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RUL (remaining useful life) shapelets were recently developed to overcome the shortcomings of similarity-based 
RUL prediction methods, such as high sensitivity to parameters. RUL shapelets are informative subsequences 
whose distances to a run-to-failure time series sample are very useful for predicting the RUL of the sample. 
However, the prediction performance and interpretability highly depend on the set of RUL shapelets, and it 
is very difficult to compose an optimized set. In this paper, we mathematically formalize the RUL shapelet 
composition problem with multiple objective functions. In addition, we analyze the characteristics of good RUL 
shapelet sets and develop a solution methodology based on a genetic algorithm. From the various experiments, 
we validate that the proposed method outperforms previous ones and suggest how to use the proposed method. 
The solution methodology developed in this paper can be applied to solve various RUL prediction problems. In 
addition, the findings on the RUL shapelets can help researchers develop their RUL shapelet-based solution.
1. Introduction

The remaining useful life (RUL) of an engineering system is defined 
as the length of time from the current time to the time of failure. It 
is essential for prognostics and health management (PHM) to predict 
the RUL accurately because the predicted RUL contributes to make im-

portant decisions such as maintenance schedules. In other words, PHM 
objectives such as avoiding accidents, anticipating failures and aiming 
reliable operation and maintenance can be obtained through accurate 
RUL prediction (Zio, 2022; Zonta et al., 2020).

RUL prediction approaches can be categorized into physics-based 
and data-driven approaches. The former relies on developing degrada-

tion process models to estimate the RUL by using domain knowledge, 
such as system failure mechanisms, while the latter relies on devel-

oping data-driven models by discovering degradation patterns from 
previously observed data of the system and estimating RUL based on 
these patterns by using statistical machine learning (ML) or deep learn-

ing (DL) models (Liao and Kottig, 2014). In this paper, we focus on 
the data-driven approach with ML or DL models, which has attracted 
much attention from both academia and industry thanks to the recent 
development of data collection and processing techniques.
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Methods to develop RUL prediction models using ML or DL models 
can be categorized into various categories, including statistical feature-

based, image-based, time series-based, and similarity-based models. 
Statistical feature-based methods extract statistics from a run-to-failure 
time series and use them as a feature vector (Guo et al., 2017; Aremu 
et al., 2020). Image-based methods convert run-to-failure data into 2D 
images using time-frequency representation techniques and train pat-

terns from the images using convolution neural network models (Yoo 
and Baek, 2018). Time series-based methods construct health index and 
train time series models such as long short-term memory (LSTM) us-

ing the health index to predict RUL (Xiang et al., 2021; Sharma et al., 
2022). Similarity-based methods estimate RUL of newly entered time 
series samples based on the RUL values of nearest neighbors (Mosallam 
et al., 2016). To be more concrete, the methods split every training sam-

ple into a set of windows and labels RUL for each window. Then, the 
method finds the nearest neighbors of a window of new sample among 
training windows. Finally, the RUL is predicted as the weighted mean 
of RULs of the neighbors, where each weight is directly proportional to 
the similarity between the window and neighbor.

It is very important for RUL prediction models to consider not only 
prediction accuracy but also interpretability in order to use them for ex-

plainable diagnosis (Costa and Sánchez, 2022). RUL prediction results 
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using similarity-based models are interpretable based on the neighbor 
windows. In addition, they are appropriate for dealing with run-to-

failure data collected from various operating conditions (Li et al., 2017). 
Finally, it is easy to implement without any domain knowledge and ana-

lyzing degradation trends (Cai et al., 2020), because it employs similar 
historical data as references and relies on the historical data itself. In 
addition, it is difficult to obtain enough degradation data in real world 
applications (Ahn et al., 2021), but the similarity-based method has 
been proven effective to predict RUL with the limited data (Lyu et al., 
2020).

Owing to these advantages, these methods have been frequently ad-

dressed in the literature such as Lyu et al. (2020), Liu et al. (2019), 
Bingjie et al. (2021) and Malinowski et al. (2015). For example, Lyu 
et al. (2020) proposed similarity-based RUL prediction method based 
on dynamic time warping (DTW). DTW is a distance measure to calcu-

late distance between time series samples with different length. Since 
it requires huge computational time, they also introduce a coarse-to-

fine strategy to find the neighbor windows in an efficient way. RUL of 
test window is estimated based on the neighbor windows and adjusted 
by degradation rate and time gap based adjustment strategies. Liu et 
al. (2019) developed an RUL prediction method that consists of three 
steps: (1) health index construction, (2) similarity matching, and (3) 
RUL prediction. In the first step, every multivariate training sample is 
transformed into a univariate health index using principal component 
analysis (PCA), and a new sample is also transformed similarly. In the 
second step, every health index is again transformed to a set of slid-

ing windows of the same length. In the third step, the nearest neighbor 
of every window in the new sample is found among all windows in a 
training health index based on the mean of the Euclidean similarity and 
cosine similarity. Finally, the RUL of each window in the new sample is 
estimated as the weighted mean of RULs of its neighbor windows, where 
the weight is the sum of the normalized Euclidean and cosine similari-

ties. Bingjie et al. (2021) employed K-means clustering algorithm for the 
similarity-based RUL prediction, considering that run-to-failure samples 
are collected under different operating conditions. That is, they use the 
algorithm to group similar training samples and find the closest cluster 
to each test sample. The training samples in the closet cluster are used 
to estimate RUL of the test sample using kernel density estimation.

Even though similarity-based methods have many advantages, they 
also have several critical disadvantages. For example, the prediction ac-

curacy and interpretability are very sensitive to the hyperparameters, 
such as the window size, number of neighbors, and similarity mea-

sures. In addition, they usually use fixed window for low computational 
complexity, leading to miss potentially good windows. Using sliding 
window instead of the fixed window, however, leads to long computa-

tional time.

In this regard, Malinowski et al. (2015) proposed a method based on 
RUL shapelets by employing the concept of shapelets. Shapelets are the 
subsequences used for time series classification and distance between 
the shapelets and a time series sample are employ to determine its class 
(Ye and Keogh, 2009). It has been adopted in various applications ow-

ing to its several advantages including high accuracy, interpretability, 
few hyperparameters and so forth. For example, Liu et al. (2015) ap-

plied shapelets to recognize complex human activities suffering from 
portability, interpretability and extensibility. As another example, AlD-

hanhani et al. (2019) used shapelets to represent traffic incidents and 
congestion patterns for detecting traffic events. It is very difficult to find 
the optimal shapelets efficiently, and some studies addressed this prob-

lem. For example, Grabocka et al. (2014) applied stochastic gradient 
learning to find the near-to-optimal shapelets without evaluating a lots 
of shapelet candidates.

RUL shapelets are subsequences whose distance can be used as a 
feature vector to predict RUL. Since the RUL shapelets are more infor-

mative than window and the number of them is much smaller than that 
of windows, it is more effective and efficient to use RUL shapelets in-

stead of similarity-based methods. Even though they proposed interest-
2

ing concepts, RUL shapelets, they did not analyze the properties of the 
RUL shapelets and not consider interactions among the RUL shapelets. 
In addition, they predict RUL as a mean of RUL of time series sam-

ples after RUL shapelets appear. Therefore, it is necessary to consider 
the properties and interaction to use RUL shapelets effectively, and our 
research objective is to develop a RUL shapelet selection method con-

sidering them.

In order for the RUL shapelets to be used, the distance between 
time series samples and shapelets should be proportional to the RULs 
to obtain high accuracy. In addition, the number of shapelets should 
be small enough for the interpretability and to allow a short estima-

tion time. Finally, there should be no redundancy among the RUL 
shapelets, positive interactions should exist among them. Here, redun-

dant RUL shapelets are shapelets whose distances to time series samples 
are highly correlated with each other, and positive interaction between 
two RUL shapelets means that RUL can be estimated accurately only 
when considering both distances. It is obvious that the estimation ac-

curacy, interpretability, and estimation time highly depend upon the 
set of selected RUL shapelets, but previous research did not consider 
this. Genetic algorithm (GA) is one of the most widely used metaheuris-

tic algorithms to solve various time series data analysis problems. It 
has been successfully applied to solve various optimization problems 
including shapelet selection (Xue et al., 2020), which is similar to our 
problem.

The major contents and contributions of our research are as fol-

lows. First, we mathematically formulate the RUL shapelets selection 
problem as a feature selection problem with three objectives: (1) to 
minimize the error of RUL prediction, (2) to minimize the number of 
RUL shapelets, and (3) to minimize redundancy among the shapelets. 
To achieve this goal, we expand the concept of RUL shapelets to the 
feature vectors, by which the machine learning model can be trained in 
order to consider the interaction between RUL shapelets that appear in 
the different locations of the time series. Second, we discuss the proper-

ties of good RUL shapelets, including their redundancy and interactions. 
The discussion can be summarized as (1) selecting RUL shapelets con-

sidering correlation between distance to RUL shapelets and RULs only 
may lead to focusing on the later part of the time series, (2) good RUL 
shapelets occur at similar locations in every sample, and (3) even good 
RUL shapelets in the same interval causes redundancy which negatively 
impact on RUL prediction performance. Finally, we develop a GA to 
solve the formalized RUL shapelet selection problem. Especially, we 
focus on designing initialization method of the GA based on the dis-

cussion on the properties of good RUL shapelets. In addition, we also 
design proper fitness functions for our problem.

The rest of this paper is organized as follows. Section 2 presents the 
preliminaries of the study, including shapelet discovery, RUL shapelet, 
and GA. Section 3 introduces and formulates the RUL shapelets selection 
problem, and Section 4 analyzes the properties of the RUL shapelets 
and develops a GA-based RUL shapelet selection algorithm. Section 5

verifies the proposed algorithm through experiments. Finally, Section 6

concludes the research.

2. Preliminaries

2.1. Shapelet discovery

Let 𝒙 =
(
𝑥1, 𝑥2,⋯ , 𝑥𝑇

)
be a time series sample and 𝑦 ∈ {1, 2, ⋯ , 𝐶}

be its label. We say 𝒔=
(
𝑠1, 𝑠2,⋯ , 𝑠𝑙

)
is a subsequence of the time series 

dataset 𝑋 ∋ 𝒙 if there are one or more samples satisfying the following:

𝒔 = 𝒙𝑡∶𝑡+𝑙 , (1)

where 𝒙𝑡∶𝑡+𝑙 denotes 
(
𝑥𝑡, 𝑥𝑡+1,⋯ , 𝑥𝑡+𝑙

)
. The distance between arbitrary 

subsequence 𝒔′ and 𝒙, 𝑑
(
𝒔
′
,𝒙
)

, is defined as presented in equation (2).

𝑑

(
𝒔
′
,𝒙
)
= min
𝑡=1,2,⋯,𝑇 −𝑙

𝐸

(
𝒔
′
,𝒙𝑡∶𝑡+𝑙

)
, (2)
𝑖
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Fig. 1. Optimization process using GA.
where 𝐸 (𝒂,𝒃) is the Euclidean distance between two vectors, 𝒂 and 𝒃. 
We say 𝒔′ matches 𝒙𝑡′∶𝑡′+𝑙 when 𝒙𝑡′∶𝑡′+𝑙 = argmin𝑡=1, 2, ⋯,𝑇𝑖−𝑙 𝐸

(
𝒔
′
,𝒙𝑡∶𝑡+𝑙

)
.

A shapelet is defined as the subsequence whose distance to each 
class maximizes the class relevance in time series classification prob-

lems (Ye and Keogh, 2009). In other words, the shapelet is the subse-

quence that minimizes the loss function of a classifier when its distance 
to each class is used as a feature as follows:

𝒔 = argmin
𝒔
′∈𝑆 𝐿

(
𝑓

(
𝑑

(
𝒔
′
,𝑋

))
,𝒚
)
, (3)

where  (⋅) is a loss function for a classifier 𝑓 , 𝑆 is a set of all possible 
subsequences, and 𝒚 is the label vector.

Since the search space 𝑆 is too big to find 𝒔 in equation (3), many 
heuristic approaches have been proposed to find shapelets under several 
assumptions. For example, Grabocka et al. (2014) developed a learning 
method to estimate shapelets of a given length. The method initializes 
candidates of the shapelet randomly and updates them using stochastic 
gradient descent optimization to minimize the loss function. Note that 
shapelet 𝒔 found by heuristic approaches would not satisfy equation (3). 
Even worse, 𝒔 may not be the subsequence satisfying equation (1).

2.2. RUL shapelet

RUL shapelets are defined as subsequences containing information 
about the RUL. One can estimate the RUL based on the distance to them 
from the run-to-failure time series 𝒙1∶𝑡 (Malinowski et al., 2015). More 
formally, the RUL shapelet is expressed as a tuple (𝒔, 𝛿, 𝜇), where 𝒔 is a 
subsequence, 𝛿 is a threshold for the distance between 𝒔 and 𝒙1∶𝑡, and 
𝜇 is the estimated RUL. That is, we estimate RUL of 𝒙1∶𝑡 as 𝜇 when 𝒔
matches 𝒙1∶𝑡 and 𝑑

(
𝐬,𝒙1∶𝑡

)
≤ 𝛿.

Each element of the RUL shapelet is obtained as follows. 𝒔 is one 
of the cluster centers obtained by applying the k-means clustering al-

gorithm to every subsequence whose length is 𝑙 = 2, 3, ⋯ , 𝐿, where 𝐿
is the maximum length of RUL shapelets. Because 𝒔 is a cluster center, 
one can say that it is close to other subsequences. The threshold 𝛿 is cal-

culated as the minimum distance between 𝒔 and the 𝑖𝑡ℎ sample 𝒙(𝑖) as 
presented in equation (4):
3

𝛿 =min
𝑡′
𝑑

(
𝒔,𝒙

(𝑖)
𝑡′∶𝑡′+𝑙

)
. (4)

Let us define the RUL 𝛾 (𝑖) after matching 𝒔 to 𝒙(𝑖) as shown in the 
equation (5):

𝛾 (𝑖) = 𝑇 − argmin𝑡 𝑑
(
𝒔,𝒙

(𝑖)
𝑡∶𝑡+𝑙

)
. (5)

Let us also define �̃� (𝑟) be the 𝑟th smallest among 𝛾 (𝑖) for all 𝑖. Then, 𝜇 is 
the mean of 

{
�̃� (𝑟) ∣ 𝑟 = 1, 2, ⋯ , �̃�

}
, where �̃� is calculated as presented in 

equation (6):

�̃� = argmin2≤𝑟≤𝑛 𝑉 𝑎𝑟
[
�̃� (1), �̃� (2),⋯ , �̃� (𝑟)

]
, (6)

where 𝑉 𝑎𝑟 
[
�̃� (1), �̃� (2),⋯ , �̃� (𝑟)

]
is the variance of �̃� (1), �̃� (2), ⋯, and �̃� (𝑟).

2.3. Genetic algorithm

GA is one of the most widely used metaheuristic algorithms to solve 
various time series data analysis problems. It was proposed early 1970s, 
but it is still powerful method and has been employed to solve recent 
research problems such as feature selection (Ahn and Hur, 2020), hy-

perparameter tuning (Ahn and Hur, 2020), shapelet selection (Xue et 
al., 2020), and so forth.

The optimization process using GA consists of four steps: (1) initial-

ization, (2) evaluation, (3) crossover and mutation, and (4) generation 
of the new population. This process is presented in Fig. 1 (Vandewiele 
et al., 2021).

In the first step, a set of solutions called the population is initialized. 
In the second step, the solutions in the current population are evalu-

ated using a fitness function, and some solutions with the highest fitness 
score are selected. In the third step, children of the selected solutions 
are generated using crossover and mutation operators. Crossover opera-

tors generate a child of two randomly selected solutions (called parents) 
and mutation operators add a variation to the child to avoid the situa-

tion where most solutions in the population are similar to each other. 
In the fourth step, the generated children and selected solutions com-

pose a new population. If the termination condition is satisfied, then 
the currently best solution is returned; otherwise, steps (2) to (4) are 
repeated.
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Fig. 2. Popular crossover operators.
The solution representation method, crossover, and mutation opera-

tors in GA should be determined according to the specific purpose. For 
example, each solution can be represented as a binary vector for a fea-

ture selection problem (Ahn and Hur, 2020). As another example, each 
solution can be represented as a set of shapelets for a shapelet selec-

tion problem (Vandewiele et al., 2021). The most well-known crossover 
operators are one-point (see Fig. 2(a)), two-point (see Fig. 2(b)), and 
uniform crossover operators (see Fig. 2(c)). As seen in this figure, the 
crossover operators pick crossover points at random, and components 
of the parent solutions (i.e., genes) are swapped to generate children.

Examples of mutation operators are the flip bit operator, Gaussian 
operator, and so forth. The flip bit operator selects some genes at ran-

dom and converts the genes into 1 if they are 0, and into 0 otherwise. 
Gaussian operators select some genes at random and add Gaussian noise 
to them.

3. Problem statement

Suppose we have run-to-failure data including 𝑛 samples with differ-

ent lengths 
{
𝒙(𝑖) ∣ 𝑖 = 1, 2, ⋯ , 𝑛

}
, where 𝒙(𝑖) =

(
𝑥
(𝑖)
1 , 𝑥

(𝑖)
2 ,⋯ , 𝑥

(𝑖)
𝑇𝑖

)
is the 

sample 𝑖. Here, 𝑥(𝑖)
𝑡

(
𝑡 = 1, 2, ⋯ , 𝑇𝑖

)
is the value measured immediately 

after time 𝑡 from when the equipment described by the data started to 
be used. Additionally, 𝑇𝑖 is the lifetime of the equipment. Based on 𝑇𝑖, 
we can label RUL for all 𝑖 and 𝑡 as presented in equation (7):

𝑦
(𝑖)
𝑡

=
𝑇𝑖 − 𝑡
𝑇𝑖
, (7)

where 𝑦(𝑖)
𝑡

is the label for 𝑥(𝑖)
𝑡

. We use the relative RUL instead of abso-

lute RUL (i.e., 𝑇𝑖− 𝑡) for effective machine learning modeling. Using the 
label, we convert the run-to-failure data into a training dataset 𝐷 with 
the following equation (8):

𝐷 =
{(

𝒙
(𝑖)
1∶𝑡, 𝑦

(𝑖)
𝑡

)
∣ 𝑖 = 1,2,⋯ , 𝑛; 𝑡 = 1,2,⋯ , 𝑇𝑖

}
, (8)

where 𝒙(𝑖)1∶𝑡 denotes 
(
𝑥
(𝑖)
1 , 𝑥

(𝑖)
2 ,⋯ , 𝑥

(𝑖)
𝑡

)
. We use 𝒙(𝑖)1∶𝑡 instead of 𝑥(𝑖)

𝑡
to ex-

tract cumulative information until 𝑡 to predict RUL at 𝑡.
The problem considered in this paper is to select a set of RUL 

shapelets, 𝑆 =
{
𝒔1,𝒔2,⋯ ,𝒔𝑚

}
, from 𝐷 with three objectives: (1) to min-

imize the error of RUL prediction, (2) to minimize the number of RUL 
shapelets, and (3) to minimize redundancy among the shapelets. We de-

fine RUL shapelets as subsequences whose distances to 𝒙(𝑖)1∶𝑡 are used as 
a feature vector for ML- or DL-based RUL prediction models. In other 
words, we predict 𝑦(𝑖)

𝑡
with a trained regression model 𝑓 as presented in 

equation (9):
4

�̂�
(𝑖)
𝑡

= 𝑓
(
𝑑

(
𝒔1, 𝒙

(𝑖)
1∶𝑡

)
, 𝑑

(
𝒔2, 𝒙

(𝑖)
1∶𝑡

)
,⋯ , 𝑑

(
𝒔𝑚, 𝒙

(𝑖)
1∶𝑡

))
. (9)

The three objectives can be mathematically expressed as shown in equa-

tion (10), (11), and (12), respectively:

minimize 1∑𝑛
𝑖=1 𝑇𝑖

𝑛∑
𝑖=1

𝑇𝑖∑
𝑡=1

|||𝑦(𝑖)𝑡 − �̂�(𝑖)
𝑡

||| , (10)

minimize 𝑚, (11)

minimize
𝑚−1∑
𝑗=1

𝑚∑
𝑘=𝑗+1

𝜌

(
𝑑

(
𝒔𝑗 , 𝒙

(𝑖)
1∶𝑡

)
, 𝑑

(
𝒔𝑘, 𝒙

(𝑖)
1∶𝑡

))
, (12)

where 𝜌 (⋅) is the Pearson correlation coefficient, which is adopted be-

cause it is frequently-used to measure the redundancy among the fea-

tures of a supervised model (Nasir et al., 2020) and the RUL shapelets 
are also the features. In addition to these three objectives, the efficiency 
of exploring 𝑆 should also be considered. That is, we cannot solve the 
problem by comparing all possible candidates 𝑆 due to the large search 

space (i.e., the number of all possible candidate 𝑆 is 2
∑𝑛
𝑖=1
𝑇𝑖×

(
𝑇𝑖−1

)
2 in the 

worst case scenario).

4. Proposed algorithm

This section proposes the algorithm to compose a set of RUL 
shapelets using GA. The overall flow chart to select RUL shapelets is 
illustrated in Fig. 3 and Algorithm 1.

Solution of the proposed algorithm is a set of RUL shapelets and the 
proposed algorithm selects the solution by generating and evaluating 
many solution candidates. The specific process is as follows. As the first 
step, it generates 𝑃 initial solutions as follows.

(1) 𝑚 is sampled from discrete uniform distribution whose lower 
bound is 2 and upper bound is 𝑀

(2) range [0, 1] is split into 𝑚 intervals such as [0, 0.3), [0.3, 0.6), 
[0.6, 1.0] when 𝑚 = 3

(3) data is divided according to the intervals. For example, the data 
whose RUL is between 0.3 and 0.6 is included in [0.3, 0.6).

(4) For each interval, centroid 𝐶𝑘 with length 𝑘 (𝑘 = 2, 3, ⋯ ,𝐾), is 
calculated and the centroid which has the highest correlation with RUL 
is selected as a RUL shapelet. By doing this, the lengths of RUL shapelets 
in the same solution become different from each other.

In the second step, 𝑃 solutions are evaluated using two fitness func-

tions (i.e., relevant function and a redundancy fitness function) and 
𝑃 −𝐶 solutions with the highest fitness are selected. We call them par-

ents. In the third step, two parents are selected at random and a child is 
generated using a crossover operator. It repeats 𝐶 times and after that 
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Fig. 3. Overall flow chart of the proposed algorithm.
Algorithm 1 Overall pseudocode of the proposed Algorithm

Input D=
{(

𝒙(𝑖) , 𝑦(𝑖)
)
∣ 𝑖 = 1, 2, ⋯ , 𝑛

}
: training dataset

𝑀 : the maximum number of RUL shapelets

𝐺: the number of generations

𝑃 : the number of solutions in each generation

𝐶: the number of children

Procedure

1 Initialize population of set of RUL shapelets, 𝕊 as an empty set

2 for (𝑝 = 1 to𝑃 ) {

3 Sampling 𝑚 from discrete uniform distribution with (2,𝑀)

4 Split [0, 1] into 𝑚 intervals at random

5 Split D according to the intervals and calculate centroids at 
each interval

6 Compose 𝑆 with the centroid most related with RUL

7 Add 𝑆 to 𝕊}

8 for (𝑔 = 1 to𝐺) {

9 for (𝑝 = 1 to𝑃 ) {evaluate 𝕊 [𝑝] with fitness functions}

10 Select top 𝑃 −𝐶 solutions (parent) with the highest fitness 
functions

11 Generate 𝐶 children with parent using crossover

12 Compose new 𝕊 with the parent and children }

Output 𝑆: set of RUL shapelets with the highest fitness functions

new generation with 𝑃 −𝐶 parents and 𝐶 children is composed. Finally, 
the algorithm repeats the second and third steps, and returns the best 
solution ever found during the iterations.

Fig. 4 visualizes the proposed algorithm for the reader’s understand-

ing.

4.1. Properties of good RUL shapelets

Before describing the proposed method in detail, we discuss some 
properties of good RUL shapelets. First, even though the distances to 
RUL shapelets and RULs should be correlated, selecting RUL shapelets 
based on this correlation may lead to focusing on the later part of the 
time series due to the distance property presented in equation (13):

𝑑

(
𝒔,𝒙

(𝑖)
1∶𝑡

)
≥ 𝑑

(
𝒔,𝒙

(𝑖)
1∶𝑇

)
if𝑡 ≤ 𝑇 . (13)

In other words, for any two time points 𝑡𝑓 and 𝑡𝑟 with 𝑡𝑟 > 𝑡𝑓 , it would be 
rare for the subsequence 𝒔𝑓 that occurs at 𝑡𝑓 to have a higher correlation 
with RUL than a subsequence 𝒔𝑟, which usually occurs at 𝑡𝑟. This is the 
5

case because 𝑑
(
𝒔𝑓 ,𝒙

(𝑖)
1∶𝑡

)
is not dramatically decreased after 𝑡𝑓 , while 

𝑑

(
𝒔𝑟,𝒙

(𝑖)
1∶𝑡

)
is. Since using sets of RUL shapelets that usually occur only 

at the rear is not appropriate for the RUL prediction, we should consider 
both the location of RUL shapelets as well as the correlation with the 
RUL.

Second, good RUL shapelets should occur at similar locations in ev-

ery time series sample. Fig. 5 illustrates an example of good and bad 
RUL shapelets with two time series samples 𝒙(1) and 𝒙(2) and three RUL 
shapelets 𝒔1, 𝒔2, and 𝒔3. As seen in this figure, 𝒔1 occurs at the interval 
[100%, 80%] of both samples, but also appears at [80%, 60%] in 𝒙(1). 
𝒔𝟐 occurs in the first sample only and 𝒔3 occurs at the interval [40%, 
20%] in both samples but does not occur at any other intervals. There-

fore, we can say that 𝒔𝟏 and 𝒔𝟐 are bad RUL shapelets, but 𝒔3 is a good 
shapelet.

Third, two or more good RUL shapelets in the same interval causes 
redundancy, which may decrease the RUL prediction accuracy of a su-

pervised model. On the contrary, good RUL shapelets from different 
intervals will interact with each other to increase accuracy.

We explain the RUL prediction process with good RUL shapelets 
𝒔4, 𝒔5, and 𝒔6 at time 𝑡 ∈

{
𝑡1, 𝑡2, 𝑡3

}
, as presented in Fig. 6.

In this figure, a red-dashed line means an RUL shapelet is matched 
to the corresponding subsequence. For example, 𝒔1 is matched to the 
subsequence in the interval 

[
𝑡0, 𝑡1

)
and its distance is 2. The distances 

to RUL shapelets at each time are used as a feature vector of regression 
model 𝑓 . For example, the distances are 2, 10, and 15 at 𝑡1. Accord-

ingly, (2, 10, 15) is used as the feature vector. Note that the distance 
to each shapelet is not changed after the matching due to the property 
described in equation (13). For example, 𝑑

(
𝒔1,𝒙1∶𝑡

)
is not changed af-

ter 𝒔1 matches the subsequence in the interval 
[
𝑡0, 𝑡1

)
. Note also that 

one cannot exactly know whether a shapelet is matched or not until the 
entire time series sample is observed.

4.2. Initialization

The properties of a good RUL shapelet can be summarized as fol-

lows. First, its distance to the run-to-failure time series samples is highly 
correlated with the RUL. Second, it occurs at similar intervals in most 
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Fig. 4. Visualization of the proposed algorithm.
time series samples. Third, it does not occur together with other RUL 
shapelets in the same interval. Based on these properties, we develop 
an initialization method for the proposed GA algorithm.

An offspring (i.e., a solution) of the proposed algorithm is a set 
𝑆 =

{
𝒔1, 𝒔2, ⋯ , 𝒔𝑚

}
of RUL shapelets. The initialization process of 𝑆

using a training dataset D =
{(

𝒙(𝑖), 𝑦(𝑖)
)
∣ 𝑖 = 1, 2, ⋯ , 𝑛

}
is described as 

follows.

First, the number of RUL shapelets, 𝑚, is sampled from the discrete 
uniform distribution DU(2, M), where M is a user parameter indicating 
the maximum number of RUL shapelets. Second, [0, 1] is split into 𝑚
intervals at random as shown in the equation (14):

V=
{[

0, 1
𝑚

+ 𝑒1
)
,

[ 1
𝑚

+ 𝑒1,
2
𝑚

+ 𝑒2
)
⋯ ,

[m− 1
𝑚

+ 𝑒𝑚−1,1
]}
, (14)

where V is a set of intervals and 𝑒𝑗 is a random variable that follows 
a continuous uniform distribution CU(−0.1, 0.1). Third, D is split into 
each interval as presented in the equation (15):

D𝑗 =
{(

𝒙
(𝑖)
𝑠 ∶𝑒 , 𝑦

(𝑖)
𝑠 ∶𝑒

)
∣ 𝑠𝑖 =

⌊
𝑇𝑖 × 𝑉𝑗 [0]

⌋
, 𝑒𝑖 =

⌈
𝑇𝑖 × 𝑉𝑗 [1]

⌉
,∀𝑖

}
, (15)
𝑖 𝑖 𝑖 𝑖

6

where the data are split into intervals and D𝑗 is the 𝑗th interval, 𝑉𝑗 is 
the 𝑗th interval in V (i.e., 

[
𝑗−1
𝑚

+ 𝑒𝑗−1,
𝑗

𝑚
+ 𝑒𝑗

)
, and 𝑉𝑗 [0] and 𝑉𝑗 [1] are 

the lower bound and upper bound of 𝑉𝑗 , respectively.

Fourth, the centroid 𝑐𝑗,𝑘 of a subsequence with length 2 ≤ 𝑘 ≤𝐾 for 
every D𝑗 is calculated as shown in the equation (16):

𝑐𝑗,𝑘 =
1
𝑛
×
𝑛∑
𝑖=1

∑𝑒𝑖−𝑘
𝑡=𝑠𝑖

𝒙
(𝑖)
𝑡∶𝑡+𝑘

𝑒𝑖 − 𝑠𝑖 − 𝑘
, (16)

where 𝐾 is a user parameter indicating the maximum length of RUL 
shapelets. Finally, the centroid whose distance to the time series is the 
most correlated with the RUL is selected and used as 𝒔𝑗 for all 𝑗 as 
presented in equation (17):

𝒔𝑗 = argmax𝑘 𝜌
((
𝑑

(
𝒙
(𝑖)
1∶𝑡, 𝑐𝑗,𝑘

))
𝑖,𝑡
,

(
𝑦
(𝑖)
𝑡

)
𝑖,𝑡

)
. (17)

Here, 
(
𝑑

(
𝒙
(𝑖)
1∶𝑡, 𝑐𝑗,𝑘

))
𝑖,𝑡

is a vector 
(
𝑑

(
𝒙
(1)
1∶𝑘, 𝑐𝑘

)
, 𝑑

(
𝒙
(1)
1∶𝑘+1, 𝑐𝑘

)
, ⋯ ,

𝑑

(
𝒙
(𝑛)

, 𝑐𝑘

))
.

𝑇𝑛−𝑘∶𝑇𝑛
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Fig. 5. Example of good and bad RUL shapelets.

Fig. 6. RUL prediction process with a good set of RUL shapelets.
The whole process is summarized in Algorithm 2, which is repeated 
𝑃 times, where 𝑃 is the population size which is the number of solutions 
in each generation.

Algorithm 2 Population Initialization

Input D=
{(

𝒙(𝑖) , 𝑦(𝑖)
)
∣ 𝑖 = 1, 2, ⋯ , 𝑛

}
: training dataset

𝑀 : maximum number of RUL shapelets

𝐾: maximum length of RUL shapelets

Procedure

1 𝑚 is sampled from DU(2, M)
2 𝑒1, 𝑒2 , ⋯ , 𝑒𝑚 are sampled from CU(−0.1, 0.1)
3 V=

{[
m−1
𝑚

+ 𝑒𝑚−1 , 1
]
,

[
m−2
𝑚

+ 𝑒𝑚−2 ,
m−1
𝑚

+ 𝑒𝑚−1
)
,⋯ ,

[
0, 1
𝑚
+ 𝑒1

)}
4 𝑆 = ∅
5 for (𝑗 = 1 to𝑚) {

6 D𝑗 =
{(

𝒙
(𝑖)
𝑠𝑖∶𝑒𝑖 , 𝑦

(𝑖)
𝑠𝑖∶𝑒𝑖

)
∣ 𝑠𝑖 =

⌊
𝑇𝑖 × 𝑉𝑗 [0]

⌋
, 𝑒𝑖 =

⌈
𝑇𝑖 × 𝑉𝑗 [1]

⌉
,∀𝑖

}
7 𝐶 = ∅
8 for (𝑘 = 1 to 𝐾) {

9 𝑐𝑗,𝑘 =
1
𝑛
×
∑𝑛
𝑖=1

∑𝑒𝑖−𝑘
𝑡=𝑠𝑖

𝒙
(𝑖)
𝑡∶𝑡+𝑘

𝑒𝑖−𝑠𝑖−𝑘
10 Add 𝑐𝑗,𝑘 to 𝐶}

11 𝒔𝑗 = argmax𝑘 𝜌
((
𝑑

(
𝒙
(𝑖)
1∶𝑡 , 𝑐𝑗,𝑘

))
𝑖,𝑡
,

(
𝑦
(𝑖)
𝑡

)
𝑖,𝑡

)
12 Add 𝒔𝑗 to 𝑆}

Output 𝑆: an offspring (set of RUL shapelets)
7

4.3. Evaluation and crossover

Based on the properties of good RUL shapelets, we propose two 
fitness functions: a relevant function and a redundancy fitness func-

tion. The former evaluates an offspring 𝑆 =
{
𝒔1, 𝒔2, ⋯ , 𝒔𝑚

}
in terms 

of the correlation between RUL and the minimum cosine distance of 
𝒔𝑗 (𝑗 = 1, 2, ⋯ ,𝑚) to 𝒙(𝑖)1∶𝑡. To be more specific, let 𝜃(𝑖)

𝑗,𝑡
be the minimum 

cosine distance between 𝒙(𝑖)1∶𝑡 and 𝒔𝑗 , which is obtained as shown in the 
equation (18):

𝜃
(𝑖)
𝑗,𝑡

= min
𝜏=1,2,⋯,𝑡−𝑙

𝐶𝑂𝑆

(
𝒔,𝒙

(𝑖)
𝜏∶𝜏+𝑙

)
, (18)

where 𝐶𝑂𝑆
(
𝒔,𝒙

(𝑖)
𝑡∶𝑡+𝑙

)
is the cosine distance between 𝒔 and 𝒙(𝑖)

𝑡∶𝑡+𝑙 . Here, 
we use the cosine distance instead of other distance measures such as 
Euclidean distance to calculate the shape similarity, because the degra-

dation patterns of RUL shapelets are, in general, more related with 
shapes than values. The relevant fitness function value 𝑓1(𝑆) of 𝑆 is 
calculated as the absolute mean of the Pearson correlation coefficient 
between 𝜽𝑗 =

(
𝜃
(𝑖)
𝑗,𝑡

)
𝑖, 𝑡

and 𝒚 =
(
𝑦
(𝑖)
𝑡

)
𝑖, 𝑡

as presented in the equation 
(19):
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Table 1. The methods used in this experiment.

Study Hyperparameters Values

Ours

Maximum length of RUL shapelets (𝐾) 5, 10, 15, 20

Maximum number of RUL shapelets (𝑀) 5, 10, 15, 20

Number of children (𝐶) 3, 5, 7

Number of generations 10

Number of offspring in a population 10

Model DT, RF, LR, Lasso, SVR, MLP, KNN

Lyu et al. 
(2020)

Window size (w) 5, 10, 15, 20

Window size variation (Δw) 0, 1, 2

Number of neighbors 5, 10, 15, 20

Scaling factor (𝛼) 0, 300, 600, 900, 1200

Scaling factor (𝛽) 0, 30, 60, 90, 120

Scaling function 𝑠 (𝑥) 2
1+𝑒−𝑥

− 1, 𝑥

1+|𝑥| , 𝑥√
1+𝑥2

, tanh (𝑥)

Liu et al. 
(2019)

Window size 5, 10, 15, 20

Weight of Euclidean similarity (𝛼) 1

Weight of cosine similarity (𝛽) 1

Bingjie et al. 
(2021)

Number of windows 5, 6, 7, 8, 9

Number of clusters 5, 10, 15, 20

Malinowski 
et al. (2015)

Maximum length of RUL shapelets 5, 10, 15, 20

Number of centroids 50, 100, 150, 200, 250, 300

Distance threshold 0.15, 0.25, 0.35, 0.45, 0.55

* DT: Decision Tree; RF: Random Forest; LR: Linear Regression; Lasso: Least Absolute 
Shrinkage and Selection Operator (𝛼 = 0.2); SVR: Support Vector Regression; MLP: Multi-

ple Layer Perceptron; KNN: K-Nearest Neighbors.
𝑓1(𝑆) =
1
𝑚

×
𝑚∑
𝑗=1

|||𝜌(𝜽𝑗 ,𝒚)||| , (19)

where 𝜌 is the Pearson correlation coefficient.

The redundancy fitness function value 𝑓2(𝑆) of 𝑆 evaluates an off-

spring in terms of the correlation between the feature value 𝑐(𝑖)
𝑗,𝑡

. That is, 
𝑆 is evaluated as shown in the equation (20):

𝑓2 (𝑆) =
2

𝑚 (𝑚− 1)
×
𝑚−1∑
𝑗=1

𝑚∑
𝑗′=𝑗+1

|||𝜌(𝒅𝑗 ,𝒅𝑗′)||| , (20)

where 𝒅𝑗 is 𝑑
(
𝒔𝑗 , 𝒙

(𝑖)
1∶𝑡

)
𝑖, 𝑡

.

Every offspring 𝑆 is evaluated as 𝑓1(𝑆) × 𝑓2 (𝑆). Some offspring in 
the population with the highest evaluation score are selected, and new 
offspring are generated using one-point crossover, as illustrated in Fig. 2

(a).

5. Experiment

In this section, we conduct three experiments to validate the effec-

tiveness of our method and show how to use it properly.

5.1. Experimental design

In the first experiment, we compare the proposed method with 
other similarity-based methods by applying them to several benchmark 
datasets. The methods used in the experiment are Lyu et al. (2020)’s, 
Liu et al. (2019)’s, Bingjie et al. (2021)’s and Malinowski et al. (2015)’s, 
which are similarity-based methods. Please refer to the fifth paragraph 
in the Introduction section for the brief explanation on these methods. 
Their hyperparameters are summarized in Table 1.

We compare every method with every combination of hyperparame-

ters presented in Table 1 in terms of the prediction score (PS) proposed 
by Saxena and Goebel (2008) for each run-to-failure dataset. The pre-

diction score is defined as presented in the equation (21).

𝑃𝑆
(
𝑦𝑡, �̂�𝑡

)
=
⎧⎪⎨⎪⎩
exp

(
�̂�𝑡−𝑦𝑡
10

)
− 1, if 𝑦𝑡 ≤ �̂�𝑡

exp
(
𝑦𝑡−�̂�𝑡
13

)
− 1, if 𝑦𝑡 > �̂�𝑡

, (21)

where 𝑦𝑡 is an actual RUL and �̂�𝑡 is a predicted RUL. The specific pro-

cedure using a dataset, which consists of a training dataset and a test 
dataset, is described as follows. First, we convert every sample in the 
dataset into the structure presented in equation (8). Second, we train 
8

a model with a specific hyperparameter combination ℎ and calculate 
the prediction score for test sample 𝑖′

(
𝑖′ = 1, 2, ⋯ , 𝑛′

)
, where 𝑛′ is the 

number of test samples as determined in equation (22):

𝑃𝑆ℎ,𝑖′ =
1⌊𝑇𝑖′ × 0.9⌋− ⌊𝑇𝑖′ × 0.2⌋ ×

⌊
𝑇𝑖′ ×0.9

⌋∑
𝑡=
⌊
𝑇𝑖′ ×0.2

⌋𝑃𝑆
(
𝑦

(
𝑖′
)

𝑡
, �̂�

(
𝑖′
)

ℎ,𝑡

)
. (22)

Here, �̂�
(
𝑖′
)

ℎ, 𝑡
is the value of 𝑦

(
𝑖′
)

𝑡
predicted using the model with ℎ. We 

do not use 𝒙(𝑖)1∶𝑡 when 𝑡 < ⌊𝑇𝑖 × 0.2⌋ or 𝑡 > ⌊𝑇𝑖 × 0.9⌋ because it may be 
useless to estimate RUL if 𝑡 is too small or too large. The PS for each 
method is calculated as shown in the equation (23):

𝑃𝑆 = 1
𝑛′ × |𝐻| ∑

ℎ∈𝐻

𝑛′∑
𝑖′=1
𝑃𝑆ℎ,𝑖′ , (23)

where 𝐻 is the set of all possible hyperparameter combinations and |𝐻| is its size. Note that we calculate 𝑃𝑆 10 times for methods with 
randomness and use their average for the objective comparison.

In the second experiment, we validate the initialization algorithm 
of the method by comparing it with random initialization algorithm 
employed in most GAs. The random initialization algorithm generates 
𝑚 ≤𝑀 initial RUL shapelets by selecting a sample from the training 
dataset and randomly choosing a subsequence whose length is smaller 
than 𝐾 .

In the third experiment, we conduct sensitivity analysis on the pa-

rameters to show the relationship between hyperparameters and the 
RUL prediction accuracy. We also suggest how to determine the param-

eters. We conduct repeated measures analysis of variance (RMANOVA) 
with data when the independent variables are the hyperparameters 𝐾 , 
𝑀 , 𝐶 , and Model and the dependent variable is the mean MAE of the 
model under the hyperparameters for each dataset to find the most im-

portant hyperparameters. Then, we conduct the sensitivity analysis for 
the selected important hyperparameters, leaving other important pa-

rameters fixed.

5.2. Datasets

The datasets for the experiments are C-MAPSS (commercial modu-

lar aero-propulsion system simulation) datasets provided by Saxena and 
Goebel (2008). These are simulation datasets obtained under several 
operating conditions and fault modes, and each of them can be distin-

guished according to the number of conditions and modes. Chao et al. 
(2021) use C-MAPSS to generate more realistic simulation datasets, con-
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Table 2. Datasets used in the experiments.

Dataset Number of Number of Mean length of Mean length of

training samples test samples training samples test samples

C-MAPSS (ver.1) #1 75 25 210.16 194.76

C-MAPSS (ver.1) #2 195 65 206.68 207.03

C-MAPSS (ver.1) #3 75 25 242.84 260.28

C-MAPSS (ver.1) #4 186 63 247.54 241.38

C-MAPSS (ver.2) #1 6 3 75.83 64.33

C-MAPSS (ver.2) #2 11 4 73.55 73.00

C-MAPSS (ver.2) #3 11 4 67.18 63.75

Battery 23 8 83.26 100.50
sidering real flight condition. We call the dataset provided by Saxena 
and Goebel (2008) C-MAPSS (ver.1) and the dataset provided by Arias 
Chao et al. C-MAPSS (ver 2). Each dataset has 14 health parameters, 
and we make a new health index that is used as a time series to predict 
RUL, as presented in Zhu et al. (2021). The other datasets are life time 
of Li-ion batteries measured under various room temperature provided 
by Goebel et al. (2008). The datasets are separated according to its op-

erating conditions, but we combined all because each dataset has few 
data and similarity based methods can handle the combined data. We 
call the dataset Battery.

Specific information on the datasets is summarized in the following 
Table 2.

As seen in this Table 2, each dataset consists of training and test 
dataset and C-MAPSS data consists of several datasets according to op-

erating conditions such as fault mode. We will call each dataset in a 
row of the table dataset if there is no confusion in meaning and thus we 
have eight datasets.

5.3. Results

Fig. 7 (a)-(h) compares the mean PSs of each method in each dataset.

As seen in this figure, for the most datasets, our method outperforms 
the other methods, especially the method of Malinowski et al. (2015) 
that first introduced RUL shapelets. As we mentioned earlier, Mali-

nowski et al. (2015) ignored the rule that good RUL shapelets should be 
frequent only in the specific range when developing a method. Our pro-

posed method took this characteristic of good shapelets, as presented 
in subsection 4.1, into consideration. As a result, our performance was 
improved. To be more concrete, our method outperforms the method 
proposed by Malinowski et al. (2015) for all the eight benchmark 
datasets. In addition, our method also outperforms previous similarity-

based methods for most datasets. Average PS of our method is bigger 
than Lyu’s method only for two datasets, as seen in (a) c-MAPSS (ver.1) 
#1 and (f) c-MAPSS (ver.2) #2. Average PS of our method is big-

ger than Lyu’s only for two datasets (a) c-MAPSS (ver.1) #1 and (f) 
c-MAPSS (ver.2) #2. Our method gives the second-best performance, 
which seems to come from the lack of data integrity or the noise in the 
dataset during the model training.

Fig. 8 compares the mean PSs between the proposed initialization 
method and random initialization method for several regression models. 
In this figure, left white bar and right red bar are average PS using the 
random and proposed initialization methods, respectively.

From the figure, we can conclude that the proposed initialization 
method is better than the random initialization especially when the 
run-to-failure data is large. Specifically, the average PS’s of our initial-

ization method are smaller than those of random initialization for most 
datasets and regression models, except in 5 results among 56 results 
(eight datasets and seven regression models).

Table 3 shows the RMANOVA results where each cell denotes F-

value (p-value). For example, F-value and p-value of parameter 𝑀 for 
data C-MAPSS (ver.1) #1 are 1.08 and 0.3599, respectively.

As seen in this table, the p-values for 𝐾 and Model are smaller 
than 0.01 for every dataset. In particular, Model has the largest F-value 
except for C-MAPSS (ver.1) #4 and C-MAPSS (ver.2) #1. Thus, we con-
9

Table 3. RMANOVA results.

Data 𝑀 𝐶 𝐾 Model

C-MAPSS (ver.1) #1 1.08 
(0.3599)

0.97 
(0.3788)

420.29 
(0.0000∗∗)

949.25 
(0.0000∗∗)

C-MAPSS (ver.1) #2 3.48 
(0.0165∗)

0.79 
(0.4568)

684.72 
(0.0000∗∗)

2261.98 
(0.0000∗∗)

C-MAPSS (ver.1) #3 0.54 
(0.6546)

3.15 
(0.0446∗)

58.27 
(0.0000∗∗)

99.88 
(0.0000∗∗)

C-MAPSS (ver.1) #4 10.48 
(0.0000∗∗)

2.42 
(0.0913)

312.59 
(0.0000∗∗)

128.05 
(0.0000∗∗)

C-MAPSS (ver.2) #1 3.25 
(0.0224∗)

3.85 
(0.0227∗)

287.37 
(0.0000∗∗)

57.72 
(0.0000∗∗)

C-MAPSS (ver.2) #2 1.79 
(0.1494)

1.52 
(0.2204)

400.66 
(0.0000∗∗)

437.44 
(0.0000∗∗)

C-MAPSS (ver.2) #3 1.08 
(0.3599)

0.97 
(0.3788)

420.29 
(0.0000∗∗)

949.25 
(0.0000∗∗)

Battery 3.48 
(0.0165∗)

0.79 
(0.4568)

684.72 
(0.0000∗∗)

2261.98 
(0.0000∗∗)

∗ : p-value < 0.05, ∗∗ : p-value < 0.01

clude that the regression model is the most important parameter and 
the length of RUL shapelets is the second most important parameter.

Fig. 9 shows the average PS obtained by sensitivity analysis for var-

ious 𝐾 = 5, 10, 15, 20 when the model is SVR.

As seen in this figure, the larger the K is, the smaller the PS’s are 
for all the datasets except for C-MAPSS (ver.2) #3 and Battery. Even for 
those two datasets, however, the PS’s are the smallest when K = 20.

Fig. 10 shows the sensitivity analysis results according to the regres-

sion model when 𝐾 is fixed as 20.

As seen in this figure, we can find that linear models, including 
Lasso, LR, SVR, and MLP, show better results than tree models like DT 
and RF.

The experimental results can be summarized as follows. First, our 
method outperforms previous similarity-based methods including the 
method of Malinowski et al. (2015) that first introduced RUL shapelets 
for most datasets. Second, our initialization method shows better re-

sults than those of random initialization method for most regression 
models and datasets. Third, the regression model and the length of RUL 
shapelets are the most and second most important parameters, respec-

tively. Fourth, the larger the maximum length of RUL shapelets is, the 
smaller the RUL prediction errors are. Finally, the linear models such as 
Lasso, LR, SVR and MLP are more proper than tree models such as DT 
and RF.

6. Conclusion

In this paper, we formulized the RUL shapelet selection by using a 
mathematical optimization problem with three objectives: 1) to mini-

mize the error of RUL prediction, 2) to minimize the number of RUL 
shapelets, and 3) to minimize redundancy among the shapelets. In ad-

dition, we characterized some of the properties that a good set of RUL 
shapelets should possess. First, the RUL of a time series sample is pro-

portional to the minimum distance to each shapelet. Second, good RUL 
shapelets should occur at a similar location in every time series sample, 
while also not occurring at a different location. Finally, two or more 
shapelets should not occur in the same interval.
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Fig. 7. Comparison results.
10



G.-S. Ahn, M.-K. Jin, S.-B. Hwang et al. Heliyon 8 (2022) e12111

Fig. 8. Comparison result between the proposed and random initialization methods.
Based on these properties, we developed a GA-based RUL shapelet 
selection algorithm. This method selects frequent subsequences locally, 
not globally, and does not select two or more subsequences from the 
same interval. From our experiment, we validated that the proposed 
method outperforms previous methods. We also provided some guide-

lines for determining the hyperparameters and selecting the machine 
learning model. We also provided an initialization method that works 
well when the data is complicated or when the regression model is lin-

ear. And if we have a large number of RUL shapelets, we can get a 
smaller prediction error.
11
The limitations of the proposed methods are as follows. First, the 
method can only be used when a one-dimensional health index ex-

ists. In other words, the method works for univariate time series only. 
Second, the method is very expensive in terms of computational com-

plexity. It requires iterative computation such as splitting the dataset 
based on intervals, finding centroids, crossover mutation for two sets of 
RUL shapelets and so forth. Finally, it is difficult to interpret the RUL 
prediction result when there are many RUL shapelets. Especially, this 
paper focuses only on the RUL prediction performance, and does not 
propose interpretation method using the selected RUL shapelets.
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Fig. 9. Sensitivity analysis results according to the length of RUL shapelets.
As for future research, we suggest the method should be expanded 
to the multivariate time series directly, without introducing the health 
index. We also suggest the approximation method to calculate the dis-

tance between time series and RUL shapelets, and the method to reduce 
the number of candidates for the fast search. Finally, the interpretation 
method is necessary to use the proposed method in practice.
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