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a b s t r a c t 

Natural images containing affective scenes are used extensively to investigate the neural mechanisms of visual 
emotion processing. Functional fMRI studies have shown that these images activate a large-scale distributed brain 
network that encompasses areas in visual, temporal, and frontal cortices. The underlying spatial and temporal dy- 
namics, however, remain to be better characterized. We recorded simultaneous EEG-fMRI data while participants 
passively viewed affective images from the International Affective Picture System (IAPS). Applying multivariate 
pattern analysis to decode EEG data, and representational similarity analysis to fuse EEG data with simultaneously 
recorded fMRI data, we found that: (1) ∼80 ms after picture onset, perceptual processing of complex visual scenes 
began in early visual cortex, proceeding to ventral visual cortex at ∼100 ms, (2) between ∼200 and ∼300 ms 
(pleasant pictures: ∼200 ms; unpleasant pictures: ∼260 ms), affect-specific neural representations began to form, 
supported mainly by areas in occipital and temporal cortices, and (3) affect-specific neural representations were 
stable, lasting up to ∼2 s, and exhibited temporally generalizable activity patterns. These results suggest that 
affective scene representations in the brain are formed temporally in a valence-dependent manner and may be 
sustained by recurrent neural interactions among distributed brain areas. 
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. Introduction 

The visual system detects and evaluates threats and opportunities
n complex visual environments to facilitate the organism’s survival. In
umans, to investigate the underlying neural mechanisms, we record
MRI and/or EEG data from observers viewing depictions of naturalistic
cenes varying in affective content. A large body of previous fMRI work
as shown that viewing emotionally engaging pictures, compared to
eutral ones, heightens blood flow in limbic, frontoparietal, and higher-
rder visual structures ( Lang et al., 1998 ; Phan et al., 2002 ; Liu et al.,
012 ; Bradley et al., 2015 ). Applying MVPA and functional connectiv-
ty techniques to fMRI data, we further reported that affective content
an be decoded from voxel patterns across the entire visual hierarchy,
ncluding early retinotopic visual cortex, and that the anterior emotion-
odulating structures such as the amygdala and the prefrontal cortex

re the likely sources of these affective signals via the mechanism of
eentry ( Bo et al., 2021 ). 

Temporal dynamics of affective scene processing remains to be bet-
er elucidated. The event-related potential (ERP), an index of average
eural mass activity with millisecond temporal resolution, has been the
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ain method for characterizing the temporal aspects of affective scene
erception ( Cuthbert et al., 2000 ; Keil et al., 2002 ; Hajcak et al., 2009 ).
nivariate ERPs are sensitive to local neural processes but do not re-
ect the contributions of multiple neural processes taking place in dis-
ributed brain regions underlying affective scene perception. The ad-
ent of the multivariate decoding approach has begun to expand the
otential of the ERPs ( Bae and Luck 2019 ; Sutterer et al., 2021 ). By go-
ng beyond univariate evaluations of condition differences, these mul-
ivariate pattern analyses (MVPA) take into account voltage topogra-
hies reflecting distributed neural activities and help uncover the dis-
riminability of experimental conditions not possible with the univari-
te ERP method. The MVPA method can even be applied to single-trial
EG data. By going beyond mean voltages, the decoding algorithms can
xamine differences in single-trial EEG activity patterns across all sen-
ors, which further complements the ERP method ( Grootswagers et al.,
017 ; Contini et al., 2017 ). Conceptually, the presence of decodable
nformation in neural patterns has been taken to index differences in
eural representations ( Norman et al., 2006 ). Thus, in the context of
EG/ERP data, the time course of decoder performance may inform on
ow neural representations linked to a given condition or stimulus form
st 2022 
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nd evolve over time ( Cauchoix et al., 2014 ; Wolff et al., 2015 ;
ima et al., 2018 ). 

The first question we considered was how long it takes for the affect-
pecific neural representations of affective scenes to form. For non-
ffective images containing objects such as faces, houses or scenes, past
ork has shown that the neural responses become decodable as early as
100 ms after stimulus onset ( Cichy et al., 2014 ; Cauchoix et al., 2014 ).
his latency reflects the onset time for the detection and categorization
f stereotypical visual features associated with different objects in early
isual cortex ( Nakamura et al., 1997 ; Di Russo et al. 2002 ). For complex
cenes varying in affective content, however, although mapped onto rich
ategory-specific visual features in a multivariate fashion ( Kragel et al.,
019 ), there are no stereotypical visual features that unambiguously
eparate different affective categories (e.g., unpleasant scenes vs neu-
ral scenes). Accordingly, univariate ERP studies have reported robust
oltage differences between emotional and neutral content at relatively
ate times, e.g., ∼170–280 ms at the level of the early posterior negativ-
ty ( Schupp et al., 2006 ; Foti et al., 2009 ) and ∼300 ms at the level
f the late positive potential (LPP) ( Cuthbert et al., 2000 ; Lang and
radley, 2010 ; Liu et al., 2012 ; Sabatinelli et al., 2013 ). We sought to
urther examine these issues by applying multimodal neuroimaging and
he MVPA methodology. It is expected that perceptual processing of af-
ective scenes would begin ∼100 ms following picture onset whereas
ffect-specific neural representations would emerge between ∼150 ms
nd ∼300 ms. 

A related question is whether there are systematic timing differences
n the formation of neural representations of affective scenes differing
n emotional content. Specifically, it has been debated to what extent
leasant versus unpleasant contents emerge over different temporal in-
ervals (e.g., Oya et al., 2002 ). The negativity bias idea suggests that
versive information receives prioritized processing in the brain and
redicts that scenes containing unpleasant elements evoke faster and
tronger responses compared to scenes containing pleasant or neutral
lements. The ERP results to date have been equivocal ( Carretié et al.,
001 ; Huang and Luo, 2006 ; Franken et al., 2008 ). An alternative idea
s that the timing of emotional representation formation depends on
he specific content of the images (e.g., erotic within the pleasant cate-
ory vs mutilated bodies within the unpleasant category) rather than on
he broader semantic categories such as unpleasant scenes and pleasant
cenes ( Weinberg and Hajcak, 2010 ). We sought to test these ideas by
pplying the MVPA approach to decode subcategories of images usng
EG data. It is expected that the timing of representation formation is
ontent-specific. 

How do neural representations of affective scenes, once formed,
volve over time? For non-affective images, the neural responses are
ound to be transient, with the processing locus evolving dynamically
rom one brain structure to another ( Carlson et al., 2013 ; Cichy et al.,
014 ; Kaiser et al., 2016 ). For affective images, in contrast, the enhanced
PP, a major ERP index of affective processing, is persistent, lasting up
o several seconds, and supported by distributed brain regions including
he visual cortex as well as frontal structures, suggesting sustained neu-
al representations. To test whether neural representations of affective
cenes are dynamic or sustained, we applied a MVPA method called the
eneralization across time (GAT) ( King and Dehaene, 2014 ), in which
he MVPA classifier is trained on data at one time point and tested on
ata from all time points. The resulting temporal generalization matrix,
hen plotted on the plane spanned by the training time and the testing

ime, can be used to visualize the temporal stability of neural representa-
ions. For a dynamically evolving neural representation, high decoding
ccuracy will be concentrated along the diagonal in the plane, namely,
he classifier trained at one time point can only be used to decode data
rom the same time point but not data from other time points. For a sta-
le or sustained neural representation, on the other hand, high decoding
ccuracy extends away from the diagonal line, indicating that the clas-
ifier trained at one time point can be used to decode data from other
ime points. It is expected that the neural representations of affective
2 
cenes are sustained rather than dynamic with the visual cortex playing
n important role in the sustained representation. 

We recorded simultaneous EEG-fMRI data from participants viewing
ffective images from the International Affective Picture System (IAPS)
 Lang et al., 1997 ). MVPA was applied to EEG data to assess the forma-
ion of affect-specific representations of affective scene in the brain and
heir stability. EEG and fMRI data were integrated to assess the role of vi-
ual cortex in the large-scale recurrent network interactions underlying
he sustained representation of affective scenes. Fusing EEG and fMRI
ata via representation similarity analysis (RSA) ( Kriegeskorte et al.,
008 ), we further tested the timing of perceptual processing of affective
cenes in areas along the visual hierarchy and compare that with the
ormation time of affect-specific representations. 

. Materials and methods 

.1. Participants 

Healthy volunteers ( n = 26) with normal or corrected-to-normal vi-
ion signed informed consent and participated in the experiment. Two
articipants withdraw before recording. Four additional participants
ere excluded for excessive movements inside the scanner. EEG and

MRI data from these four participants were not considered. Data from
he remaining 20 subjects were analyzed and reported here (10 women;
ean age: 20.4 ± 3.1). 

These data have been published before ( Bo et al., 2021 ) to address
 different set of questions. In particular, in Bo et al. (2021) , we asked
he question of whether affective signals can be found in visual cortex.
nalyzing fMRI, an affirmative answer was found when it was shown

hat pleasant, unpleasant, and neutral pictures evoked highly decod-
ble neural representations in the entire retinotopic visual hierarchy.
sing the late positive potential (LPP) and effective functional connec-

ivity as indices of neutral reentry we further argued that these affective
epresentations are likely the results of feedback from anterior emotion-
odulating structures such as the amygdala and the prefrontal cortex.

n the present study we address the temporal dynamics of affective scene
rocessing where the focus was placed on EEG decoding. 

.2. Procedure 

.2.1. The stimuli 

The stimuli included 20 pleasant, 20 neutral and 20 unpleasant pic-
ures from the International Affective Picture System (IAPS; Lang et al.,
997 ): Pleasant: 4311, 4599, 4610, 4624, 4626, 4641, 4658, 4680,
694, 4695, 2057, 2332, 2345, 8186, 8250, 2655, 4597, 4668, 4693,
030; Neutral: 2398, 2032, 2036, 2037, 2102, 2191, 2305, 2374, 2377,
411, 2499, 2635, 2347, 5600, 5700, 5781, 5814, 5900, 8034, 2387;
npleasant: 1114, 1120, 1205, 1220, 1271, 1300, 1302, 1931, 3030,
051, 3150, 6230, 6550, 9008, 9181, 9253, 9420, 9571, 3000, 3069.
he pleasant pictures included sports scenes, romance, and erotic cou-
les and had average arousal and valence ratings of 5.8 ± 0.9 and
.0 ± 0.5, respectively. The unpleasant pictures included threat/attack
cenes and bodily mutilations and had average arousal and valence rat-
ngs of 6.2 ± 0.8 and 2.8 ± 0.8, respectively. The neutral pictures were
mages containing landscapes, adventures, and neutral humans and had
verage arousal and valence ratings of 4.2 ± 1.0 and 6.3 ± 1.0, re-
pectively. The arousal ratings for pleasant and unpleasant pictures are
ot significantly different ( p = 0.2) but both are significantly higher
han that of the neutral pictures ( p < 0.001). Valence differences be-
ween unpleasant vs neutral ( p < 0.001) and between pleasant vs neu-
ral ( p = 0.005) are both significant. Based on specific content, the 60
ictures can be further divided into 6 subcategories: disgust/mutilation
ody, attack/threat scene, erotic couple, happy people, neutral people,
nd adventure/nature scene. These subcategories provided an opportu-
ity to examine the content-specificity of temporal processing of affec-
ive images. 
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Fig. 1. Experimental paradigm and data analysis pipeline. (A) Affective picture viewing paradigm. Each recording session lasts seven minutes. 60 IAPS pictures 
including 20 pleasant, 20 unpleasant and 20 neutral pictures were presented in each session in random order. Each picture was presented at the center of screen 
for 3 s and followed by a fixation period (2.8 or 4.3 s). Participants were required to fixate the red cross at the center of the screen throughout the session while 
simultaneous EEG-fMRI was recorded. (B) Analysis pipeline illustrating the methods used at different stages of the analysis (see text for more details). 
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Two considerations went into the selection of the 60 pictures as
timuli in this study. First, these pictures are well characterized, and
ave been used in a body of research at the UF Center for the Study
f Emotion and Attention as well as in previous work from our labo-
atories. The categories were not solely designated on the basis of nor-
ative ratings of valence and arousal, but also taken into account of

he pictures’ ability to engage emotional responses, as assessed by auto-
omic, EEG, and BOLD measures ( Liu et al., 2012 ; Deweese et al., 2016 ;
higpen et al., 2018 ; Tebbe et al., 2021 ). Second, we have used the same
icture set previously in a number of studies where EEG LPPs and re-
ponse times were recorded across several samples of participants (see,
.g., Thigpen et al., 2018 ), enabling us to benchmark the EEG data from
nside the scanner against data recorded in an EEG lab outside the scan-
er, and to consider the impact of these pictures on modulating overt
esponse time behavior, when interpreting the results of the present
tudy. 

.2.2. The paradigm 

The experimental paradigm was illustrated in Fig. 1 A. There were
ve sessions. Each session contains 60 trials corresponding to the pre-
entation of 60 different pictures. The order of picture presentation was
andomized across sessions. Each IAPS picture was presented on a MR-
ompatible monitor for 3 s, followed by a variable (2800 ms or 4300 ms)
nterstimulus interval. The subjects viewed the pictures via a reflective
irror placed inside the scanner. They were instructed to maintain fixa-

ion on the center of the screen. After the experiment, participants rated
he hedonic valence and emotional arousal level of 12 representative
ictures (4 pictures for each broad category), which are not part of
he 60-picture set, based on the paper and pencil version of the self-
ssessment manikin ( Bradley and Lang, 1994 ; Bo et al., 2021 ). 
3 
.3. Data acquisition 

.3.1. EEG data acquisition 

EEG data were recorded simultaneously with fMRI using a 32 chan-
el MR-compatible EEG system (Brain Products GmbH). Thirty-one sin-
ered Ag/AgCl electrodes were placed on the scalp according to the 10–
0 system with the FCz electrode serving as the reference. An additional
lectrode was placed on subject’s upper back to monitor electrocardio-
ram (ECG); the ECG data was used during data preprocessing to assist
n the removal of the cardioballistic artifacts. EEG signal was recorded
ith an online 0.1–250 Hz band-pass filter and digitized to 16-bit at a

ampling rate of 5 kHz. To ensure the successful removal of the gradient
rtifacts in subsequent analyses, the EEG recording system was synchro-
ized with the scanner’s internal clock throughout recording. 

.3.2. fMRI data acquisition 

Functional MRI data were collected on a 3T Philips Achieva scan-
er (Philips Medical Systems). The recording parameters are as follows:
cho time (TE), 30 ms; repetition time (TR), 1.98 s; flip angle, 80°; slice
umber, 36; field of view, 224 mm; voxel size, 3.5 ∗ 3.5 ∗ 3.5 mm; ma-
rix size, 64 ∗ 64. Slices were acquired in ascending order and oriented
arallel to the plane connecting the anterior and posterior commissure.
1-weighted high-resolution structural images were also obtained. 

.4. Data preprocessing 

.4.1. EEG data preprocessing 

The EEG data was first preprocessed using Brain Vision Analyzer 2.0
Brain Products GmbH, Germany) to remove gradient and cardiobal-
istic artifacts. To remove gradient artifacts, an artifact template was
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reated by segmenting and averaging the data according to the onset
f each volume and subtracted from the raw EEG data ( Allen et al.,
000 ). To remove cardioballistic artifacts, ECG signal was low-pass-
ltered, and the R peaks were detected as heart-beat events ( Allen et al.,
998 ). A delayed average artifact template over 21 consecutive heart-
eat events was constructed using a sliding-window approach and sub-
racted from the original signal. After gradient and cardioballistic arti-
acts were removed, the EEG data were lowpass filtered with the cut-
ff set at 50 Hz, downsampled to 250 Hz, re-referenced to the aver-
ge reference, and exported to EEGLAB ( Delorme and Makeig, 2004 )
or further analysis. The second-order blind identification (SOBI) proce-
ure ( Belouchrani et al., 1993 ) was performed to further correct for eye
linking, residual cardioballistic artifacts, and movement-related arti-
acts. The artifact-corrected data were then lowpass filtered at 30Hz and
poched from − 300 ms to 2000 ms with 0ms denoting picture onset. The
restimulus baseline was defined to be − 300 ms to 0 ms. 

.4.2. fMRI data preprocessing 

The fMRI data were preprocessed using SPM ( http://www.
l.ion.ucl.ac.uk/spm/ ). The first five volumes from each session were
iscarded to eliminate transient activity. Slice timing was corrected us-
ng interpolation to account for differences in slice acquisition time. The
mages were then corrected for head movements by spatially realigning
hem to the sixth image of each session, normalized and registered to
he Montreal Neurological Institute (MNI) template, and resampled to
 spatial resolution of 3mm by 3mm by 3mm. The transformed images
ere smoothed by a Gaussian filter with a full width at half maximum of
 mm. The low frequency temporal drifts were removed from the func-
ional images by applying a high-pass filter with a cutoff frequency of
/128 Hz. 

.5. MVPA analysis: EEG data 

.5.1. EEG decoding 

MVPA analysis was done using support vector machine (SVM) im-
lemented in Matlab 2014 LIBSVM toolbox ( Chang and Lin, 2011 ). To
educe noise and increase decoding robustness, 5 consecutive EEG data
oints (no overlap) were averaged, resulting in a smoothed EEG time se-
ies with a temporal resolution of 20 ms (50 Hz). Unpleasant vs neutral
cenes and pleasant vs neutral scenes were decoded within each subject
t each time point to form a decoding accuracy time series. Each trial
f the EEG data (100 trials for each emotion category) was treated as
 sample for the classifier. The 31 EEG channels provided 31 features
or the SVM classifier. A ten-fold cross validation approach was applied.
he weight vector or weight map from the classifier was transformed
ccording to Haufe et al. (2014) and its absolute value is visualized as
 topographical map to assess the importance of each channel in terms
f its contribution to the decoding performance between affective and
eutral pictures. 

.5.2. Temporal generalization 

The stability of the neural representations evoked by affective scenes
as tested using a generalization across time (GAT) method ( King and
ehaene, 2014 ). In this method, the classifier was not only tested on

he data from the same time point at which it was trained, it was also
ested on data from all other sample points, yielding a two-dimensional
emporal generalization matrix. The decoding accuracy at a point on this
lane ( 𝑡 𝑥 , 𝑡 𝑦 ) reflects the decoding performance at time 𝑡 𝑥 of the classifier
rained at time 𝑡 𝑦 . 

.5.3. Statistical significance testing of EEG decoding and temporal 

eneralization 

Whether the decoding accuracy was above chance was evaluated
y the Wilcoxon sign-rank test. Specifically, the decoding accuracy at
ach time point was tested against 50% (chance level). The resulting
 value was corrected for multiple comparisons by controlling for the
4 
alse discovery rate (FDR, p < 0.05) across the time course. A further
equirement to reduce possible false positives is that the significance
luster contains at least five consecutive such sample points. 

The decoding accuracy was expected to be at chance level prior to
nd immediately after picture onset. The time at which decoding accu-
acy rose above chance level was taken to be the time when the affect-
pecific neural representations of affective scenes formed. The statis-
ical significance of the difference between the onset times of above-
hance-decoding for different decoding accuracy time series was evalu-
ted by a bootstrap resample procedure. Each resample consisted of ran-
omly picking 20 sample decoding accuracy time series from 20 subjects
ith replacement and above-chance decoding onset was determined for

his resample. The procedure was repeated 1000 times and the onset
imes from all the resamples formed a distribution. The significant dif-
erence between two such distributions was assessed by the two-sample
olmogorov-Smirnov test. 

To test the statistical significance of temporal generalization, we con-
ucted Wilcox sign-rank test at each pixel in the temporal generaliza-
ion map the decoding accuracy against 50% (chance level). The cor-
esponding p value is corrected for multiple comparisons according to
DR p < 0.05. Cluster size is a further control ( > 10 points). 

.6. MVPA analysis: fMRI data 

The picture-evoked BOLD activation was estimated on a trial-by-
rial basis using the beta series method ( Mumford et al., 2012 ). In this
ethod, the trial of interest was represented by a regressor, and all the

ther trials were represented by another regressor. Six motion regres-
ors were included to account for any movement-related artifacts during
canning. Repeating the process for all the trials we obtained the BOLD
esponse to each picture presentation in all brain voxels. The single-trial
oxel patterns evoked by pleasant, unpleasant, and neutral pictures were
ecoded between pleasant and neutral as well as between unpleasant
nd neutral using a ten-fold validation procedure within the retinotopic
isual cortex defined according to a recently published probabilistic vi-
ual retinotopic atlas ( Wang et al., 2015 ). Here the retinotopic visual
ortex consisted of V1v, V1d, V2v, V2d, V3v, V3d, V3a, V3b, hV4, hMT,
O1, VO2, PHC1, PHC2, LO1, LO2, and IPS. For some analyses, the vox-
ls in all these regions were combined to form a single ROI called visual
ortex, whereas for other analyses, these regions were divided into early,
entral, and dorsal visual cortex (see below). 

.7. Fusing EEG and fMRI data via RSA 

Decoding between affective scenes vs neutral scenes, as described
bove, yields information on the formation and dynamics of affect-
pecific neural representations. For comparison purposes, we also ob-
ained the onset time of perceptual or sensory processing of affective
mages in visual cortex, which is expected to precede the formation of
ffect-specific representations, by fusing EEG and fMRI data via repre-
entation similarity analysis (RSA) ( Kriegeskorte et al., 2008 ). RSA is a
ultivariate method that assesses the representational similarity (e.g.,
sing cross correlation) evoked by a set of stimuli and expresses the re-
ult as a representational dissimilarity matrix (1- cross correlation ma-
rix) (RDM). Correlating the fMRI-based RDMs from different ROIs and
he EEG-based RDMs from different time points, one can obtain the spa-
iotemporal profile of information processing in the brain. 

In the current study, for each trial, 31 channels of EEG data at a
iven time point provided a 31-dimensional feature vector, which was
orrelated with the 31-dimenstional feature vector from another trial
t the same time point. For all 300 trials (60 trials per session x 5 ses-
ions) a 300 × 300 representational dissimilarity matrix (RDM) was con-
tructed at each time point. For fMRI data, following the previous work
 Bo et al., 2021 ), we divided the visual cortex into three ROIs: early
V1v, V1d, V2v, V2d, V3v, V3d), ventral (VO1, VO2, PHC1, PHC2), and
orsal (IPS0-5) visual cortex. For each ROI, the fMRI feature vector was

http://www.fil.ion.ucl.ac.uk/spm/
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xtracted from each trial and correlated with the fMRI feature vector
rom another trial, yielding a 300 × 300 RDM for the ROI. To fuse EEG
nd fMRI, a correlation between the EEG-based RDM at each time point
nd the fMRI-based RDM from a ROI was computed, and the result was
he representational similarity time course for the ROI. This procedure
as carried out at single subject level first and then averaged across

ubjects. 
We note that in our study, since EEG and fMRI were simultaneously

ecorded, there is trial-to-trial correspondence between EEG and fMRI,
hich makes single trial RSA analysis possible. Single trial level RDMs,
y containing more variability, may enhance the sensitivity of the RSA
usion analysis. In most previous RSA studies fusing MEG/EEG and fMRI
e.g., Cichy et al., 2014 ; Muukkonen et al., 2020 ), the single trial-based
SA analysis is not possible, because MEG/EEG and fMRI were recorded
eparately and there was no trial-to-trial correspondence between the
wo types of recordings. In those situations, the only available option
as to average trials from the same exemplar or experimental condition
nd construct RDM matrices whose dimension equals the number of
xemplars or experimental conditions. 

To assess the onset time of significant similarity between EEG RDM
nd fMRI RDM, we first computed the mean and standard deviation of
he similarity measure during the baseline period ( − 300 ms to 0 ms).
long the representational similarity time course, similarity measures

hat are five standard deviations above the baseline mean were consid-
red statistically significant ( p < 0.003). To further control for multiple
omparisons, clusters containing fewer than five consecutive such time
oints were discarded. For a given ROI, the first time point that meets
he above significance criteria was considered the onset time for per-
eptual or sensory processing for that ROI. To statistically compare the
nset times from different ROIs, we conducted a bootstrap resample pro-
edure. Each resample consisted of randomly picking 20 sample RDM
imilarity time series from the 20 subjects with replacement and the on-
et time was determined for the resample. The procedure was repeated
000 times and the onset times from all the resamples formed a distribu-
ion. The significant difference between distributions was then assessed
y the two-sample Kolmogorov-Smirnov test.. 

. Results 

.1. Affect-specific neural representations: formation onset time 

We decoded multivariate EEG patterns evoked by pleasant, un-
leasant, and neutral affective scenes and obtained the decoding accu-
acy time courses for pleasant-vs-neutral and unpleasant-vs-neutral. As
hown in Fig. 2 A, for pleasant vs neutral, above-chance level decoding
egan ∼200 ms after stimulus onset, whereas for unpleasant vs neutral,
he onset time of above-chance decoding was ∼260 ms. Using a boot-
trap procedure, the distributions of the onset times were obtained and
hown in Fig. 2 B, where the difference between the two distributions
as evident, with pleasant-specific representations forming significantly

arlier than that of unpleasant-specific representations (ks value = 0.87,
ffect size = 1.49, two-sample Kolmogorov-Smirnov test). To examine
he contribution of different electrodes to the decoding performance,
ig. 2 C shows the classifier weight maps at the indicated times. These
eight maps suggested that neural activities that contributed to classi-
er performance was mainly located in occipital-temporal channels, in
greement with prior studies using fMRI where enhanced and/or decod-
ble BOLD activities evoked by affective scenes was observed in visual
ortex and temporal structures ( Sabatinelli et al., 2006 ; Sabatinelli et al.,
013 ; Bo et al., 2021 ). 

Given that above-chance decoding started ∼200 post picture onset,
t is unlikely that the decoding results were driven by low-level visual
eatures, which would have entailed earlier above-chance decoding time
e.g., ∼100 ms). To firm up this notion, we further tested if there are sys-
ematic low level visual feature differences across emotion categories.
ow level visual features were extracted by GIST using a method from a
5 
revious publication ( Khosla et al., 2012 ). We hypothesized that if GIST
eatures depend on category labels, we should be able to decode be-
ween different categories based on these features. A SVM classification
nalysis was applied to image-based GIST features, and the decoding
ccuracy is at chance level: pleasant vs neutral is 49% ( p = 0.9, ran-
om permutation test) and unpleasant vs neutral is 52.5% ( p = 0.8, ran-
om permutation test). These results suggest that the decoding results
n Fig. 2 are not likely to be driven by low-level visual features. 

Dividing the scenes into 6 subcategories: erotic couple, happy peo-
le, mutilation body/disgust, attack, nature scene/adventure, and neu-
ral people, we further decoded multivariate EEG patterns evoked by
hese subcategories of images. Against neutral people, the onset times
f above-chance decoding for erotic couple, attack, and mutilation
ody/disgust were ∼180 ms, ∼280 ms, and ∼300 ms, respectively, with
appy people not significantly decoded from neutral people. The on-
et times were significantly different between erotic couple and attack
ith erotic couple being earlier (ks value = 0.81, effect size = 2.1), and
etween erotic couple and mutilation body/disgust with erotic couple
eing earlier (ks value = 0.92, effect size = 2.3). The onset times be-
ween attack and mutilated body/disgust were only weakly different
ith attack being earlier (ks value = 0.35, effect size = 0.34). Against
atural scenes, the onset times of above-chance level decoding for erotic
ouple, attack, and mutilation body/disgust were ∼240 ms, ∼300 ms,
nd ∼300 ms, respectively, with happy people not significantly de-
oded from natural scenes. The onset times were significantly differ-
nt between erotic couple and attack with erotic couple being earlier
ks value = 0.7, effect size = 1.3) and between erotic and mutilation
ody/disgust with erotic couple being earlier (ks value = 0.87, effect
ize = 1.33); the onset timings were not significantly different between
ttack and mutilation body/disgust (ks value = 0.25, effect size = 0.25).
ombining these data, for subcategories of affective scenes, the forma-
ion time of affect-specific neural representations appear to follow the
emporal sequence: erotic couple → attack → mutilation body/disgust. 

Affective pictures are characterized along two dimensions: valence
nd arousal. We tested to what extent these factors influenced the decod-
ng results. Erotic (arousal: 6.30, valence: 6.87) and Disgust/Mutilation
arousal: 6.00, valence: 2.18) pictures have similar arousal ( p = 0.76)
ut significantly different valence ( p < 0.001). As shown in Fig. 3 A, the
ecoding accuracy between these two subcategories rose above chance
evel ∼200 ms after picture onset, suggesting that the patterns evoked
y affective scenes to a large extent reflect valence. In contrast, nat-
ral scenes/adventure (arousal: 5.4, valence: 7.0) and neutral people
arousal: 3.5, valence: 5.5) have significantly different arousal ratings
 p = 0.05), but the two subcategories cannot be decoded, as shown in
ig. 3 B, suggesting that arousal is not a very strong factor driving de-
odability. 

.2. Affect-specific neural representations: temporal stability 

How do affect-specific neural representations, once formed, evolve
ver time? A serial processing model, in which neural processing pro-
resses from one brain region to the next, would predict that the repre-
entations will evolve dynamically, resulting in a temporal generaliza-
ion matrix as schematically shown in Fig. 4 A Left. In contrast, a recur-
ent processing model, in which the representations are undergirded by
he recurrent interactions among different brain regions, would predict
ustained neural representations, resulting in a temporal generalization
atrix as schematically shown in Fig. 4 A Right. We applied a tempo-

al generalization method called the generalization across time (GAT)
o test these possibilities. A classifier was trained on data recorded at
ime 𝑡 𝑦 and tested on data at time 𝑡 𝑥 . The decoding accuracy is then
isplayed as a color-coded two-dimensional function (called the tem-
oral generalization matrix) on the plane spanned by 𝑡 𝑥 and 𝑡 𝑦 . As can
e seen in Fig. 4 B, a stable neural representation emerged ∼200 ms af-
er picture onset and remained stable as late as 2000 ms post stimulus
nset, with the peak decoding accuracy occurring within the time in-
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Fig. 2. Decoding EEG data between affective and neutral scenes across time. (A) Decoding accuracy time courses. (B) Bootstrap distributions of above-chance 
decoding onset times. Subjects are randomly selected with replacement and onset time was computed for each bootstrap resample (a total of 1000 resamples were 
considered). (C) Weight maps showing the contribution of different channels to decoding performance at different times. 
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erval 300–800 ms. Although the decoding accuracy decreased after the
eak time, it remained significantly above chance, as shown by the large
rea within the black contour. These results demonstrate that the affect-
pecific neural representations of affective scenes, whether pleasant or
npleasant, are stable and sustained over extended periods of time, sug-
esting that affective scene processing could be supported by recurrent
nteractions in the engaged neural circuits. Repeating the same temporal
eneralization analysis for emotional subcategories, as shown in Fig. 5 ,
e observed similar stable neural representations for each emotion sub-

ategory. 

.3. Visual cortical contributions to sustained affective representations 

Weight maps in Fig. 2 suggest that occipital and temporal structures
re the main neural substrate underlying affect-specific neural repre-
entations, which is in line with previous studies showing patterns of
isual cortex activity encoding rich, category-specific emotion represen-
ations ( Kragel et al., 2019 ; Bo et al., 2021 ). Whether these structures
articipate in the recurrent interactions that give rise to sustained neu-
6 
al representations of affective scenes was the question we considered
ext. Previous work, based on temporal generalization, has shown that
ognitive operations such as attention, working memory, and decision-
aking are characterized by sustained neural representations, in which

ensory cortex is an essential node in the recurrent network ( Büchel and
riston, 1997 ; Gazzaley et al., 2004 ; Wimmer et al., 2015 ). We tested
hether the same holds true in affective scene processing. It is reason-
ble to expect that if this is indeed the case, then the more stable and
ustained the neural interactions (measured by the EEG temporal gen-
ralization), the more distinct the neural representations in visual cor-
ex (measured by the fMRI decoding accuracy in visual cortex). Fig. 6 A
hows above-chance fMRI decoding accuracy for pleasant vs neutral
 p < 0.001) and unpleasant vs neutral ( p < 0.001) in visual cortex. We
uantified the strength of the temporal generalization matrix by aver-
ging the decoding accuracy inside the black contour (see Fig. 4 B) and
orrelated this strength with the fMRI decoding accuracy in visual cor-
ex. As shown in Fig. 6 B, for unpleasant vs neutral decoding, there was
 significant correlation between fMRI decoding accuracy in visual cor-
ex and the strength of temporal generalization ( R = 0.66, p = 0.0008),



K. Bo, L. Cui, S. Yin et al. NeuroImage 261 (2022) 119532 

Fig. 3. Further decoding analysis testing the influence of valence vs arousal. (A) EEG decoding between Erotic (normative valence: 6.87, arousal: 6.30) vs Dis- 
gust/Mutilation pictures (normative valence: 2.18, arousal: 6.00). Red horizontal bar indicates period of above chance decoding (FDR p < 0.05). (B) EEG decoding 
between Neutral people (normative valence: 5.5, arousal: 3.5) vs Natural scenes/adventure (normative valence: 7.0, arousal: 5.4). Above chance level decoding is 
not found. 
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hereas for pleasant vs neutral decoding, the correlation is not as strong
ut is still marginally significant ( R = 0.32, p = 0.07). Dividing sub-
ects into high and low decoding accuracy group based on their fMRI
ecoding accuracies in the visual cortex, the corresponding temporal
eneralization for each group is shown in Fig. 6 C, where it is again in-
uitively clear that temporal generalization is stronger in subjects with
igher decoding accuracy in the visual cortex. Statistically, the strength
f temporal generalization for unpleasant vs neutral was significantly
arger in the high decoding accuracy group ( p = 0.01) than the low ac-
uracy group; the same was also observed for pleasant vs neutral but the
tatistical effect is again weaker ( p = 0.065). We note that the method
sed here to quantify the strength of temporal generalization may be
nfluenced by the level of decoding accuracy. In the Supplementary Ma-
erials we explored a different method of quantifying the strength of
emporal generalization and obtained similar results (Fig. S5). 

.4. Onset time of perceptual processing of affective scenes 

Past work has found that perceptual processing of simple visual ob-
ects begins ∼100 ms after image onset in visual cortex ( Cichy et al.,
016 ). This time is earlier than the onset time of affect-specific neural
epresentations ( ∼200 ms). Since the present study used complex visual
cenes rather than simple visual objects as stimuli, it would be helpful to
btain information on the onset time of perceptual processing of these
omplex images, providing a reference for comparison. We fused simul-
aneous EEG-fMRI data using representational similarity analysis (RSA)
 Cichy et al., 2016 ; Cichy and Teng, 2017 ) and computed the time at
hich visual processing of IAPS images began in visual cortex. Visual

ortex was subdivided into early, ventral, and dorsal parts (see Meth-
ds). Their anatomical locations are shown in Fig. 7 A. We found that
hared variance between EEG recorded on the scalp and fMRI recorded
rom early visual cortex (EVC), ventral visual cortex (VVC), and dor-
al visual cortex (DVC) began to exceed statistical significance level at
80 ms, ∼100 ms, and ∼360 ms post picture onset, respectively, and

emained significant until ∼1800 ms; see Fig. 7 B. These onset times are
ignificantly different from one another according to the KS test ap-
lied to bootstrap generated onset time distributions: EVC < VVC (ks
alue = 0.21, effect size = 0.37), VVC < DVC (ks value = 0.75, effect
ize = 1.38), and EVC < DVC (ks test = 0.79, effect size = 1.79); see
ig. 7 C. 
7 
An additional analysis was conducted to test the influence of low-
evel visual features on the RSA results ( Groen et al., 2018 ; Grootswagers
t al., 2020 ). Specifically, we computed partial correlation between EEG
DM and fMRI RDM while controlling for the effect of low-level feature
DM. Low level features were extracted by GIST using a method from
 previous publication ( Khosla et al., 2012 ). 300 ×300 GIST RDM was
onstructed in a similar way as EEG and fMRI RDMs. If GIST is an im-
ortant factor driving the similarity between EEG RDM and fMRI RDM,
t will have a significant contribution to EEG RDM-fMRI RDM correla-
ion, and controlling for this contribution would reduce EEG RDM-fMRI
DM correlation. As can be seen, the results in Fig. 7 D,E, where the
artial correlation results are shown, are almost the same as Fig. 7 B,C,
uggesting that low-level features are not an important factor driving
he RSA result. 

Furthermore, we sought to examine if affect features are a factor
riving the RSA result. A 300 ×300 emotion-category RDM was con-
tructed. Specifically, if two trials belong to the same emotion category,
he corresponding element in RDM is coded as ‘0,’ otherwise it is coded
s ‘1’. Fig. 7 F showed that this categorical RDM becomes correlated with
EG RDM ∼240 ms post picture onset, which agrees with the onset time
f affect-specific representations from EEG decoding, suggesting that the
EG patterns beyond ∼240 ms manifested the emotional content of af-
ective scenes. 

. Discussion 

We investigated the temporal dynamics of affective scene processing
nd reported four main observations. First, EEG patterns evoked by both
leasant and unpleasant scenes were distinct from those evoked by neu-
ral scenes, with above-chance decoding occurring ∼200 ms post image
nset. The formation of pleasant-specific neural representations led that
f unpleasant-specific neural representations by about 60 ms ( ∼200 ms
s ∼260 ms); the peak decoding accuracies were about the same (59% vs
8%). Second, dividing affective scenes into six subcategories, the onset
f above-chance decoding between affective and neutral scenes followed
he sequence: erotic couple ( ∼210 ms) →attack ( ∼290 ms) →mutilation
ody/disgust ( ∼300 ms), suggesting that the speed at which neural rep-
esentations form depends on specific picture content. Third, for both
leasant and unpleasant scenes, the neural representations were sus-
ained rather than transient, and the stability of the representations was
ssociated with the fMRI decoding accuracy in the visual cortex, sug-
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Fig. 4. Temporal generalization analysis. Classifier trained at each time point was tested on all other time points in the time series. The decoding accuracy at a 
point on this plane reflects the performance at time 𝑡 𝑥 of the classifier trained at time 𝑡 𝑦 . (A) Schematic temporal generalizations of dynamic or transient (Left) vs 
sustained or stable (Right) neural representations. (B) Temporal generalization for decoding between pleasant vs neutral (Left) and between unpleasant vs neutral 
(Right). Wilcox sign-rank test applied at each pixel in the temporal generalization map to test the significance of decoding accuracy against 50% (chance level). The 
corresponding p value is corrected for multiple comparisons according to FDR p < 0.05. Cluster size is further controlled ( > 10 points). Back contours enclose pixels 
with above chance decoding accuracy. 
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esting, albeit indirectly, a role of visual cortex in the recurrent neu-
al network that supports the affective representations. Fourth, apply-
ng RSA to fuse EEG and fMRI, perceptual processing of complex visual
cenes was found to start in early visual cortex ∼80 ms post image onset,
receding to ventral visual cortex at ∼100 ms. 

.1. Formation of affect-specific neural representations 

The question of how long it takes for affect-specific neural repre-
entations to form has been considered in the past. An intracranial
lectroencephalography study reported enhancement of gamma oscil-
ations for emotional pictures compared to neutral pictures in occipital-
emporal lobe in the time period of 200–1000 ms ( Boucher et al., 2015 ).
n our data, the ∼200 ms onset of above-chance decoding and ∼500 ms
ccurrence of peak decoding accuracy, with the main contribution to de-
oding performance coming from occipital and temporal electrodes, are
onsistent with the previous report. Compared to nonaffective images
uch as faces, houses and scenes, where decodable differences in neural
epresentations in visual cortex started to emerge ∼100 ms post stim-
lus onset with peak decoding accuracy occurring at ∼150 ms ( Cichy
t al., 2016 ; Cauchoix et al., 2014 ), the formation times of these affect-
8 
pecific representations appear to be quite late. From a theoretical point
f view, this delay may be explained by the reentry hypothesis which
olds that anterior emotion regions such as the amygdala and the pre-
rontal cortex, upon receiving sensory input, send feedback signals to
isual cortex to enhance sensory processing and facilitate motivated at-
ention ( Lang and Bradley, 2010 ). In a recent fMRI study ( Bo et al.,
021 ), we found that scenes expressing different affect can be decoded
rom multivoxel patterns in the retinotopic visual cortex and the decod-
ng accuracy is correlated with the effective connectivity from anterior
egions to visual cortex, in agreement with the hypothesis. What has
ot been established is how long it takes for the reentry signals to reach
isual cortex. To provide a reference time for addressing this question.
e fused EEG and fMRI data via RSA and found that sensory processing
f complex visual scenes such as those contained IAPS pictures began
100 ms post picture onset. This gave us an estimate of the reentry

ime which is on the order of ∼100 ms or shorter. We caution that these
stimates are somewhat speculative as our inferences are made rather
ndirectly. 

Univariate ERP analysis, presented in the Supplementary Materials,
as also carried to provide additional insights. Four groups of electrodes

entered on Oz, Cz, Pz, and Fz were chosen as ROIs. ERPs evoked by
ffective pictures and neutral pictures were contrasted at each ROI. At
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Fig. 5. Temporal generalization analysis for subcategories of affective scenes. (A) Decoding emotion subcategories against neutral people. (B) Decoding emotion 
subcategories against natural scenes. See Figure 4 for explanation of notations. 
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z, the difference ERP waves between pleasant vs neutral showed clear
ctivation starting at ∼172 ms, whereas for unpleasant vs neutral, the
ctivation started at ∼200 ms, both in general agreement with the timing
nformation obtained from MVPA analysis. 

The foregoing indicates that pleasant scenes evoked earlier affect-
pecific representations than unpleasant scenes. This positivity bias ap-
ears to be at variance with the negativity bias idea, which holds that
egative events elicit more rapid and stronger responses compared to
leasant events ( Rozin and Royzman, 2001 ; Vaish et al., 2008 ). While
he idea has received support in behavioral data, e.g., subjects tend to lo-
ate unpleasant faces among pleasant distractors in shorter time than the
everse ( Öhman et al., 2001 ), the neurophysiological support is mixed.
ome studies using affective picture viewing paradigms reported shorter
RP latency and larger ERP amplitude for unpleasant pictures compared
o pleasant ones in central P2 and late positive potential (LPP) ( Carretié
t al., 2001 ; Huang and Luo, 2006 ), but other ERP studies found that
ositive scene processing can be as strong and as fast as negative scene
rocessing when examining early posterior negativity (EPN) in occipi-
al channels ( Schupp et al., 2006 ; Franken et al., 2008 ; Weinberg and
ajcak, 2010 ). One possible explanation for the discrepancy might be

he choice of stimuli. The inclusion of exciting and sports images, which
ave high valence but average arousal, as stimuli in the pleasant cate-
ory weakens the pleasant ERP effects when compared against threat-
ning scenes included in the unpleasant category which have both low
alence and high arousal ( Weinberg and Hajcak, 2010 ). In the present
ork, by including images such as erotica and affiliative happy scenes

n the pleasant category, which have comparable arousal ratings as im-
ges included in the unpleasant category, we were able to mitigate the
ossible issues associated with stimulus selection. Other explanations
eeded to be sought. 

Subdividing the images into 6 subcategories: erotic couples, happy
eople, mutilation body/disgust, attack scene, neutral scene, and neu-
9 
ral people, and decoding the emotion subcategories against the neu-
ral subcategories, we found the following temporal sequence of
ormation of neural representations: erotic couple (pleasant) →attack
unpleasant) →mutilation body/disgust (unpleasant), with happy peo-
le failing to be decoded from neutral images. This finding can be
een as providing neural support to previous electrodermal findings
howing that erotic scenes evoked largest responses within IAPS pic-
ures, which was followed by mutilation and threat scenes ( Sarlo et al.,
005 ), suggesting the temporal dynamic of emotion processing de-
ends on specific scene content. It also supports a behavioral study
hat found a fast discrimination of erotic pictures compared to other
ategories, assessed using choice and simple response time experi-
ents, using the same pictures as used here ( Thigpen et al., 2018 ).

n a neural study of nude body processing ( Alho et al. 2015 ), the
uthors reported an early 100–200 ms nude-body sensitive response
n primary visual cortex, which was maintained in a later period
200–300 ms). Their consistent occipitotemporal activation is com-
arable with our weight map analysis which implicates the occipi-
otemporal cortex as the main neural substrate sustaining the affective
epresentations. 

The faster discrimination between erotic scenes vs neutral people
ompared to erotic scenes vs natural scenes is worth discussing. One
ossibility is that the neutral people category has lower arousal rat-
ngs (3.458) compared to natural scenes (5.42) and arousal influences
ecodability. In addition, comparing discrimination performance and
RPs for pictures with no people versus pictures with people, Ihssen and
eil (2013) found no evidence that affective subcategories with peo-
le were better discriminated against subcategories with objects than
ubcategories with people. Instead, a face/portrait category was most
apidly discriminated when using a go/no-go format for responding.
espite the similarities, the exact mechanisms underlying our decoding
ndings, remain to be better understood. 
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Fig. 6. Visual cortical contribution to stable representations of affect. (A) fMRI decoding accuracy in visual cortex. p < 0.05 threshold indicated by the dashed line. 
(B) Correlation between strength of EEG temporal generalization and fMRI decoding accuracy in visual cortex. (C) Subjects are divided into two groups according to 
their fMRI decoding accuracy in visual cortex. Temporal generalization for unpleasant vs neutral (Upper) and pleasant vs neutral (Lower) was shown for each group 
(high accuracy group on the Left vs low accuracy group on the Right). Black contours outline the statistically significant pixels ( p < 0.05, FDR). 

10 
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Fig. 7. Representational similarity analysis (RSA). (A) Regions of interest (ROIs): early visual cortex (EVC), ventral visual cortex (VVC), and dorsal visual cortex 
(DVC). (B) Similarity between EEG RDM and fMRI RDM across time for the three ROIs. Similarity larger than five baseline standard deviations for more than 5 
consecutive time points are marked as statistically significant. (C) Onset time of significant similarity for each ROI in B. ∗ Small effect size. ∗ ∗ ∗ Large effect size. ( D) 
Partial correlation between EEG RDM and fMRI RDM with GIST RDM being set as control variable. ( E) Onset time of significant similarity for each ROI in D. ( F) 
Time course of similarity between EEG RDM and emotion category RDM. 

11 
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.2. Temporal evolution of neural representations of affective scenes 

Once the affect-specific neural representations form, how do these
epresentations evolve over time? If emotion processing is sequential,
amely, if it progresses from one brain region to the next as time passes,
e would expect dynamically evolving neural patterns. On the other
and, if the emotional state is stable over time undergirded by recurrent
rocessing in distributed brain networks, we would expect a sustained
eural pattern. A technique for testing these possibilities is the temporal
eneralization method ( King and Dehaene, 2014 ). In this method, a clas-
ifier trained on data at one time is applied to decode data from all other
imes, resulting in a 2D plot of decoding accuracy called the tempo-
al generalization matrix. Past studies decoding between non-emotional
mages such as neutral faces vs objects have found a transient tem-
oral generalization pattern ( Carlson et al., 2013 ; Cichy et al., 2014 ;
aiser et al., 2016 ), supporting a sequential processing model for ob-

ect recognition ( Carlson et al., 2013 ). The temporal generalization re-
ults from our data revealed that the neural representations of affective
cenes are stable over a wide time window ( ∼ 200 ms to 2000 ms). Such
table representations may be maintained by sustained motivational at-
ention, triggered by affective content ( Schupp et al., 2004 ; Hajcak et al.,
009 ), which could in turn be supported by recurrent interactions be-
ween sensory cortex and anterior emotion structures ( Keil et al., 2009 ;
abatinelli et al., 2009 ; Lang and Bradley 2010 ). In addition, the time
indow in which sustain representations were found is broadly con-

istent with previous ERP studies where elevated LPP lasted multiple
econds, extending even beyond the offset of the stimuli ( Foti and Haj-
ak, 2008 ; Hajcak et al., 2009 ). 

.3. Role of visual cortex in sustained neural representations of affective 

cenes 

The visual cortex, in addition to its role in processing perceptual in-
ormation, is also expected to play an active role in sustaining affective
epresentations, because the purpose of sustained motivational atten-
ion is to enhance vigilance towards threats or opportunities in the vi-
ual environment ( Lang and Bradley, 2010 ). The sensory cortex’s role
n sustained neural computations has been shown in other cognitive
aradigms, including decision-making ( Mostert et al., 2015 ), where sta-
le neural representations are shown to be supported by the reciprocal
nteractions between prefrontal decision structures and sensory cortex.
n face perception and imagery, neural representations are also found to
e stable and sustained by communications between high and low order
isual cortices ( Dijkstra et al., 2018 ). In our data, two lines of evidence
ppear to support a sustained role of visual cortex in emotion representa-
ion. First, over an extended time period, the weight maps obtained from
EG classifiers were comprised of channels located mainly in occipital-
emporal areas. Second, if the emotion-specific neural representations in
he visual cortex stem from the recurrent processing within distributed
etworks, then the stronger and longer these interactions, the stronger
nd more distinct the affective representations in visual cortex. This is
upported by the finding that the strength of temporal generalization is
orrelated with the fMRI decoding accuracy in visual cortex. 

.4. Temporal dynamic of sensory processing in visual pathway 

The temporal dynamics of sensory processing of complex visual
cenes can be revealed by fusing EEG-fMRI using RSA. The results
howed that visual processing of IAPS images started ∼80 ms post pic-
ure onset in early visual cortex (EVC) and proceeded to ventral visual
ortex (VVC) at ∼100 ms. It is instructive to compare this timing in-
ormation with a previous ERP study where it is found that during the
ecognition of natural scenes, the low-level features are best explained
y the ERP component occurring ∼90 ms post picture onset while high-
evel features are best represented by the ERP component occurring
170 ms after picture onset ( Greene and Hansen, 2020 ). Compared with
12 
he ∼100 ms start time of perceptual processing in visual cortex, the
200 ms formation onset of affect-specific neural representations likely

ncludes the time it took for the reentry signals to travel from emotion
rocessing structures such as the amygdala or the prefrontal cortex to
he visual cortex (see below), which then give rise to the affect-specific
epresentations seen in the occipital-temporal channels. The dorsal vi-
ual cortex (DVC), a brain region important for action and movement
reparation ( Wandell and Winawer, 2011 ), is activated at ∼360 ms,
hich is relatively late and may reflect the processing of action pre-
ispositions resulting from affective perceptions. This sequence of tem-
oral activity is consistent with that established previously using the
ast-fMRI method where early visual cortex activation preceded ventral
isual cortex activation which preceded dorsal visual cortex activation
 Sabatinelli et al., 2014 ). 

It is worth noting the RSA similarity time courses in all three visual
OIs stayed highly activated for a relatively long time period, which
ay be taken as further evidence, along with the temporal generaliza-

ion analysis, to support sustained neural representations of affective
cenes. From a methodological point of view, the RSA differs from the
ecoding analysis in that decoding analysis captures affect-specific dis-
inction between neural representations, whereas the RSA fusing of EEG-
MRI is sensitive to evoked pattern similarity shared by EEG and fMRI
maging modalities, with early effects likely driven by sensory percep-
ual processing and late effects by both sensory and affective processing.

.5. Beyond the visual cortex 

The visual cortex is not the only brain region activated by affective
cenes. In the Supplementary Materials, we performed a whole-brain
ecoding analysis of fMRI data (Fig. S1), and found above-chance de-
oding in many areas in prefrontal, limbic, as well as occipital-temporal
ortices. Interestingly, the strongest decoding was found in the occipital-
emporal areas, lending support to our focus on the visual cortex. Shed-
ing light on the timing of these activations, a previous EEG source lo-
alization study reported that affect-related activation began to appear
n visual cortex, prefrontal cortex and limbic systems ∼200 ms after
timulus onset ( Costa et al., 2014 ), complementing our fMRI analysis
nd the fMRI analysis by others ( Saarimäki et al., 2016 ). Fusing EEG
nd fMRI with RSA, we further tested the temporal dynamics in several
motion-modulating structures, including amygdala, dACC, anterior in-
ula, and fusiform cortex. As shown in Fig. S3, visual input reached the
mygdala ∼100 ms post picture onset, which is comparable with the ac-
ivation time of early visual cortex. A similar activation time has been
eported in a previous intracranial electrophysiological study ( Méndez-
értolo et al., 2016 ). Early activation was also found in dACC. Despite
hese early arrivals of visual input, it takes longer for affect-specific
ignals to arise, however. Recording from single neurons, Wang et al.
howed that it takes ∼250 ms for the emotional judgement signal of
aces to emerge in the amygdala ( Wang et al., 2014 ). It is intriguing
o note that the ∼100 ms difference between the arrival of visual input
nd the emergence of affect-specific activity is similar to our suggested
eentry time of ∼100 ms. 

.6. Limitations 

This study is not without limitations. First, the suggestion that sus-
ained affective representations are supported by recurrent neural in-
eractions is speculative and based on indirect evidence, as we have
lready acknowledged above. Second, we used cross correlation to con-
truct RDMs. A previous study has shown that a decoding-based anal-
sis leads to more reliable RDMs ( Guggenmos et al., 2018 ). Unfortu-
ately, this method is not applicable to our data, because we do not
ave enough repetitions for each picture (five times) to permit a reli-
ble decoding accuracy for every pair of pictures. Third, the inclusion
f adventure scenes, which contain humans (small in size relative to the
verall image), while providing a more relevant, interesting group of
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cenes to help avoid that any decoding effects be solely due to the ho-
ogenous, low-interest neutral people in the neutral category of images,

ould complicate the animate-inanimate comparison. 

.7. Summary 

We recorded simultaneous EEG-fMRI data from participants viewing
ffective pictures. Applying multivariate analyses including SVM and
SA, we found that perceptual processing of affective pictures began
100 ms in visual cortex, whereas affect-specific representations began

o form ∼200 ms post image onset. The neural representations of af-
ective scenes are sustained rather than dynamic and the visual cortex
ight be an important node in the recurrent network that supports these

ustained representations. 
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