FP of H· · · atoms ratios analysis are illustrated as follows: H· · ·H > C· · ·H > S· · ·H >
Cl· · ·H > N· · ·H > Cu· · ·H.
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The MEP of the complex provided electrophilic and/or nucleophilic data about the
surface. For instance, the position and strength of H-bond interactions can be estimated
depending on the color around the functional groups, which reflect the electronic den-
sity [28–33]. The analyzed complex showed a potential decrease in the following order:
blue > cyan > green > yellow > orange > red. The MEP also reflected the Cl, N, and S
atoms with the highest nucleophilic sites (red color). Meanwhile, Ph rings are labeled with
yellow, indicating moderate nucleophilic sites, whereas the green color reflects the neutral
functional groups. The electrophilic sites are localized to the protons of phenyl and alkene,
as exemplified in Figure 8. Therefore, non-classical C-H· · ·π and C-H· · ·Cl interactions are
observed, revealing a consistence with HSA and XRD outcomes.
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3.5. Thermogravimetric Analysis

In order to demonstrate the thermal stability and material purity of the new metal
complex, thermal gravimetric analysis (TGA) of the cis-Cu(II) compound was studied in an
open atmosphere with a heat rate of 5 ◦C/min (Figure 9a).
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Figure 9 shows a high thermal stability of the complex, up to ~300 ◦C. Since no mass
loss was detected between 50 and 180 ◦C, the absence of coordinated or uncoordinated
water molecules at the copper metal center supports the XRD result. The mass of the
complex was observed to decay in a broad exothermic pattern, starting from 250 ◦C until
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completion at 500 ◦C with DTA = 380 ◦C. The complex decomposed in one successive
broad exothermic step as a simple thermal pattern. In this step, 80% of the mass was lost,
while the entire organic moiety was de-structured from the metal center at ~500 ◦C, letting
20% of CuO as a residue, which has been confirmed by FTIR as a broad absorption, νCuO =
440–520 cm−1 (as seen in Figure 9b). Furthermore, the CuO demonstrated stability between
500 and 800 ◦C. Above 800 ◦C the metal oxide lost its O atom to produce pure Cu with an
exothermic step at DTA = 810 and 18% of pure Cu metal residue (equation 1). The FTIR of
the final residue (Figure 9c) displayed, as expected, the absence of absorption due to the
lack of functional groups.

C32H28Cl2CuN4S4
O2, 300–500 °C→

−C32H28Cl2CuN4S4
CuO 800–1000 °C→ Cu (1)

4. Conclusions

A new copper (II) complex was synthesized with high yield bearing two bidentate
N,S-type ligand (benzyl (E)-2-(1-(4-chlorophenyl)ethylidene)hydrazine-1-carbodithioate).
The molecular formula was emphasized via UV-Vis, CHN-EA, FT-IR, and FAB-MS analyses.
X-ray diffraction revealed that the geometry of the complex is described as a tetrahedrally
distorted square planar, in which the two N,S ligands are arranged in cis conformation. Ad-
ditionally, the HSA and MEP results support the XRD packing in the formation of C-H· · ·Cl
and C-H· · ·π bonds with synthons and supramolecular interactions. The DFT/XRD bond
length values are consistent, while a slightly lesser deviation is noted for angles. The
thermal stability of the cis-Cu(II) complex is demonstrated to decompose to CuO above
300 ◦C in a single-step reaction mechanism.
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