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ABSTRACT The formation of exit burrs during the drilling of ductile metals such as aluminum is critical
in precision manufacturing and manufacturing automation. Because drilling burrs are difficult to remove,
methods to predict various burr types and/or implement burr minimization schemes that consider the various
attributes of burrs must be devised. In this study, not only drilling process conditions, including feed, cutting
speed, and drill diameter, but also an artificial neural network is implemented to predict the formation of
burrs during the drilling of aluminum-7075, which is widely used in the aerospace and automobile industries.
Based on the drilling conditions, the main exit burr characteristics, such as burr size and type, were classified
experimentally. Three different types of exit burrs (uniform burrs, uniform burrs with caps, and transient
burrs) were observed from the aluminum 7075 workpieces. The classification results were further analyzed
using burr control charts and an empirical equation, which enables the understanding of the overall influence
of the drilling conditions over the burr types. Moreover, acoustic emission (AE) sensor monitoring scheme
was utilized to sample the sensitive time-series signals during drilling burr formation. Subsequently, burr
types were predicted using artificial intelligence techniques, namely machining learning and deep learning.
First, backpropagation (BP) neural networks were constructed using the drilling conditions and AE signals
as input vectors. For a comparative prediction, a convolution neural network (CNN) was implemented to
obtain spectrogram image inputs from the sampled AE data. The proposed scheme is useful in predicting
drilling burr types by employing a sensitive sensor monitoring setup and advanced artificial intelligence
techniques, where both prediction results are well matched with experimental results. In addition, the CNN
model shows effectiveness for a commonly practiced manufacturing process as it predicts the burr types with
better accuracy than the BP network model (0.9375 over 0.8571).

INDEX TERMS Drilling burr, burr type prediction, acoustic emission monitoring, AI, CNN.

I. INTRODUCTION
Machining burrs are defined as undesirable projections
toward the exit portion of machined parts. Machining burrs
often cause various problems during assembly and pro-
cess automation of precision components, not to mention
machined part quality. For instance, for ductile metals such
as the Al-7075 series, which are commonly used in the

The associate editor coordinating the review of this manuscript and

approving it for publication was Wei Wei .

aerospace, marine, and automobile industries due to their
good mechanical properties such as a high strength–density
ratio [1], burr control is essential during machining. The
exit burr that occurs during drilling often generates irreg-
ularly shaped burrs such as ragged-shaped burrs and/or
caps up to the drilled hole dimension. Hence, the opti-
mal processing conditions including appropriate material
properties are often applied in advance to prevent the burr
generation or minimize the burr size. In general, the gen-
erated burr types are related to the machining conditions.
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However, as this correlation is not necessarily explicit – that
is, many variables such as the drill type/size (e.g., micro
drill) can result in unexpected changes – and considering the
significant amount of experimental data during machining,
an efficient drilling burr analysis/prediction scheme including
a burr control chart [2] is preferred. Owing to the recent
development of data analysis techniques and fast computers,
sensor monitoring during machining can be a valuable tool
to predict real-time machining status and machining results
including drilling burr formation [3]. Sensors are the main
equipment for data-based condition diagnosis, and by using
sensor information, an intelligent processing system can be
used to determine the prognosis [4]. Therefore, several types
of sensors/ sensing systems have been employed in burr
formation monitoring during machining. Schleier, M. et al
used a photodiode sensor to detect burr formation during
near-infrared fiber laser cutting [5]. Rimpault et al. predicted
the height of burrs produced during drilling for materials
made of carbon fiber reinforced polymers (CFRP), titanium
and aluminum alloys in terms of the thrust, torque, hole
diameter, circularity, and clearance tool wear using force sen-
sors [6]. Niknam et al. predicted the height of burrs produced
during milling using acoustic emission sensors and force
sensors [7]. Shimokura et al.measured the burr height using a
laser displacement sensor and programmed it to debug using
a robot [8]. Fitti et al. used laser vision sensors to detect burrs
in the horizontal holes of the cylinder [9]. Peilin usedmachine
vision and programmable logic controller (PLC) to recognize
and automatically identify Edge burrs in cylindrical metal
workpieces [10]. Pillai et al. tried to calculate the dimen-
sion of the burr height using a machine vision system [11].
Adelmann et al. used machine vision and artificial neural
networks to classify interruption and post-cutting situations
through the presence or absence of burrs [12]. The abovemen-
tioned sensor schemes have certain limitations when used in
manufacturing applications, including insufficient sensitivity
and difficulties in setup. Therefore, a more sensitive and
practical sensor system such as an acoustic emission (AE)
system is required. AE refers to the transient internal stress
waves in subject material, generated by the release of strain
energy from a localized source(s) such as cutting actions.
The detected AE surface wave is amplified and processed
to determine the exact nature of the source. AE has been
applied in various precision manufacturing processes [13].
Lee et al. demonstrate that process control is possible through
AE sensors in precision manufacturing process monitoring,
such as grinding, chemical mechanical planarization (CMP)
and ultra-precise diamond grinding [14].

AE also demonstrated sensitivity to transient material
behaviors including burr formation [15]. Therefore, an AE
sensor system can be a viable tool for in-process burr mon-
itoring. Burrs are greatly affected by parameters such as
shape, dimension, mechanical properties, cutting parameters
(cutting speed, feed rate, depth of cut, etc.) of the machined
part, and the cutting tool (material, shape, etc.). Therefore,
monitoring a drilling burr signal acquired with an AE sensor

requires consideration of several factors. Artificial intelli-
gence takes these factors into account and enables the pre-
diction of burrs through the characteristic classification of
sensor signals. For machining processing monitoring, artifi-
cial neural networks such as fuzzy logic, ensemble, Bayesian
networks, decision and regression trees, and support vec-
tor machines are analyzed and predicted using various sen-
sors (acoustic emission sensor, image sensor, accelerometer,
etc.) [16]. Natarajan et al. used the teaching learning-based
optimization algorithm to prevent production waste during
turning [17]. Kuntoğlu et al. used artificial intelligence neural
networks to analyze the relationship between measurement
variables such as tool wear and vibration in turning [18].
Akkoyun et al. analyzed the correlation between the burr
and slot widths formed after milling using image process-
ing through vision technology [19]. Mikołajczyk et al. used
ANN-based image processing to predict the tool life in turn-
ing operations [20]. Olivier et al. used a convolution neu-
ral network (CNN) to detect and classify faults in rotating
machines [21]. Artificial neural network analysis using image
processing is used in various ways, and CNN is the most
commonly used among them.

The purpose of this study is to implement an in-process
AE monitoring setup for drilling and predict the shape of
drilling burrs by adopting artificial intelligence (AI), which is
enabled by the development and implementation of advanced
signal processing and computational techniques. In partic-
ular, the results obtained from using an artificial neural
network (ANN) combined with backpropagation (BP), i.e.,
machine learning, and those obtained from using a convolu-
tion neural network (CNN), i.e., deep learning, are compared
with experimental data to prove the validity of this study.
This will show the adaptability of the proposed approach by
connecting up-to-date AI data analysis to a specific subject
(burr formation) from a commonly practiced manufacturing
process.

II. DRILLING BURRS AND ACOUSTIC
EMISSION MONITORING
A. BURR FORMATION MECHANISM
AND BURR CLASSIFICATION
Drilling burrs are affected by many parameters, includ-
ing material properties and drill geometry/ conditions [22].
Fig. 1 shows typical drilling burrs with the definitions of burr
height (h) and burr thickness (t). Compared to entrance burrs,
exit burrs (near the tool exit side) contributes the most to burr-
related problems, as they are much larger and more compli-
cated in shape. Among the cutting conditions, parameters that
affect the burr size most significantly are feed rate and rpm
(spindle speed) [22]. For instance, the rpm is associated more
with the burr thickness, whereas the feed rate is associated
closely with the burr height [23]. Therefore, both parameters
are frequently utilized when analyzing drilling burrs [24].
According to the literature, burrs can be classified into three
types based on varying the two experimental parameters:
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FIGURE 1. Drilling burr definitions and typical burr types.

Type I (uniform burrs), Type II (uniform burrs with cap), and
Type III (crown burrs). A uniform burr has a relatively small
height and thickness. Typically, it has a cap connected to the
burr edge, which can either separate as the drill progresses
(Type I) or remain attached (Type II). A crown burr (Type III)
is owing to a larger thrust force near the center of the drilling
workpiece surface, which results in irregular and ragged-
shaped burrs. In this study, Type I and Type II burrs were
classified as Type A burrs, and Type III burrs were designated
as Type B burrs. Generally, Type B burrs are more detrimental
to machining precision, assembly, and deburring than Type A
burrs.

B. AE SETUP AND DRILLING BURR EXPERIMENTS
Fig. 2 shows the experimental setup comprising an AE sensor
(attached to the specimen holder). AE signals were measured
using a wideband UT-1000 AE sensor from PAC (Physical
Acoustic Corporation), anAEDSP-32/16, aDSP board to per-
form high-speed signal processing for AE signal sampling,
and a computer.

The signal detected by the AE sensor was amplified by
40dB by a pre-amplifier and converted into a digital signal via
AEDSP32/16. The input digital signal was processed using
the MISTRAS program, which controls the AEDSP-32/16
and displays data outputs and signals. The parameter settings
for the AE are shown in Table. 1.

The workpieces used in the experiment were rectangular
(60 × 80 × 5 mm) aluminum (Al7075, see table 2) speci-
mens. Table.2 shows the Chemical compositions (wt: %) and
mechanical properties of the workpiece.

FIGURE 2. Experimental setup for drilling and AE sampling.

TABLE 1. Selected parameters and their levels.

TABLE 2. Compositions and mechanical properties of workpiece
(Al 7075) [25].

FIGURE 3. Detailed dimension of drilling tool (HSS, 135◦ drill point angle,
61mm (L) × 33mm (SL)×3mm (D); 75mm (L) × 43mm (SL) × 4mm (D)).

Fig. 3 shows the detailed dimensions of the HSS drill used
in the experiments, which were performed using two different
tool diameters (3 and 4mm).
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The cutting conditions were fixed through preliminary
experiments considering tool specifications. Eight different
feeds and three different cutting speeds were evaluated during
the experiments. The cutting conditions used in the exper-
iments are listed in table 3. Burr height measurement was
performed by a contour measuring machine with an inte-
grated digital scale detecting unit (Contracer CV-624 with
the FORMPAK-1000 software), which had a resolution of
0.05 µm and a vertical measuring range of 50 mm. Measure-
ments were repeated three times for the selected specimens.

TABLE 3. Cutting conditions.

The generated drilling burr types based on the experimental
conditions are listed in Table 4. First, Type I (uniform burr)
burrs were barely generated, except when the feed was low.
Second, Type II (uniform burr with cap) burrs were formed
with a gap attached to the edge of the exit hole at low feed
values, similar to Type I burrs. Third, Type III (transient burr)
burrs were formed around the exit and appeared in a ragged
shape.

As reported earlier [3], feed is a major factor that deter-
mines the generated burr types. For example, when the feed
was fixed at 0.1 mm/rev, the burr types are changed from
type II to type I burr as the rotational speeds increased from
1000rpm.

A drilling burr control chart (DBCC) was utilized for the
efficient analysis of burr formation based on drilling condi-
tions [26]. For the A-A section of Fig.1, the drilling thrust
force (Ft ) can be expressed in terms of the drill geometry,
and workpiece material parameters.

Ft = fd × func(drill geometry (κ,H , δ, α, φ) ,

×workpiece material (k, β)) (1)

Here f is feed, d is drill diameter, κ is the point angle H is the
helix angle of the drill, δ is the ratio of the web thickness to
the drill diameter, k is the shear strength, α is the point angel,
α is the rake angle, φ is the shear angle, and β is the friction
angle. The effective stress σ , which directly influences the
burr formation mechanism can be expressed in terms of Ft
and the drill diameter [27]:

σ =
Ft
A
=
Ft
d2

(2)

where A is the effective cutting area.
Therefore, when compiling the DBCC for a specific drill

geometry and workpiece material, the normalized feed rate
(f /d) is the main parameter that determines the drilling burr
formation. In addition, the cutting speed reflects the cutting

TABLE 4. Drilling experimental results and burr types.

conditions. The two parameters used in the DBCC are as
follows:

Fn = f /d S = K ∗ d ∗ N (3)

where Fn is a non-dimensional feed parameter, f is the
feed [mm/rev], d is the drill diameter [mm], S is the cutting
speed parameter, N is the spindle speed [RPM] and K is a
constant that renders the orders of the two parameters equal
(10−5).

Fig.4. shows the distribution of the drilling burr shapes
of aluminum from experiments based on the two variables
(Fn, S). As shown in the figure, the boundary between
Type I and Type II is ambiguous, whereas the boundary
between Type III and the rest of the burrs (Type I and II)
is distinguishable. As expected, this result implies different
burr formation mechanisms between the two cases (Type A
and Type B).

In the DBCC shown above, the boundary line between
Type A (Types I and II) and Type B (Type III) was formed
via least square approximation. The fitted equation for the
boundary line is expressed as follows:

S = 10−4.7934 (Fn)−2.1290 (4)
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FIGURE 4. Drilling burr control chart.

III. ACOUSTIC EMISSION SIGNAL ANALYSIS AND BURR
PREDICTION WITH ARTIFICIAL NEURAL NETWORK
A. AE SIGNALS
From literature, AE energy levels (RMS) are known to be
closely related to the tool engaging depth [28] during plastic
deformation such as cutting. In addition, the friction and
shearing energies dissipated in the primary, secondary and
tertiary zones during cutting (drilling) are already known as
major sources of AE signal generations [29].

During drilling, burrs are formed after the initial fracture
as in fig.5. Regarding the AE signal processing, fracture
generates a very high amplitude signal set (a sudden burst)
and the signal with the highest amplitude near the end of
the process can be considered as the start point of the burr
formation. For that reason, after the initial fracture start point,
subsequent signals were analyzed as burr generation signals
(Fig.6).

FIGURE 5. Typical drilling burr formation procedure.

Fig. 6 shows AE raw signals which were recorded during
the entire drilling process, i.e., as the cutting edge enters the
specimen, performs drilling, and exited from the machining
end of the specimen. To correlate the AE signal with the
burr shape in the experiments, both time series and frequency
domain data were presented. Fig. 7 and 8 show the sig-
nals when the burrs of Type A and Type B are generated,
respectively.

As explained in [30], the start position of the material
fracture at the exit of the drilling is different for the two types
of burrs. For instance, the fracture starts at the edge for Type
A burrs, and at the center for Type B burrs. In addition, the

FIGURE 6. Typical AE raw signal during drilling process.

FIGURE 7. Raw signal during drilling, raw signal, FFT and RMS during burr
formation (TYPE A; 1000 rpm, f = 0.01 mm/rev, d = 3mm).

larger thrust force induces plastic deformation earlier in the
process, which generates distinct AE signals. For the time
domain signals, the RMS of TYPE A and TYPE B decreased
and increased in general, respectively. The frequency domain
signal shows that the average value of the peak frequency of
TYPE A is slightly lower than that of TYPE B (40 kHz vs.
50 kHz).

Fig. 9 and 10 show the change in the RMS, AE energy,
and the peak frequency of AE signal based on the feed
changes. As shown in the figure, generally, the larger the
drill diameter, the larger the AE RMS and AE energy values.
The AE signals show a strong correlation with the generation
of Type A and Type B burrs, particularly in terms of feed
changes. For instance, the graphs have similarity to the burr
control chart results in the previous section. In addition,
changes in signal amplitudes (time series) and central fre-
quency are shown based on the drill diameter or burr type.
For more comprehensive results, more systematic analyses
involving various signal processing techniques are to be
conducted.
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FIGURE 8. Raw signal during drilling, raw signal, FFT and RMS during burr
formation (TYPE B; 1500rpm, f = 0.1mm/rev, d = 4 mm).

FIGURE 9. Characteristics of AE signals from burr formation as feed
changes (d = 3mm).

B. BP LEARNING ALGORITHM (MACHINING LEARNING)
As in-process monitoring/classification is necessary for
precision manufacturing and manufacturing automation,
researchers have exploited signal processing combined with
AI to effectively analyze the nature of processed signals and
selected features [31], [32]. In this study, both machine learn-
ing (ANN with BP) and deep learning were used to analyze
AE monitoring signals during burr formation. To implement
both AI and in-process sensor monitoring simultaneously,

FIGURE 10. Characteristics of AE signals from burr formation as feed
changes (d = 4mm).

BP ANNs, whose learning and classification abilities have
been proven [33], were utilized. BP is a learning algorithm
that uses the error signal of the output layer to change the
connection strengths between the input/ hidden layer and
the hidden/output layer by backpropagating the error signal
to the hidden layer. ANNs (machining learning) with BP
learning algorithm have been utilized in many precision man-
ufacturing applications including AE monitoring [34]–[37].

Six types of input vectors (features) are selected: cutting
speed, feed rate, drill diameter, AE RMS, AE energy, and
peak frequency. According to Ahn and Lee [3], burr type
prediction using ANNs based on either cutting conditions
or AE monitoring signals as input demonstrated reasonable
accuracy; this validates the relevance of feature vectors and
outputs (burr types). Subsequently, the selected features were
fed into an ANN with BP learning as input vectors to predict
the burr type during machining (i.e., six input nodes, four
hidden layers, 6-12-23-13 hidden nodes, and one output node,
as shown in Fig. 11). The burr shape was classified as the
output layer. For the result, a value of 1 corresponds to
Type A (uniform burr, uniform with gap), whereas a value
of 2 corresponds to Type B (transient burr). Table 5 shows
the training data set. Among a total of 108 data sets, 80% of
the data set were used for training, whereas the remainder was
used for burr type prediction.

Figure 12 and Table 6 show the results obtained using the
BP neural network. It was observed that prediction results
were generally consistent with experimental data with an
accuracy of 0.857.

VOLUME 10, 2022 67831



H. Kim, S. H. Lee: Prediction of Burr Types in Drilling of Al-7075 Using Acoustic Emission and CNNs

FIGURE 11. The architecture of neural network (BP ANN).

FIGURE 12. Prediction results of burr types using BP ANN.

IV. CONVOLUTION NEURAL NETWORK WITH WAVELET
PACKET TRANSFORM
In order to overcome the complicated feature selection
processes arising from a significant amount of AE time
series data and to enhance computational efficiency during
the supervised (machine) learning processes, deep learn-
ing (CNN) with wave packet transformation (WPT) [38] is
adopted. CNNs are a class of deep ANNs that use convolution
instead of general matrix multiplication in at least one of their
layers [39]. CNNs are primarily used for image data pro-
cessing, such as image classification. In general, CNNs are
more computationally efficient and accurate than fully con-
nected networks, such as BP networks [40]. Moreover, CNNs
do not require previous signal processing, including feature
selection/extraction processes [41]. In addition to input and
output layers, the typical layer of a convolution network typ-
ically comprises three stages: First stage: convolution (linear
activation); second stage: detection, which involves nonlinear
activation (e.g., the rectified linear activation function); third
stage: pooling, where the output layer is modified further,
and the representation is rendered approximately invariant to
slight translations of the inputs [39].

In this study, a CNN technique was utilized for automatic
feature extraction from AE signals during burr formation and
classification of burr type using AE spectrogram images as
inputs.

TABLE 5. Training data for the back propagation neural network.
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TABLE 5. (Continued.) Training data for the back propagation neural
network.

A. WPT AND AE FREQUENCY DECOMPOSITION
AE raw signals from machining, including burr formation,
typically incorporate transient characteristics with combina-
tions of various dynamic events. One of the difficulties of
AE signal processing is the characterization of information
regarding events generated from an extensive signal dataset,
particularly if both the time- and frequency-domain analyses
cannot elucidate the clear relationship(s) between the pro-
cess parameters and sampled signals. Because the wavelet
transform (WT) provides selective resolutions for various
frequency levels of time-series signals, it is well matched to
acquire more organized information in the time domain at
various frequency ranges. In fact, WT is particularly useful
for transient events identification [42] and for extracting tran-
sient features in the signal via time- frequency localization.
Hence, the WT has been utilized for AE signal analysis in
manufacturing process monitoring [43]–[47].

TABLE 6. Training data for the back propagation neural network.

The continuous wavelet transform (CWT) shifts through
all the areas of data points, which consequently yields smooth
and high-resolution outputs. For any square integrable func-
tion f(t), the CWT W (a, b) with respect to a wavelet basis ψ
is defined as [48]

W (a, b) =
1
√
a

∫
∞

−∞

f (t)ψ
(
t − b
a

)
dt. (5)

Here, a is the scaling parameter (a>0), b is the shifting
parameter. In addition, ψ̄ is the complex conjugate of a
wavelet ψ , which satisfies the admissibility condition [48]:

∫
∞

−∞

∣∣∣ψ̂(ω)∣∣∣2
|ω|

dω <∞ (6)

where ψ̂ denotes Fourier transform.
For the discrete wavelet transform (DWT), if we set a= 2j,

b = k2j (involute power of 2; j, k: integers), then the wavelet
has the form ψj,k = 2−

j
2ψ(2−jt−k) and the discrete wavelet

coefficients cj,k can be defined [48] as

cj,k =
∫
f (t)ψj,k (t)dt. (7)

The DWT, which involves a series of low- and high-pass
filters, is typically appropriate for image compression and
real-time applications. The low-pass filtered signals represent
the approximated shape(s) of the time series f(t), whereas the
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high-pass-filtered signals reflect the signal details. In addi-
tion, DWT affords a higher computational efficiency than
CWT since it reduces data redundancy [30].

As the resolution of DWT is relatively low in the high fre-
quency region, WPT, which further decomposes the detailed
information of the high frequency signals can be an alter-
native to the DWT. Fig. 13 illustrates the decompose tree
for WPT. The WPT approach has been implemented to
understand the frequency characteristics of the drilling pro-
cess [49], [50]. In the present study, WPT is implemented
to decompose the AE signal during drilling burr formation.
WPT was applied to sampled AE signals, which are decom-
posed into approximate (low frequency) and detailed (high
frequency) components.

FIGURE 13. WPT decomposition tree for AE signals (H: low pass filter,
G: high pass filter, A: approximation, D: Detailed) Note that DWT only
considers approximation samples of each level [51].

The decomposition of the approximate and detailed
components of frequency ranges was calculated using
Eqs. (8) and (9), respectively [52].

[0,
1
2
fs2−j] (8)

[
1
2
fs2−j,

1
2
fs2−(j−1)] (9)

where fs is the sampling frequency, and 2j is the number
of components in the jth level. It shows that the AE signal
is decomposed into a set of wavelet components and each
component has a specific frequency range. In this work,
we used MATLAB to extract wavelet packet decomposi-
tion and energy percentage functions. The wavelet energy
content of each decomposed component is determined as
follows [53].

ECi (t) =
t∑

τ=t0

(fi(τ ))2 (10)

ECi(t) represents the ith energy component at a certain
level. The total energy of a specific level is defined as the
sum of the energies of all components. The energy ratio for
each component and the total energy are used to determine
the energy ratio (EPC) for each component, as shown in Eq
(11) [53].

EPC i (t) =
ECi (t)

ECTotal (t)
j = 1 . . . 2i (11)

FIGURE 14. Typical WPT decompositions of AE signals.

FIGURE 15. Typical spectrogram inputs for the CNNs.

In this study, the optimal level was set to 3 (i = 3)
for WPT (three-step decomposition involves 23 = 8 com-
ponents). Daubechies wavelets, known for their compact-
ness and high adaptability to irregularly shaped signals, and
Shannon-entropy ratios were used for the analysis of AE
signals during drilling burr formation. AE frequency decom-
positions using WPT are performed on the Type A and B
signals. Fig.14 shows the AE raw signals during the drilling
that were subjected to wavelet transform with eight com-
ponents at a frequency interval of 125kHz. The frequency
range of the decomposed components is as follows. (0-125),
(125-250), (250-375), (375-500), (500-625), (625-750),
(750-875), (875-1000) kHz.

Table 7 shows the energy percentage at each frequency
band after the wavelet transform of the raw signal. The fre-
quency range that is the most sensitive to burr formation is
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FIGURE 16. Convolutional neural network architecture for the spectrogram inputs.

indicated. As shown in the table, both Type A and Type B
have the highest energy percentages at the first frequency
band (0–125 kHz). Compared with Type B, the waveform
energies of Type A were more concentrated in the first fre-
quency band.

B. AE SPECTRAL INPUTS
For each process, the AE signal data were acquired at a
sampling rate of 5 MHz. The AE signals obtained from
the final drilling (burr formation region) were transformed
into spectral images. Each image generated by the spec-
trogram using the first frequency band data contained
656× 875 pixels.

For each process, the AE signal data were acquired at a
sampling rate of 5 MHz. The AE signals obtained from the
final drilling (burr formation region) were transformed into
spectral images. Each image generated by the spectrogram

TABLE 7. Wavelet energy portions of each frequency band.

using the first frequency band data contained 656× 875 pix-
els. Fig. 15 shows typical spectroscopic images correspond-
ing to the two burr types. The ranges of the X-axis (frequency
axis) and Y-axis (amplitude axis) were specified as 125 kHz
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FIGURE 17. CNN training performance.

TABLE 8. Structure of CNN network model for classification.

and 0.05 Hz, respectively. After transforming the signal into
an image using a wavelet transform, it is used as input to the
CNN. The network architecture and explanatory diagram are
shown in Fig 16 and Table 8, respectively.

C. NETWORK SETUP AND TRAINING
The input layer picture contained 656 × 875 pixels. The
first layer was a convolutional layer with eight feature maps,
whose kernel size was 3 × 3. The second layer was a
2× 2 max pooling layer. The third layer was a convolutional
layer with 16, 3 × 3 feature maps and a 2 × 2 max pooling
layer. The fourth layer was a convolutional layer with 16,
3 × 3 feature maps and a 2 × 2 max pooling layer. The fifth
layer was a convolutional map comprising 32, 3 × 3 feature
maps that were fully connected to the output layer, and the
output layer contained one neuron corresponding to the shape
of two burrs. The R-type and softmax functions were used as
activation functions. The learning rate of the training network
was 0.001, and training was performed for seven cycles.
Among the AE signals in frequency band 1 (0–125 kHz), 80%
of the dataset was used for the training, and the remainder was
used for burr type prediction (Fig 17).

V. CONCLUSION
In this study, two AI approaches, i.e., machine learning and
deep learning, were used to predict the shapes of burrs that
occurred during the drilling ofAl7075 viaAE sensormonitor-
ing. As the drill progressed during the cutting process, an AE
signal peak was observed immediately before the tool exits
the workpiece owing to changes in the cutting mechanism
(exit burr generation) at the end of the cut. Hence, the AE
signals after the peak were sampled and analyzed as signals
relevant to the occurrence of drilling burrs.

First, we examined a BP neural network whose inputs
were AE signals combined with nondimensionalized
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cutting parameters. Subsequently, we examined CNNs
using spectrograms as inputs after AE frequency decom-
position via WPT. The conclusions obtained were as
follows:

• Three different types of exit burrs (uniform burrs, uni-
form burrs with caps, and transient burrs) were observed
in the aluminumworkpieces. Uniform burrs and uniform
burrs with caps were primarily observed when the feed
values were less than 0.1 mm/rev, whereas transient
burrs were observed at higher feeds.

• AE signals from the exit burr formation experiments
show a strong correlation with generated burr types with
variations of drilling parameters.

• The BP neural network model was implemented using
AE signal parameters (peak frequency, RMS, and AE
energy) and drilling process conditions (feed, rpm, and
diameter) as inputs. The prediction results showed that
the combined input results were reasonably consistent
with the experimental results, with a prediction accuracy
of 0.85714.

• UsingWPT for the generation of AE signal spectrogram
inputs, CNNs were successfully implemented for the
automatic feature selection process and classification of
generated burr types. Considering the satisfactory pre-
diction accuracy (0.9375) and adaptability to practical
machining processes of the proposed scheme, it can be
concluded to the latter is viable for various manufactur-
ing applications.

As the adaptability of the latest deep learning technologies
to a specific aspect of a manufacturing application is shown
through the presented study, the future goal is to widen the
scope of the implementation to more general machining pro-
cesses and features.
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