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ABSTRACT Light machining tasks by robots are becoming an important issue to replace shortages of human
resources. To improve the quality, safety and overall performance of manufacturing process, the modeling for
estimation of forces and torques during the machining operations is on demand. In parallel, the digital model
has also been developed which allow to detect the foul conditions, save energy& time and optimization of the
real manufacturing process. Digital twins are one of them which use the offline and online data to simulate
the physical manufacturing process. However, the empowerment of digital twins can be improved further
by developing more accurate mathematical model which allow to simulate the physical machining process
in real time. Accordingly, this paper presents a formulation for the mechanics of robotic light machining
tasks to empower the digital twin. In this paper, a generalized impulse model is employed to analyze a
light machining task that combines the linear and angular motions. For the implementation of an impulse
model-based approach, the concept of both effective mass and effective inertia is newly introduced to reflect
the dynamics of the environment, which depends on the hardness of the material and process parameters
(feed rate and speed (rpm) etc.) of the machining task. Furthermore, optimal feed rates are calculated with
consideration of effective mass/effective inertia and minimum task completion time. Moreover, simulations
are carried out to choose the feasible direction of linear and angular velocities and optimal non-singular
workspace for light machining tasks. Finally, the proposed methodology is validated through a quantitative
comparison of simulation and experimental results by performing the drilling and milling tasks. A 6-DOF
Universal robot (UR 5e) is used for simulations and experiments to corroborate the effectiveness of the
proposed algorithms for light machining tasks. The developed methodology will certainly empower the
digital twin for their physical analog during light machining operations.

INDEX TERMS Digital twin, light machining, robotic drilling, robotic milling, impulse model, effective
mass effective inertia.

I. INTRODUCTION
Robot manipulators certainly have dominated over human
worker for industrial production due to their ability to work
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tirelessly with high precision, repeatability, and quality con-
trol aspect of the process [1], [2], [3], [4]. According to
the International Federation of Robotics, more than 72% of
industrial robots are used to replace repetitive manual labor
in the field of low precision, such as pick and place, weld-
ing, and assembling tasks [5]. Now a days, the continuous
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FIGURE 1. Impulsive motion-based machining tasks. (a) Linear impulsive
motion- based machining task (b) Linear and angular impulsive
motion-based machining tasks.

development and progress in robot technology enables the
robotic systems to perform high value-added operations such
as milling and drilling [6]. However, only light machining
tasks with certain force and torque limits can be performed by
a robotic arm by considering the maximum force and torque
limits of industrial robot manipulators. As per the standard
procedure of any system development, the dynamic modeling
of the machining process is very important to analyze and
optimize the process parameters. However, simulations are
commonly performed before the process, and one cannot
continuously optimize the process in real time based on
the feedback of real system. With the recent advancements
in technology, the cyber physical system (CPS) approaches
gain the popularity and show promising improvement in
manufacturing process. An CPS is composed of physical
object (system) and its Digital Twin (DT). The physical
system is a real system while the digital twin consists of
information system and data processing module. The flow of
information between digital twin and its physical counterpart
is regulated through a communication mechanism [7]. Digital
twin already been developed to monitor, control, diagnose,
and predict the different aspect in manufacturing process
[8], [9], [10]. The development of accurate digital twin by
incorporating the dynamicmodel is very important whichwill
affect the optimization and prediction of physical manufac-
turing process. In this paper, the dynamic modeling for the
estimation of forces and torques is considered to empower
the digital model of their physical counterparts.

It is noted that sawing, nailing, milling, and drilling are
performed through interaction between the machining tools
and the objects being fabricated. The interaction can be mod-
eled as continuous impulse. The quantitative measure of an
impact is called impulse. For safe and effective operations,

the physical characteristics of these tasks during the interac-
tion between robot manipulator and environment should be
carefully modeled for the development of DT. Two categories
of impulsive motion-based machining tasks are illustrated
in Fig. 1. An impulse felt at the contact point is defined
as external impulse. Fig. 1(a) shows the linear impulsive
motion-based tasks such as sawing, nailing, and hammering
etc. Fig. 1(b) shows the linear and angular impulsive motion-
based machining tasks such as rotary cutting, milling, and
drilling, etc. During linear motion-based tasks, only impul-
sive force is required. On the contrary, both impulsive force
(linear impulse) and impulsive moment (angular impulses)
are required to perform linear and angular motion-based
machining tasks. Compared to the linear machining tasks,
rotary machining tasks are more general in the sense that they
include both linear and angular motions.

With the increasing applications of automation, various
research activities have been carried out to design [11]
and control [12] the drilling and milling robotic mecha-
nism for aviation [13], [14] and surgical applications [15],
[16]. Also, there were many previous works related to the
modeling of machining tasks [17], [18], [19], [20], [21],
[22], [23], [24]. Energy-based analytical technique relying
on the chip velocity and flow direction was introduced by
Matsumura et al. [17], [18] to predict the thrust force and
torque in drilling and milling operations. The chip flow
directionwas determined tominimize the cutting energy. This
methodology was experimentally validated for a fixed drill
bit. However, those methods are limited to conventional fixed
drill machines for the prediction of thrust force and torque.
Considering the high flexibility and intelligence, industrial
robots are increasingly used in different machining tasks [22].
Industrial robots have superior kinematic performances com-
pared with the CNC machine tools, but lower structural
rigidity. The low stiffness of the robot can seriously affect
the positional accuracy and machining quality in different
machining tasks. Several research activities have discussed
this important research issue [23], [24], [25], [26]. In those
methods, authors focused on robot accuracy during drilling
task by analyzing the elasto-static behavior of robot manipu-
lators. However, to empower the DT for the prediction and
optimization of the force and torque for robotic machin-
ing tasks, a more generalized analytical approach is needed
including the dynamics of the robot manipulator as well as
the dynamics of the chips being formed.

In regard of impulse model, various methodologies for
external and internal impulses have been proposed consider-
ing the environmental model for light machining tasks [27],
[28], [29]. These works, however, introduced the environ-
mental model for linear motion-based light machining tasks
only such as sawing and nailing tasks. In addition, these pro-
posed methodologies were applied to planar cases only. The
modeling of external and internal impulses for bio-inspired
manipulators was introduced by Imran and Yi [30], [31].
However, they are also limited to linear impulsive motion-
based applications.
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In this paper, a general impulse model is proposed with
application to light machining tasks, where both linear and
angular impulsive motions are required. The idea is to imple-
ment the impulse model for these machining tasks. The
impulse model is applicable when two bodies of known
masses/inertias collide with each other (e.g., robot and object
or two objects). However, the mass/inertia of the environment
is unknown during machining tasks. During drilling and
milling tasks, the chips are formed due to plastic deformation
of the material after experiencing an impulsive force/moment
over specific time interval. In this paper, analytical dynamic
models (effective mass and inertia) of the environment are
developed to reflect the interaction between the robot and
the objects. Moreover, considering the effective mass/inertia,
optimal feed rates for drilling and milling tasks are also
calculated. Finally, using a 6-DOF Universal Robot (UR5e)
simulation and experimental results are compared to corrob-
orate the effectiveness of the proposed methodology.

The main contributions of this paper are as follows,
1) Provision of generalized impulse-based mathematical

model for linear and angular impulse to empower the
DT and its experimental validation.

2) Provision of the effective mass and effective inertia for
linear and angular impulsive motion-based machining
tasks.

Furthermore, the non-singular optimal workspace is calcu-
lated, and the tool direction is optimized using the belted
ellipsoid analysis for the robotic drilling and milling tasks.
Moreover, optimization of feed-rates considering the effec-
tive mass/inertia and task completion time for drilling and
milling tasks are also provided, which are important aspects
for the analysis of robotic machining operations. In a nutshell,
the development of complete dynamic model and its simula-
tion & experimental validation will empower the digital twin
of light machining tasks.

The organization of the paper is as follows. In section II,
the digital twin model framework is presented for robotic
drilling and milling task. In section III, a closed-formed
solution of linear and angular external impulses is pro-
posed. In section IV, impulse model based belted ellipsoid is
employed to analyze the feeding direction of the machining
tools and optimal workspace is also analyzed to maximize
the impulse exerted on the machining objects. In section V,
effective mass/inertia, and optimal feed rates for two machin-
ing tasks are calculated. Experimental setup and results are
described in section VI. Finally, a quantitative compari-
son between the experiments and simulations is made in
section VII.

II. DIGITAL TWIN
Digital twin (DT) is a digital representation of the real-
time operating conditions of a physical entity [32]. In this
approach, every system can be a subset of two systems i.e.,
the real time physical system and a virtual system containing
all the necessary and required information of the physical
system. The simultaneous flow of information in DT allow

to optimize the technology for better performance. This
bi-directional dynamic relationship between physical and
virtual models can improve the efficiency of product design,
manufacturing/machining process, and service throughout
the system’s life cycle [32], [33], [34]. Digital twins success-
fully employed in manufacturing processes including: quality
management [35], [36] to determine the quality problem and
selection of better material and process, logistic planning
[37] to optimize the supply chain, product development [38]
by incorporating user experience, product redesign [39] by
checking the compatibility of existing equipment against new
design by simulating in a DT.

Three components are necessarily required to develop a
digital twin (DT) for any physical object [7]. The compo-
nents include: information model, communication block, and
data processing module. The information model is digital
model which abstract the specification of physical model
to simulate its behavior for further optimization. The data
processing module is responsible to manage and filter (fil-
ter out the noises) the incoming information from multiple
sources including physical object to construct/mimic the live
representation as much as possible. The information model
and data processing module collectively form a digital twin.
The communication mechanism is used to regulate the bi-
directional information between digital twin and its physical
counterpart by using industrial data protocols such as OPC-
UA or MTConnect, etc [8]. The construction of the accurate
digital model is very important in the development of efficient
digital twin because it will affect the output of simulation and
the analysis, control, and efficiency of the physical system.

This paper deals with the empowerment of the digital
model. Fig. 2 demonstrates digital twin for light machining
task including robotic milling and drilling tasks. The sensor
data of physical system is being transferred to develop the
digital model through communication block. In digital model,
the optimization including optimal feed rates and optimal
workspace based on the developed mathematical model, is
being performed. And finally, the optimized information will
be transferred to physical system through communication
block. The detailed dynamic model for drilling and milling
tasks is given in section III.

III. GENERALIZED IMPULSE MODEL FOR ROBOT
MANIPULATOR
There have been previously existing impulse-based models
[27], [29], which were proposed and validated for linear
impulsive motion-based applications such as sawing and
nailing tasks. However, for drilling and milling tasks, a gen-
eral impulse model is required since these tasks involve
both linear and angular impulses. It is found that a cou-
pling effect exists between the linear and angular impulses.
Coupling states that linear impulses are affected by angular
velocities and vice versa. For instance, during drilling and
milling machining tasks, both thrust force and torque change
by changing either feed rate (linear velocity) or rotating
speed (angular velocity). Considering these characteristics, a
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FIGURE 2. Digital Twin of robotic drilling and milling machining tasks: Bi-directional communication between physical system and
virtual models.

generalized impulse model is proposed to predict the linear
and angular impulses during drilling and milling tasks.

A. GENERALIZED COLLISION MODEL BETWEEN TWO
RIGID BODIES
The well-known impact equation denoting the incremental
change of relative linear velocities of two colliding bodies is
given as [40], [41]

(1va −1vb)Tnv = −(1+ e)(va − vb)Tnv, (1)

FIGURE 3. Collision model (a) Collision model including impulsive force
only (b) Collision model including both impulsive force and impulsive
moment.

where va and vb denotes the absolute linear velocities before
impact. 1va and 1vb denote the linear velocity increments
immediately after impact of body a and b, respectively. The
coefficient of restitution e ranges from 0 to 1 for perfectively

inelastic to elastic collision, and nv denotes the unit vector
along the direction of central impact as shown in Fig. 3(a).
If the coefficient of restitution e is known, the relative velocity
after the impact of colliding bodies can be obtained from (1).
In certain applications, with existence of a moment during
collision as shown in Fig. 3(b), the angular velocities could
also be constrained. A moment could lead to an energy loss
if it has an inelastic behavior [41]. Accordingly, a moment
coefficient em can be introduced with properties analogous to
the classical (normal) coefficient of restitution e. Themoment
coefficient possesses properties that control the rotational
kinematics and influence the energy loss of the collision.
Like (1), the incremental change in relative angular velocities
can be written as follows [41]

(1ωa −1ωb)Tnω = −(1+ em)(ωa − ωb)Tnω. (2)

whereωa andωb denote the absolute angular velocities before
impact. 1ωa and 1ωb denote angular velocity increments
immediately after impact of body a and b, respectively. nω
denotes the unit vector normal to the direction of central
impact and the moment coefficient em = 0 corresponds to
perfectly inelastic angular impact, independent of the normal
coefficient e. em = 1 corresponds to perfectly elastic colli-
sion.

The eqs. (1) and (2) can be written in a combined form as
follows[

nTv 0
0 nTw

] [
1va −1vb
1ωa −1ωb

]
= −

[
nTv 0
0 nTw

] [
(1+ e)(va − vb)

(1+ em)(ωa − ωb)

]
. (3)

The model given in (3) is a generalized impulse model which
is applicable for drilling and milling task. In the following
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sub-sections, considering the body a as manipulator and the
body b as the environment, the contact point velocity incre-
ment relationships for robotic arm and environment (drilling
and milling operation) will be established and substituted
into (3) in order to find the closed-form solution of linear and
angular impulses.

B. INVERSE DYNAMIC MODEL FOR ROBOT
MANIPULATOR
The generalized inverse dynamic model of the robot manip-
ulator with respect to independent joint set (ϕa) is given as
follows [29]

Ta = [Iaa] ϕ̈a + ϕ̇
T
a [Paaa] ϕ̇a + ga −

[
GIa
]T (

Fext T ext
)T
,

(4)

where [Iaa] and [Paaa] denote the inertia matrix and inertial
power array with respect to independent joint set, respec-
tively.

[
GIa
]
is Jacobian matrix that relates the velocity

vector
(
1vI
1ωI

)
at the contact point and the joint velocity

vector (ϕ̇a) at the independent joints. Ta and ga stand
for the joint torque and the gravity load vectors, respectively.
Fext and T ext denote the externally applied force and moment
vectors, respectively. Integration of (4) over a very short
contact time will yield [29]

1ϕ̇a = [Iaa]−1
[
GIa
]T (

ˆFext ˆT ext
)T
, (5)

where F̂ext =
∫ to+1t
to

Fextdt and T̂ ext =
∫ to+1t
to

T extdt
denote the linear and angular external impulses, respectively.
Since the position remains unchanged and velocities are finite
during the impact, consequently the term involving integral
ϕ̇Ta [Paaa] ϕ̇a will be zero as 1t → 0. Similarly, the terms
involving actuation torque Ta and gravity tends to zero. The
kinematic relationship between the joint velocity increments
and the contact point velocity increments is established as
follows [

1vI
1ωI

]
=

[
GIa
]
1ϕ̇a. (6)

Finally, for robot manipulator, by substituting (5) into (6),
the linear and angular velocity increments at contact point in
terms of linear and angular external impulses can be written
as follows[

1vI
1ωI

]
=

[
GIa
]
[Iaa]−1

[
GIa
]T [ F̂ext

T̂ ext

]
. (7)

This expression can be symbolically written as[
1vI
1ωI

]
=

[
U V
VT W

][
F̂ext
T̂ ext

]
, (8)

where the coefficient matrix on right hand side is symmet-
ric. This coefficient matrix depends on kinematic/dynamic
parameters and configurations of the manipulator. Eq. (8)
also explains the phenomenon of the coupling between angu-
lar/linear impulses for the case of robot manipulator.

C. DYNAMIC MODELING OF THE ENVIRONMENT
The inertial properties of the robot manipulator and the
environment should be known for the implementation of the
generalized impulse model to predict the linear and angular
impulses. The inertia of robot manipulator [Iaa] is known.
However, the mass and inertial properties of the environ-
ment during drilling and milling task are unknown. Accord-
ingly, in order to implement the generalized impulse-based
approach, this paper introduces a methodology to calculate
the effective mass and effective inertia

[
I∗mcc

]
for the drilling

and milling tasks. The experimental calculation of effective
mass and effective inertia is given in section V. In this
section, the contact point velocity increment relationship
is established for the environment similar to contact point
velocity increment relationship of robot manipulator as given
in eq. (7).

For linear impulsive motion-based machining tasks, the
concept of effective mass was initially introduced by Lee et
al. [29]. However, it was limited for linear impulse-based
applications. During milling and drilling tasks, chips are
formed due to plastic deformation of the material. Since each
chip is formed by experiencing a certain linear and angular
impulsive forces for a specific interval of time 1tc, accord-
ingly, both effective mass and effective moment of inertia
should be defined. The effective mass/inertia is associated
with the dynamics of the environment such as hardness of
the material and process parameters of the machining tasks.
Process parameters include feed rate, tool diameter, speed,
etc.

FIGURE 4. The environmental model of drilling task (a) Task description
(b) Tool velocity at contact point, where c vw = cωI × rt , (c) Chip
formation (d) Resultant velocity of the chip.

The environmental model of chip is shown in Fig. 4 and
Fig. 5 for drilling and milling tasks, respectively. Note that
the action and reaction exist between the robot tool and the
environment. Thus, the force and moment exerted on the
environment by the tool is defined as Fc = −Fext and
T c = −Text , respectively.
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FIGURE 5. The environmental model of milling (rotary cutting) task
(a) Task description (b) Tool velocity at contact point (c) Chip formation.
(n: number of teeth) (d) Resultant velocity of the chip.

The linear impulsive force experienced by each chip before
fracture can be written as follows

cFc =
[
M∗c
] 1cvc
1tc

, (9)

where 1cvc is the linear velocity increment of the chip due
to linear impulsive force,

[
M∗c
]
is the effective mass, and cFc

is the linear impulsive force vector exerted on the chip over
time interval of 1tc, which is expressed with respect to the
tool frame.

As shown in Figs. 3(b) and 4(b), the velocity of the chip
can be written as [42]

cvc = cvI + cωI × rt , (10)

where cvI is the velocity of the manipulator to the direction
normal to the workpiece, cωI is the angular velocity of the
tool, and rt is the vector directing from the tool center to the
chip mass center. The time period can be defined as

1tc =
dI
|1cvc|

, (11)

where dI denotes the width of each chip which can be defined
as

dI =
2π
√(
|rc|2 + l2

)
n

, (12)

where rc = rt for drilling case as shown in Fig. 6 (c) and for
milling rc = rt − ro as shown in Fig. 6 (a). The physical
representation of lead distance during milling and drilling
tasks is illustrated in Fig. 6 (b) and 6 (c), respectively. The
n in (12) represents the number of teeth of the tool and l
represents the lead distance which is given as follows

l =
cvI
|1cωc|

. (13)

Similarly, the chip experiences impulsive moment cT c, which
is expressed with respect to the tool frame. The relationship

FIGURE 6. Physical representation of lead and chip radius to calculate
the width of each chip. (a) Radius of chip during milling task (b) Lead
distance during milling task (c) Lead distance during drilling task.

for impulsive moment in terms of effective inertia is estab-
lished as follows

cT c = Icc1α = [I∗cc]
1cωc

1tc
, (14)

where [I∗cc] is the effective inertia. 1cωc is angular velocity
increment of the chip in the tool frame.1tc is the time period
for which the chip experiences impulsive moment before
fracture. That period can also be defined as follows

1tc =
θc

|1cωc|
. (15)

The time in both eqs. (11) and (15) will be the same. θc
is the angle between two consecutive teeth of the tool. The
initial linear/angular velocities of the chip are zero. During
the formation of the chip after collision, instantaneously, the
velocity increment of the chip will be the same as the velocity
of the tool. If the linear and angular impulsive forces and
linear and angular velocities are measurable, the effective
mass and effective inertia can be calculated by using eqs. (9)
to (15).

Furthermore, the relationship between velocity increments
of the chip and the experienced linear and angular impulses
can be established from eqs. (9) and (14) as follows

1cvc =
[
M∗c
]−1 (cF̂c) (16)

and

1cωc =
[
I∗cc
]−1 (cT̂ c) , (17)

where cF̂c =cFc1tc and cT̂ c =cT c1tc. The linear velocity
increment of the chip in the global reference frame is repre-
sented as follows

1vc =
[
Gvc
]
1cvc =

[
Gvc
] [
M∗c
]−1 [Gvc]T F̂c. (18)
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FIGURE 7. Environment model of linear and angular impulses
experienced by the robot manipulator and the velocity direction during
drilling and milling tasks.

Similarly, the angular velocity increment in the global refer-
ence of frame can be written as follows

1ωc =
[
Gωc
]
1cωc =

[
Gωc
] [
I∗cc
]−1 [Gωc ]T (T̂ c) . (19)

The linear/angular velocity increments are written in a
combined-form as follows[

1vc
1ωc

]
=

[
GIc
] [
I∗mcc

]−1 [GIc]T
(
−̂Fext
−̂T ext

)
, (20)

where [I∗mcc] =
[ [
M∗c
]

0
0

[
I∗cc
] ] and [GIc] = [Gvc 0

0 Gwc

]
.

D. EXTERNAL IMPULSES MODEL FOR ROBOT
MANIPULATOR
For a robot manipulator, the relationship between incremen-
tal change in contact velocities and linear/angular external
impulses is established in (7) and for environment, estab-
lished in (20). If the body ‘a’ is considered as manipulator
and the body ‘b’ as the environment then the substitution
of (7) and (20) into (3) will yield (21), as shown at the

bottom of the page, where [ne] =
[
nTv 0
0 nTω

]
. The linear

impulse acting along the normal vector nv can be expressed as
F̂ext = F̂extnv = nvF̂ext , and similarly, the angular impulse
acting about the unit vector nw can be expressed as T̂ ext =
T̂extnw = nwT̂ext . One can write the linear and angular

impulse in a combined-form as follows[
ˆFext

T̂ ext

]
= [ne]T

[
F̂ext
T̂ ext

]
. (22)

During drilling and milling machining tasks, the initial linear
and angular velocities of the chips are vc = ωc = 0. Due
to plastic deformation of the material, em and e are zero.
Finally, the closed-form solution of the linear and angular
impulses is found by substituting (22) into (21) as follows
(23), shown at the bottom of the page, where the first term in
the denominator shows the dynamic contribution of manip-
ulator, while the second term is associated with dynamics
of the environment. The developed model in (23) can be
applied to any linear and angular impulsive motion-based
machining task. During the drilling and milling task, the first
term in the denominator would remain the same, however,
vector [ne] which determine the direction of required linear
and angular impulses and the second term in the denominator
would be different. Accordingly, the calculated impulses for
drilling and milling tasks would be different. Fig. 7 shows the
impulsive forces and impulsive moments experienced by the
robot during drilling and milling tasks. The value of

[
I∗mcc

]
will be higher for hard materials. Accordingly, the required
linear and angular external impulses will be higher for hard
materials.

The moment should always be present during all collisions
for the proposed model, which makes it restrictive. However,
if the moment does not exist during collision, then only
impulsive force with equal magnitude in opposite direction
will exist and the impulse model will be simplified as given
in the existing literature [29].

IV. SIMULATIONS
In this section, two different simulation analysis are per-
formed. Firstly, the belted ellipsoid for linear and angular
impulses are generatedwhich shows the ability of amanipula-
tor to generate impulses in/about every direction at a specific
configuration for a given linear (feed rate) and angular (rpm)
velocities. This analysis is important in order to choose the
tool direction for a specific task. Secondly, simulations are
carried out to optimize the workspace for a specific task.
Further details are given in the following sub-sectionA andB,
respectively. The simulations are performed by considering
the fixed environment (infinite inertia of the environment).

[ne]
{[
GIa
]
[Iaa]−1

[
GIa
]T
+
[
GIc
] [
I∗mcc

]−1 [GIc]T} [ F̂extT̂ext

]
= − [ne]

[
(1+ e)(vI − vc)

(1+ em)(ωI − ωc)

]
, (21)

[
F̂ext
T̂ext

]
=

−[ne]
[
vI ωI

]T
[ne]

{[
GIa
]
[Iaa]−1

[
GIa
]T
+
[
GIc
] [
I∗mcc

]−1 [GIc]T} [ne]T , (23)
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FIGURE 8. Impact geometry (a) General belted ellipsoid for linear impulse. (b-d) Belted ellipsoids of linear impulse for UR5e robotics arm in different
views: tO denotes the origin of tool frame. (e) General belted ellipsoid for angular impulse (f-h) Belted ellipsoids of angular impulse for UR5e
robotics arm in different views. Linear velocity = 0.05m/sec and Angular velocity 20rad/sec.

The values of em and ewill be zero due to plastic deformation
of the material during drilling and milling tasks.

A. PERFORMANCE ANALYSIS IN TERMS OF BELTED
ELLIPSOID
In this sub-section, the performance of robotic machining
tasks is analyzed in terms of normalized impact geome-
try. Walker [43] defined the dynamic impact ellipsoid as
uT [GIa][Iaa]

−2[GIa]
T u ≤ 1, where the column of u repre-

sents the principal axes of the dynamic impact ellipsoid.
However, there are two limitations in those ellipsoids [44].
Firstly, the magnitude and direction of task velocity are
not considered which play an important role in the magni-
tude of impulsive force. And, secondly, the magnitude of
those ellipsoid does not directly represent the impact force.
To overcome these issues, Kim et al. [44] introduced the
dynamic and generalized impact geometry which is given
as nT

[
GIa
]
[Iaa]−1

[
GIa
]T nF̂ext ≤ 1, where n is the unit

vector normal to the plan of collision impact. The current
study extends the latter concept to construct the linear and
angular impulse belted ellipsoids. The concepts of belted
ellipsoids for linear and angular impulses are illustrated in
Fig. 8(a) and (e), respectively. The distance from the center
to the surface of each ellipsoid shows the amount of lin-
ear/angular impulse along/about each direction for a given
contact point velocity. So, the longer the distance, the greater
linear or angular impulse can be applied to that direction.

In the given setup, a separatemotor is used in drill assembly
to rotate the tool at specific RPM. In machining operations,
the required torque is applied by drill assembly’s motor while

the feed rate is provided by the robotic arm. In other words,
the robotic arm applies the linear velocity only.

The linear impulses should be maximized in a specific
direction to perform the machining task by controlling the
linear velocity of the robotic arm. Since the linear and angular
impulses are coupled as described in eq. (23), the manipulator
experiences the angular impulse as a reaction; accordingly,
the angular impulses should be minimized in the direction
of performing a machining task. Furthermore, the externally
applied impulses may damage the robotic arm’s link and
joints. So, the material selection and stress analysis during
the manipulator design are also very important. Since an
already developed commercial robotic arm is used in this
study; accordingly, the detail structure’s stress analysis is not
discussed.

The external impulses can be maximized or minimized for
kinematic redundant manipulators by using different algo-
rithms [44], [45]. For the given UR5e non-redundant robot,
the tool direction is decided based on the impulse geometry
to maximize the linear impulse and minimize the angular
impulses.

Assuming the 0.05m/sec linear and 20rad/sec angu-
lar velocities at contact point in/about every direction,
respectively; the belted ellipsoids for linear and angular
impulses are constructed based on impulse models of (23).
The linear and angular belted ellipsoids are shown in
Fig. 8 (b-d) and (f-h) in different views, respectively. Since the
angular impulses are minimum about the z-axis; accordingly,
the drilling and milling operation are performed about z-axis
to minimize the coupling effect. Though the x-axis or y-axis
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FIGURE 9. Drilling case: Impulse analysis in selected workspace with (radius in XY plane: 400 to 825mm) at different z-axis values: Considering that the
linear impulse is along z-axis. (a) Specified workspace (b) linear impulse at z=80mm (c) linear impulse at z=130mm (d) linear impulse at z=180mm
(e) linear impulse at z=230mm (f) linear impulse at z=280mm (g) linear impulse at z=330mm (h) linear impulse at z=380mm. Color bar denotes the
linear impulse variation in Ns. Feed rate: 1mm/sec, RPM: 1200.

FIGURE 10. Milling case: Impulse analysis for the same workspace: Considering that the linear impulse is along -y-axis. (a) linear impulse at z=80mm
(b) linear impulse at z=130mm (c) linear impulse at z=180mm (d) linear impulse at z=230mm (e) linear impulse at z=280mm (f) linear impulse at
z=330mm (g) linear impulse at z=380mm (h) Angular impulse. Color bars denotes the linear impulse variation in Ns and angular impulse in Nms. Feed
rate: 1mm/sec, RPM: 1200.

can be considered as the direction of the feed velocity for
the milling task, the y-direction is recommended since the
linear impulse is maximum along that direction as shown in
Fig. 8 (c, d). Since the tool rotation is recommended about
z-axis, accordingly, the feed velocity will be provided along
z-axis for drilling task. The recommended tool directions will
help to minimize the angular impulse andmaximize the linear
impulses.

B. OPTIMIZATION OF WORKSPACE
For redundant manipulators, kinematic redundancy can be
utilized to maximize the linear impulses and minimize the
angular impulses [44], [45]. However, one can still find
optimal workspace that assures maximum performance in
terms of the linear impulse/angular impulses. It is also
important to choose the non-singular workspace as the
impulses would be very large at singular configurations [43].
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The non-singular workspace is considered with radius of
400mm to 825 mm in xy-plane and displacement along the
z-axis from 80mm to 380 mm as shown in Fig. 9 (a) which
is calculated based on the manipulability measure index
(w =

∣∣det [GIa]∣∣) [43]. Then, the optimized workspace
volume is calculated where the linear impulses are maxi-
mum and angular impulses are minimum. It is considered
that the tool is always perpendicular to the horizontal (xy-
plane) and tasks are being performed at 1200 rpm with
1mm/sec feed rate. Firstly, the linear impulses are calculated
for drilling task by considering the direction of linear impulse
along and about z-axis of tool frame. The calculated linear
impulses in xy-plane at different values of z-axis are shown
in Fig. 9 (b-h). Since the orientation of tool is fixed for this
analysis; accordingly, the angular impulses are not changing
much in whole workspace. In overall workspace, the variation
in linear impulse is very small for drilling task as can be seen
from color bar in Fig. 9. Accordingly, it is recommended that
the whole non-singular workspace can be used for drilling
operation.

Next, the linear impulses are calculated for milling task
by considering the directions of linear and angular velocities
along and about y-axis and z-axis, respectively. The calcu-
lated linear impulse in xy-plane at different values of z-axis
are shown in Fig. 10(a-g). The variation in linear impulse
is considerable. In order to perform the task with maximum
linear impulses along the y-direction, the workspace with
z-axis less than 200mm (near to ground) is recommended
based on the observation of Fig. 10. The orientation of tool
and direction of linear and angular velocity could be other
than used directions. For those cases, the analysis can be
performed in the same manner.

V. EFFECTIVE MASS/EFFECTIVE INERTIA CALCULATION
In this section, the effective mass and effective inertia are
calculated experimentally for both machining operations.
While calculating the effective mass/inertia, the inertia of
the robot/machine should be infinite in order to apply the
equation (9) and (14). Accordingly, the robotic armwas fixed,
and the feed-rate was provided by using a separate mecha-
nism. The effective mass and inertia can also be calculated by
using a fixed drilling machine. For the validation of effective
mass/inertia, the feed rate will be provided by using a robot
to include dynamics of robot (section VI).

The effective mass depends on three parameters (Fc; the
force required to form a chip,1tc; the time required to form a
chip, and1cvc; the velocity increment of the chip).Moreover,
the1tc depends upon diameter and number of the teeth of the
tool. However, the diameters of the tool cannot be optimized
as it is the requirement of any specific task. Furthermore, the
hard material required more impulsive force Fc, accordingly,
the value of the effective mass will be higher. Similar is the
case for effective inertia. The trend of affective mass against
different material has already been presented and evaluated
by Imran et al. [28]. Considering those reasons, the effect of
diameter of tool and hardness of material are not discussed

FIGURE 11. Task objective and tool engagement during drilling and
milling tasks (a) Drilling task (objective: to drill through a plate of 10mm
thick of ABS material) (b) Milling task (objective: to cut a plate of 10mm
width and 12mm thick of ABS material. (c) Time required to complete
drilling task at different feed rate (d) Time required to complete milling
task at different feed rates.

in this paper. In order to optimize the process parameters, the
effective mass and inertia are calculated at different feed rates
and RPMs for drilling and milling tasks. The same material
(ABS) is used for drilling and milling operations.

It is found that the effective mass/inertia is different for
milling and drilling tasks even if the tasks are performed
at the same feed rate with the same speed. This is because
the required force/torque and contact time (1tc =

θc
|1cωc|

)
are different due to different geometry (number of teeth)
of tools. During drilling and milling operations, elabora-
tion of engagement of the tool with material are shown in
Fig. 11(a) and (b), respectively. At start and at the end, the tool
is partially engaged. The effective mass and effective inertia
are calculated during the fully engaged period of the tool with
the material. During drilling operation, the task is to make a
hole through 10mm thickness ABS material plate as shown
in Fig. 11(a). During milling task, the task is to cut a plate
of 10mm wide and 12mm thick of ABS material as shown
in Fig. 11(b). The time required to complete the task during
drilling and milling tasks at different feed rates was measured
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FIGURE 12. Effective mass and effective inertia during drilling task at
different feed rates (a) At 1200rpm (b) At 370rpm.

through experiment as shown in Fig. 11(c) and (d). The time
is exponentially decreased as the feed rate is increased.

A. DRILLING TASK
Drilling task is performed at two different speeds (rpms) with
different feed rates. The diameter of the tool is 5.5 mm. The
effective mass and effective inertia are calculated by using
eqs. (9) and (14), where the force and torque data are mea-
sured by a FT sensor. Since the chips are being formed due
to plastic deformation of the parts; accordingly, the angular
velocity of the chip will be the same as the tool and linear
velocity is calculated by using (10). Contact time is calculated
by using eq. (13) and (15). The calculated values of effective
mass/effective inertia are shown in Fig. 12(a) and 12(b) at
1200rpm and 370rpm, respectively. It is observed that the
effective mass/inertia is linearly increasing with feed rates
and that the values of effective mass/inertia are higher at low
speed (rpm). This makes sense because
• At high speed (rpm), the time required (25ms) to form a
chip is much smaller compared to the time taken (81ms)
at low speed (rpm).

• Secondly, the linear velocity obtained by using (10) is
also higher at high speed (rpm).

Based on (9) and (14), it is inferred that the shorter con-
tact time and higher contact velocities tend to decrease the
effectivemass and effective inertia. Accordingly, the effective
mass and effective inertia values are higher at low speed as
shown in Fig. 12.

B. MILLING (ROTARY CUTTING) TASK
The milling operation is performed at 1200rpm with different
feed rates. At low speeds, the manipulator experiences more

FIGURE 13. Effective mass and effective inertia during milling task at
1200rpm.

FIGURE 14. Optimization during drilling task with different values of β
(a) At 1200rpm. (b) At 370rpm. The optimal feed rates are highlighted as
red marker corresponding to the minimum values of objective function ‘O’.

vibration due to small teeth and large diameter of the tool as
compared to drilling tool. The diameter of the cutting tool is
40mm. The tool has 100 teeth; accordingly, the contact time
for each chip is calculated as 0.5msec. The effective mass and
inertia are calculated again by using the eqs. (9) to (14) and
the values are shown in shown in Fig. 13. Due to very short
contact time, the values of effective mass and effective inertia
are smaller compared to drilling task, however, the trend is the
same.

C. OPTIMAL FEED RATES
During drilling/milling machining tasks, too high or too low
feed rates at a specific speed (rpm) can affect the quality
of machining operation or damage the tool. Usually, for
each material the optimal feed rate is recommended for
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machining operation. However, additional measures need to
be considered in robotic machining tasks since industrial
robotic arms have maximum force limit that should not be
exceeded for safety concern. Taguchi technique and response
surface methodology are widely used to optimize the process
parameters during machining process. Different optimization
research activities were carried out by considering the hole
quality and surface roughness for specific materials [46],
[47], [48], [49]. Rao et al. [49] modeled and optimized the
effect of cutting parameters on surface roughness and tool
vibration by using response surface methodology, artificial
neural network, and support vector machine for regression.

In this sub-section, an optimization technique is proposed
to find the optimal feed rates considering the effective mass
and effective inertia. The effective mass/inertia is more gener-
alized property since it elaborates the dynamics of the envi-
ronment. The higher value of effective mass/inertia implies
that the manipulator experiences more burden. Accordingly,
the objectives are defined as follows
• Minimization of the effective mass/inertia.
• Minimization of the time required to complete the
machining task.

At higher feed rates, the tasks can be completed in min-
imum time while, the effective mass and effective inertia
will increase. There exists a tradeoff between task comple-
tion time and effective mass/inertia, accordingly, a combined
objective function is proposed as follows

min(O) =
1
s

s∑
i=1

(
ti
timax

+ β
Ei
Eimax

)
(24)

subject to

Tc ≤ Tmax and Fc ≤ Fmax (25)

The performance index is to minimize the objective func-
tion ‘O’, where ‘ti’ represents the task completion time, ‘Ei’
(effective mass and effective inertia) denotes the dynamics
of the environment, and ‘s’ denotes the number of environ-
ment factors. In our case, we have two environments factors;
effective mass and effective inertia. Fmax and Tmax denote the
maximum force and torque limits of the robot manipulator,
respectively. Fc and Tc are the measured force and torque
experienced by chip, which will be used in calculation of
effective mass and effective inertia, respectively. β is the
priority factor. β = 1 employs the equal contribution of both
objective functions (ti,Ei). β > 1 gives more weightage to
the dynamics of environment (Ei), while β < 1 gives more
weightage to task completion time (ti).
Firstly, the optimization for drilling task is performed. The

optimization results with different values of β are shown
inFig. 14. The optimal feed rates, corresponding to the min-
imum value of the objective function ‘O’, are highlighted as
redmarker. The task completion time isminimum at high feed
rates while the dynamics of the environment (effective mass/
inertia) is minimum at low feed rates. Increasing β givesmore
priority to the dynamics of the environment; accordingly, the

FIGURE 15. Optimization during milling (rotary cutting) task with
different values of β at 1200rpm. The optimal feed rates are highlighted
as red marker correspond to the minimum values of objective function ‘O’.

FIGURE 16. Experimental setup. (a) Drilling task (b) Milling (rotary
cutting) task (c) Details of end-effectors.

optimal feed rates are decreasing. Similarly, the optimization
results for milling task are shown in Fig. 15. Optimal feed
rates are highlighted as red marker with different values
of β. The proposed optimization technique can be effectively
applied to find the optimal feed rates during machining tasks.
In our experiment, an equal priority (β = 1) is given to both
objectives. From Figs. 14 and 15, optimal feed rates were
recommended as 0.4mm/sec and 1mm/sec for drilling and
milling tasks, respectively.

VI. EXPERIMENTATION
A 6-DOF Universal Robotic arm (UR5e) is used for exper-
imentations of drilling and milling tasks. The kinematics is
used as calculated by Kebria et al. [50]. The dynamics of
robot is calculated based on multiple cylinder method for
each link, as proposed and verified by Kufieta [51]. The
experimental setup is shown in Fig. 16. Figs. 16(a) and 16(b)
illustrate the setup for robotic drilling and milling tasks,
respectively. The drill assembly is attached at the distal end
of the robot manipulator and FT (6-axis) sensor of Robotous
company (RFT76-HA01) is installed between the drill assem-
bly and the robot end-effector to measure the force and torque
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FIGURE 17. Comparison of simulation and experimental results for
drilling task at 1200rpm (a) Linear and angular impulses at feed rate
0.4 mm/sec (b) Linear and angular impulses at feed rate 0.7 mm/sec.

data as shown in Fig. 16(c). The maximum force and torque
limits for the sensor are 300N and 10Nm along and about
each axis, respectively. For both machining tasks, the angular
velocity is about z-axis, while the feed velocity is along
z-axis and x-axis of the global coordinate system for drilling
and milling task, respectively.

A. DRILLING TASK
Firstly, experiments for drilling task are performed at
1200rpm with two feed rates. An ABS material of 10mm
thickness is drilled. The force and torque data are measured
by FT sensor. Furthermore, the linear and angular impulses
are calculated by integrating the measured force and torque
data over contact time, which is 25 msec. Fig. 17 shows the
experimental results of linear and angular external impulses
for drilling task.

Based on the proposed model of external impulse in (23),
embedding the effective mass and effective inertia (second
part of the denominator of (23)), simulations are performed
by using MATLAB. The linear velocity at the contact point
is calculated by using (10) and angular velocity is calculated
as 125.66 rad/sec. The simulations are performed for fully
engaged region. The slope in Fig. 17 stands for partially
engaged region. The simulation and experimental results are
identical as can be seen in Fig. 17.

B. MILLING TASK
Secondly, the experiments for milling task are performed at
1200rpm with two feed rates. The drill assembly is capable
of performing both drilling and milling tasks. Rotary cutter

FIGURE 18. Comparison of simulation and experimental results for
milling (rotary cutting) task at 1200rpm (a) Linear and angular impulses at
feed rate 0.4 mm/sec (b) Linear and angular impulses at feed rate
1 mm/sec.

of 40mm diameter is used as shown in Fig. 16(c). Same ABS
material is used for milling operation. The milling (rotatory
cutting) task is performed by cutting a plate of 10mm width
up to 12mm thickness. To measure the linear and angular
impulses, the integration of measured force and torque data is
performed over 0.5msec contact time and results are shown
in Fig. 18. The simulations are performed by using eq. (23)
with consideration of effective mass and effective inertia as
calculated in section (V). The simulation and experiment
results are well identical.

VII. COMPARATIVE ANALYSIS
There are three main approaches to determine thrust forces
and torque during machining operations: experimental,
numerical, and analytical approaches. Themajor drawback of
analytical approach concerns its reliability. Different research
activities have been carried out to propose the analytical
model to predict the thrust force and torque in drilling and
milling tasks and simulation and experimental results are
compared. Naisson et al. [20] introduced an analytical model
based on modified Merchant’s method. Matsumura et al.
[17], [18] introduced an energy-based analytical technique
relying on the chip velocity and flow direction to predict
the thrust force and torque in drilling and milling opera-
tions. Strenkowski et al. [19] predicted the thrust force and
torque in drilling by using a finite element technique. How-
ever, in prediction of impulsive force and torque for robotic
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FIGURE 19. Quantitative comparison of simulation and experimental
results (a) Linear and angular impulses during milling task. (b) Linear and
angular impulses during drilling task. FR implies the feed rate.

machining operations, more generalized analytical approach
is required to include the dynamics of the robot manipulator
along with the dynamics of the chips being formed. Based
on our proposed impulse-based method, the dynamics of the
manipulator can be easily combined with dynamics of the
environment. Furthermore, this method can be effectively
applied to optimize the external impulse for kinematic redun-
dant manipulators as applied in previous research [43], [45].

The analytical closed-form model of linear and angular
impulses has been developed by integrating the dynamic
model of robot manipulator. The equation (5) is formulated
by integrating the dynamic model given in (4), as follows∫ to+1t

to
Tadt =

∫ to+1t

to
[Iaa]ϕ̈adt +

∫ to+1t

to
ϕ̇Ta [Paaa] ϕ̇adt

+

∫ to+1t

to
gadt −

∫ to+1t

to

[
GIa
]T (

Fext T ext
)T dt. (26)

In comparison of simulation and experimental results, the
contact time is very important. Usually, 1t is an infinites-
imally short time interval. Therefore, the positions and ori-
entation remain unchanged since all velocities and angular
velocities remain finite. Any propagation of deformation
wave and tension through bodies can be neglected since such
processes require finite periods of time. Hence, all bodies of
the system can be treated as rigid bodies during impact. Only
impulsive forces and impulsivemoments cause discontinuous

changes of velocities. If the contact time is not short enough,
these terms Ta and ϕ̇Ta [Paaa] ϕ̇a will not be completely zero
and show some contribution and hence cause error in results.

In this section, the simulation and experimental results
are compared quantitatively for milling and drilling task as
shown in Figs. 19(a) and 19(b), respectively. In previous
impulse-based applications, the contact time was used as
10msec [29] in comparison of simulation and experimental
results. In fact, the contact time depends on the speed (rpm)
and number of teeth. The contact time will be decreased by
increasing the RPMs as given in (10) and (15). The detail
discussion and calculated values of contact times at different
RMPs was provided in section (V). In experiments, both
tasks are performed at the same speed, but the contact time
is still different because the number of teeth of tool during
drilling (two teeth) and milling (100 teeth) are different.
During milling task, contact time (i.e., 0.5msec) is very short;
accordingly, the simulation and experiment results are well
identical. However, in the drilling task, the contact time
(25msec) is comparatively more than milling task. Hence,
there exists small error (0.05 Ns) between simulation and
experimental results. In conclusion, the comparison made
in this section validates the proposed mathematical model
for linear and angular impulses along with the mathemat-
ical model and experimental calculations of effective mass
and effective inertia. The development of complete dynamic
model to estimate the forces and torques and its experimental
validation will certainly empower the Digital model which
can be used to optimize the process parameters in real time.
In order to implement the digital twin in real time for any
machining process, the robotic arm needs to be equipped
with joint encoders and force/torque sensor to measure the
robot configuration and drilling/milling force and torque
values to calculate the effective mass and effective inertia
based on the proposed methodology. In the beginning of any
machining process, some parameters need to feed manually
by the user/operator including the diameter and no. of teeth
of the tool and completion time (if any) etc. In real time, for
specific material, the digital twin system receives the data
through communication block at different feed rates and rpms
to optimize the tool direction and feed rates. And then the
Digital Twin will transfer the optimized values of the process
parameters to the real system through communication block
to perform the task repeatedly. Furthermore, the digital twin
will continuously predict the future state to safeguard the
robot manipulator. However, for different materials or differ-
ent machining process, the real time parameters as mentioned
above need to pass on again to the Digital Twin model.

VIII. CONCLUSION
In contrast to fixed conventional fixed drill machines, robot
manipulators provide the large dexterous workspace and have
ability to effectively perform different light machining tasks,
as the manipulator could change the posture of a machining
tool using many degrees of freedom.
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The advantages of the proposed generalized impulsemodel
are as follows.

1) Machining tasks that combine both linear and angular
motions can be analyzed in terms of impulse model.

2) Each machining task can be modeled in terms of
effective mass/inertia. Furthermore, the optimal feed
rates could be calculated for drilling and milling tasks
by considering the effective mass/effective inertia and
minimum task completion time.

3) Optimal tool direction based on the belted ellipsoid
analysis along with non-singular optimal workspace
could be calculated for robotic drilling and milling
tasks.

This study needs more improvement in effective mass/inertia.
A continuum model is preferred for better accuracy. Incor-
porating kinematic redundancy in robot manipulator would
enhance the geometry of the belted ellipsoid.

The proposed methodology can be beneficially applied to
develop DT model of the of variety of linear and angular
impulsive motion-based machining tasks such as burring,
sawing, grinding, boring, cutting, hammering, etc.
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